Конструкция емкостной датчик контроля приближения своими руками. Емкостные датчики и реле схемы. Как конденсатор превращается в датчик

Несколько схем датчиков

В январе 2007 года издательство "Наука и Техника" выпустило книгу автора А.П.Кашкарова "Электронные датчики". На этой страничке хочу познакомить Вас с некоторыми из конструкций.

Очень хочется предупредить - данные схемы я НЕ собирал - работоспособность их полностью зависит от "порядочности" г-на Кашкарова!

В начале рассмотрим схемы с применением микросхемы К561ТЛ1. Первая схема - емкостное реле:

Микросхема К561ТЛ1 (зарубежный аналог CD4093B) - одна из самых популярных цифровых микросхем этой серии. Микросхема содержит 4 элемента 2И-НЕ с передаточной характеристикой триггера Шмита (имеет определенный гистерезис).

Данное устройство имеет высокую чувствительность, что позволяет использовать его в охранных устройствах, а также в устройствах, предупреждающих о небезопасном нахождении человека в опасной зоне (например в распиловочных станках). Принцип устройства основан на изменении емкости между штырем антенны (используется стандартная автомобильная антенна) и полом. По утверждению автора, данная схема срабатывает при приближении человека среднего размера на расстояние около 1,5 метров. В качестве нагрузки транзистора может использоваться, например, электромагнитное реле с током срабатывания не более 50 миллиампер, которое своими контактами включает исполнительное устройство (сирену и проч.). Конденсатор С1 служит для снижения вероятности срабатывания устройства от помех.

Следующее устройство - датчик влажности:

Особенностью схемы является применение в качестве датчика переменного конденсатора С2 типа 1КЛВМ-1 с воздушным диэлектриком. Если воздух сухой - сопротивление между пластинами конденсатора составляет более 10 Гигаом, а уже при небольшой влажности сопротивление уменьшается. По сути этот конденсатор представляет собой высокоомный резистор с изменяющимся в зависимости от внешних условий абсорбированной атмосферной влажности сопротивлением. При сухом климате сопротивление датчика велико, и на выходе элемента D1/1 присутствует низкий уровень напряжения. при увеличении влажности сопротивление датчика уменьшается, возникает генерация импульсов, на выходе схемы присутствуют короткие импульсы. При увеличении влажности частота генерации импульсов увеличивается. В определенный момент влажности генератор на элементе D1/1 превращается в генератор импульсов. на выходе устройства появляется непрерывный сигнал.

Схема сенсорного датчика показана ниже:

Принцип действия этого устройства заключается в реагировании на "наводки" в теле человека или животного от различных электрических устройств. Чувствительность устройства очень велика - оно реагирует даже на прикосновение к пластине Е1 человека в матерчатых перчатках. При первом прикосновении устройство включается, при втором - выключается. Конденсатор С1 служит для защиты от помех и его в отдельном случае может и не быть...

Следующее устройство - индикатор влажности почвы. Это устройство может быть использовано, например, для автоматизации полива теплицы:


Устройство, на мой взгляд, весьма оригинально. Датчиком служит катушка индуктивности L1, закопанная в почву на глубину 35-50 сантиметров.
Транзистор Т2 и катушка индуктивности совместно с конденсаторами С5 и С6 образуют автогенератор на частоту около 16 килогерц. При сухой почве амплитуда импульсов на коллекторе транзистора VT2 равна 3 вольтам. Увеличение влажности почвы приводит к понижению амплитуды этих импульсов. Реле включено. При некотором значении влажности генерация срывается, что приводит к выключению реле. Реле своими контактами выключает, например, насос или электромагнитный вентиль в цепи полива.
О деталях: Самой ответственной частью схемы является катушка. Эта катушка наматывается на отрезок пластмассовой трубы, диаметром 100 , длиной 300 миллиметров и содержит 250 витков, провода ПЭВ, диаметром 1 миллиметр. Намотка - виток к витку. Снаружи обмотка изолируется двумя - тремя слоями ПХВ изоляционной ленты. Транзисторы можно заменить на КТ315. Конденсаторы - типа КМ. Диоды VD1-VD3 - типа КД521 - КД522.
Вся конструкция питается от стабилизированного источника, напряжением 12 вольт. Ток потребления схемой равен (в режимах "влажно-сухо") 20-50 миллиампер.
Электронная схема собирается в небольшой герметичной коробке. Для возможности регулировки напротив движка R5 следует предусмотреть отверстие, которое после настройки также герметично закрывается. Для питания использован маломощный трансформатор с выпрямителем и стабилизатором на КР142ЕН8Б. Реле должно нормально срабатывать при токе не более 30 миллиампер и напряжении 8-10 вольт. Для примера - можно применить РЭС10, паспорт 303. Для питания насоса контакты этого реле непригодны. В качестве промежуточного реле можно использовать автомобильное. Контакты такого реле выдерживают ток не менее 10 ампер. Можно применить и реле типа КУЦ от цветных телевизоров. Оба из рекомендованных реле имеют обмотку на 12 вольт и их можно включать до микросхемы стабилизатора (после выпрямителя и сглаживающего конденсатора), либо после стабилизатора (но тогда микросхему стабилизатора следует установить на небольшой теплоотвод). Также на корпусе следует установить два герметичных разъема (например типа РША). Один разъем используется для подключения сети и исполнительного устройства (насос), другой - для подключения катушки.
Настройка схемы сводится к регулированию чувствительности устройства при помощи переменного резистора R5. Окончательная настройка производится на месте работы устройства более точной подстройкой резистора. Следует иметь в виду, что данное устройство несколько изменяет порог включения при изменении температуры почвы (но это не очень существенно, поскольку на глубине в 35-50 сантиметров температура почвы изменяется незначительно).
Весной у владельцев овощных ям и гаражей появляется еще одна забота - талые воды. Если вовремя не откачать воду - овощи приходят в негодность... Можно процедуру откачки воды поручить автоматике. Схема получается простенькой, а сэкономит Вам множество времени и нервов (эта схема не из книжки! ) :



Схема автоматической "водооткачки" работает на принципе электропроводности воды. Основным элементом контроля уровня является блок из трех пластин из нержавеющей стали. Пластины 1 и 2 имеют одинаковую длину, пластина 3 - датчик верхнего уровня воды. Пока уровень воды ниже уровня 3 пластины - на входе логического элемента D1 уровень логической еденицы, на выходе элемента уровень логического нуля - транзистор заперт, реле обесточено. При увеличении уровня воды датчик 3 через воду соединяется с общим проводом схемы (пластина 1) - на входе элемента уровень логического нуля, на выходе элемента - уровень логической еденицы - транзистор открывается - реле своими контактами включает насос. Одновременно с насосом на вход схемы подключается пластина 2 датчика. Эта пластина является датчиком нижнего уровня воды. Насос будет работать до тех пор, пока уровень воды не опустится ниже уровня пластин. После этого насос отключается и схема переходит в дежурный режим...
В схеме можно применить практически любые логические элементы КМОП технологии серий 176, 561,564. Реле РЭС22 используется на напряжение срабатывания 10-12 вольт. Данное реле имеет довольно мощные контакты, что позволяет непосредственно управлять насосом типа "Водолей" мощностью до 250 ватт. Для увеличения надежности работы полезно свободные группы контактов реле (их всего четыре) соединить параллельно и параллельно контактам реле включить цепочку из последовательно соединенных резистора на 100 ом (мощностью не менее 2 ватт) и конденсатора на 0,1 микрофарады (с рабочим напряжением не менее 400 вольт). Эта цепочка служит для уменьшения искрения на контактах в моменты коммутации. Если у Вас насос большей мощности - придется применить дополнительное промежуточное реле с контактами большей мощности (например пускатель ПМЕ 100 - 200...), обмотку которого (обычно на 220 вольт) коммутировать при помощи реле РЭС22. В этом случае обычно хватает одной пары контактов и искрогасящую цепочку параллельно контактам реле можно не ставить. Трансформатор питания использован на 12 вольт (был готовый) с мощностью около 5 ватт. При самостоятельном изготовлении следует учитывать тот факт что трансформатор будет работать непрерывно, поэтому лучше увеличить (для надежности) на 15-20 процентов количество витков первичной и вторичной обмоток по сравнению с расчетными. Использовать Китайские трансформаторы я бы Вам не советовал - при работе они очень сильно греются - может произойти пожар, либо трансформатор попросту сгорит, а Вы будете уверены в надежности работы схемы и перестанете наведываться в гараж... Результат - овощи испорчены...
Данное устройство эксплуатируется автором на протяжении 5 лет и показало высокую надежность. Соседи по гаражному кооперативу тоже высоко оценили этот "девайс" - уровень воды в их ямах также значительно понизился...

Можно подобное устройство изготовить и без микросхемы:



Реле в данной конструкции используется типа КУЦ (от цветных телевизоров). Этот тип реле имеет две пары замыкающих контактов. Одна пара используется для переключения пластин датчика, другая - для управления насосом. Следует иметь в виду, что реле типа КУЦ нежелательно использовать совместно с микросхемой - могут появиться ложные срабатывания от наводок!

Схема каких либо особенностей не имеет. Возможно, во время настройки придется подобрать резистор R2 в цепи смещения транзистора VT2, добиваясь четкого срабатывания реле при контакте датчика с водой.


На оставшихся элементах микросхемы можно собрать еще одно полезное устройство - имитатор охранной сигнализации:



Устройство предназначено для имитации системы охраны гаража. Для обеспечения бесперебойности работы схема снабжена автономным питанием из батареи аккумуляторов с напряжением 5 вольт. Для экономичности устройства в целом - служит фоторезистор R2. В темное время суток на фоторезистор свет не попадает - сопротивление его велико - на входе элемента присутствует напряжение логической еденицы - генератор вырабатывает импульсы. Светодиод - "моргает". В светлое время суток сопротивление фоторезистора уменьшается, что приводит к уменьшению напряжения на выводе 10 микросхемы до уровня логического нуля - генератор перестает возбуждаться. Частота импульсов зависит от номиналов конденсатора С1 и резистора R2. В качестве резервного источника использована батарея из 4 аккумуляторов типа КНГ-1,5. Емкости аккумуляторной батареи хватает для непрерывной работы схемы примерно на 20-30 суток (при пропадании сетевого напряжения).
Настройка сводится к подбору с помощью сопротивления резистора R1 уровня чувствительности схемы. Резистором R2 можно изменять частоту генератора.
Данное устройство относится к так называемому "пассивному" устройству защиты, но оно реально работает! Эксплуатация "моргасика" в течении более 5 лет показала его довольно высокую эффективность. За это время не было зафиксировано ни одной попытки вскрытия гаража (у соседей такие случаи бывали). Понятно, что серьезного жулика подобным устройством не напугаешь - (но где они, серьезные жулики - так, одна шпана...).

Среди большого разнообразия емкостных конструкций порой бывает непросто выбрать наиболее подходящий для данного конкретного случая вариант емкостного датчика. Во многих публикациях на тему емкостных устройств область применения и отличительные особенности предлагаемых конструкций описываются весьма кратко и радиолюбитель зачастую не может сориентироваться – какую-же схему емкостного устройства следует предпочесть для повторения.

В данной статье приведено описание различных типов емкостных датчиков, даны их сравнительные характеристики и рекомендации по наиболее рациональному практическому использованию каждого конкретно взятого типа емкостных конструкций.

Как известно, емкостные датчики способны реагировать на любые предметы и, при этом, их расстояние срабатывания не зависит от таких свойств поверхности приближающегося объекта, как, например, тёплый он или холодный (в отличие от инфракрасных датчиков), а так-же - твёрдый или мягкий (в отличие от ультразвуковых датчиков движения). Кроме того, емкостные датчики могут обнаруживать объекты сквозь различные непрозрачные «преграды», например – стены строений, массивные заборы, двери и т.п. Использоваться подобные датчики могут как для охранных целей, так и для бытовых, например – для включения освещения при входе в помещение; для автоматического открывания дверей; в сигнализаторах уровня жидкости и т.п.
Существуют несколько типов емкостных датчиков.

1. Датчики на конденсаторах.
В датчиках этого типа сигнал срабатывания формируется с помощью конденсаторных схем и подобные конструкции можно разделить на несколько групп.
Наиболее простые из них - схемы на емкостных делителях.

В подобных устройствах, например , антенна-датчик подключается к выходу рабочего генератора через разделительный конденсатор малой ёмкости, при этом, в точке соединения антенны и вышеуказанного конденсатора, образуется рабочий потенциал, уровень которого зависит от ёмкости антенны, при этом, антенна-датчик и разделительный конденсатор образуют емкостной делитель и при приближении какого-либо объекта к антенне, потенциал в точке её соединения с разделительным конденсатором – понижается, что является сигналом к срабатыванию устройства.

Существуют так-же схемы на RC-генераторах. В данных конструкциях, например , для формирования сигнала срабатывания используется RC-генератор, частотозадающим элементом которого является антенна-датчик, ёмкость которой изменяется (возрастает) при приближении к ней какого-либо объекта. Задаваемый ёмкостью антенны-датчика сигнал, сравнивается затем с образцовым сигналом, поступающим с выхода второго (эталонного) генератора.

Датчики на развёрнутых конденсаторах. В подобных устройствах, например , в качестве антенны-датчика используются две плоские металлические пластины, размещённые в одной плоскости. Данные пластины являются обкладками развёрнутого конденсатора и при приближении каких-либо объектов, изменяется диэлектрическая проницаемость среды между обкладками и, соответственно, увеличивается ёмкость вышеуказанного конденсатора, что является сигналом к срабатыванию датчика.
Известны так-же устройства, например , в которых используется способ сравнения ёмкости антенны с ёмкостью образцового (эталонного) конденсатора (ссылкаРоспатента).

При этом, характерной особенностью емкостных датчиков на конденсаторах является их невысокая помехоустойчивость – на входах подобных устройств не содержится элементов, способных эффективно подавлять посторонние воздействия. Принимаемые антенной различные наводки и радиопомехи образуют на входе устройства большое количество шумов и помех, делая подобные конструкции нечувствительными к слабым сигналам. По этой причине, дальность обнаружения объектов у датчиков на конденсаторах невелика, например, приближение человека они обнаруживают с расстояния не превышающего 10 - 15 см.
Вместе с тем, подобные устройства могут быть весьма простыми по своей конструкции, (например ) и в них нет необходимости использовать намоточные детали - катушки, контура и т.п., благодаря чему, данные конструкции довольно удобны и технологичны в изготовлении.

Область применения емкостных датчиков на конденсаторах.
Данные устройства могут применяться там, где высокая чувствительность и помехоустойчивость не требуются, например в сигнализаторах прикосновения к металлич. предметам, датчиках уровня жидкости и т.п., а так-же, - для начинающих радиолюбителей, знакомящихся с емкостной техникой.

2. Емкостные датчики на частотозадающем LC-контуре.
Устройства данного типа менее подвержены воздействиям радиопомех и наводок по сравнению с датчиками на конденсаторах.
Антенна-датчик (обычно металлическая пластина) присоединяется (либо напрямую, либо через конденсатор ёмкостью в несколько десятков пФ) к частотозадающему LC-контуру ВЧ-генератора. При приближении какого-либо объекта - изменяется (увеличивается) ёмкость антенны и, соответственно, - ёмкость LС-контура. В результате - изменяется (понижается) частота генератора и происходит срабатывание.

Особенности емкостных датчиков данного типа.
1) LС-контур с присоединённой к нему антенной-датчиком является частью генератора, вследствие чего, воздействующие на антенну наводки и радиопомехи оказывают влияние и на его работу: через элементы положительной обратной связи помеховые сигналы (особенно импульсные) просачиваются на вход активного элемента генератора и усиливаются в нём, образуя на выходе устройства посторонние шумы, понижающие чувствительность конструкции к слабым сигналам и создающие опасность ложных срабатываний.
2) LС-контур, работающий в качестве частотозадающего элемента генератора, сильно нагружен и имеет пониженную добротность, в результате чего, снижаются избирательные свойства контура и ухудшается его способность изменять свою настройку при изменении ёмкости антенны, что дополнительно понижает чувствительность конструкции.
Вышеуказанные особенности датчиков на частотозадающем LС-контуре ограничивают их помехоустойчивость и дальность обнаружения объектов, к примеру, расстояние обнаружения человека датчиками этого типа составляет обычно 20 - 30 см.

Имеется несколько разновидностей и модификаций емкостных датчиков с частотозадающим LС-контуром.

1) Датчики с кварцевым резонатором.
В подобных устройствах, например , с целью повышения чувствительности и стабильности частоты генератора, введены: кварцевый резонатор и дифференциальный ВЧ-трансформатор, первичная обмотка которого является элементом частотозадающего контура генератора, а две его вторичных (идентичных) обмотки являются элементами измерительного моста, к которому подключается антенна-датчик, последовательно соединённая с кварцевым резонатором, и при приближении к антенне какого-либо объекта формируется сигнал срабатывания.
Чувствительность у подобных конструкций выше по сравнению с обычными датчиками на частотозадающем LС-контуре, однако для них требуется изготовление дифференциального ВЧ-трансформатора (в вышеуказанной конструкции его обмотки размещаются на кольце типоразмера К10 × 6 × 2 из феррита М3000НМ, при этом, для повышения добротности, в кольце прорезается зазор шириной 0,9…1,1 мм.

2) Датчики с отсасывающим LС-контуром.
Данные конструкции, например , - представляют собой емкостные устройства, в которые с целью повышения чувствительности введён дополнительный (получивший название отсасывающего) LС-контур, индуктивно связанный с частотозадающим контуром генератора и настроенный в резонанс с этим контуром.
Антенна-датчик, при этом, подключается не к частотозадающему контуру, а к вышеуказанному отсасывающему LС-контуру, включающему в себя конденсатор малой ёмкости и соленоид, индуктивность которого, соответственно, - увеличена. Т.к.е. контурного конденсатора, при этом, должен быть небольшим – на уровне М33 – М75.
Благодаря малой ёмкости данного контура, ёмкость антенны-датчика становится с ней сравнима, благодаря чему, изменения ёмкости антенны оказывают значительное воздействие на настройку вышеуказанного отсасывающего LС-контура, при этом, от настройки данного контура в значительной мере зависит амплитуда колебаний на частотозадающем контуре генератора и, соответственно, - уровень ВЧ-сигнала на его выходе.

Можно отметить и то, что в подобных конструкциях связь между антенной и частотозадающим контуром генератора не прямая, а индуктивная, благодаря чему, погодно-климатические воздействия на антенну не могут оказывать прямого влияния на работу активного элемента генератора (транзистора или ОУ), что является положительным свойством подобных конструкций.
Как и в случае с датчиками на кварцевом резонаторе, повышение чувствительности у емкостных устройств с отсасывающим LС-контуром достигнуто за счёт некоторого усложнения конструкции – в данном случае требуется изготовление дополнительного LС-контура, включающего в себя катушку индуктивности с количеством витков - вдвое большим (в - 100 витков) по сравнению с катушкой частотозадающего LС-контура.

3) В некоторых емкостных датчиках для повышения дальности обнаружения используется такой способ, как увеличение размеров антенны-датчика . При этом, у таких конструкций возрастает и восприимчивость к электромагнитным наводкам и радиопомехам; по этой причине, а так-же в силу громоздкости подобных устройств (например, в в качестве антенны используется металлическая сетка размером 0,5 × 0,5 М.) данные конструкции целесообразно использовать за?городом, - в местах со слабым электромагнитным фоном и, желательно - за пределами жилых помещений – что-бы не возникали наводки от сетевых проводов.
Устройства с большими размерами датчиков лучше всего использовать в сельской местности для охраны садовых участков и полевых объектов.

Область применения датчиков с частотозадающим LС-контуром.
Подобные устройства могут использоваться для различных бытовых целей (включение освещения и т.п.), а так-же для обнаружения каких-либо объектов в местах со спокойной электромагнитной обстановкой, например - в подвальных помещениях (находящихся ниже уровня земли), а так-же за?городом (в сельской местности - при отсутствии радиопомех - датчики этого типа могут обнаруживать, к примеру, приближение человека на расстоянии до нескольких десятков см).
В городских-же условиях данные конструкции целесообразно использовать либо как датчики прикосновения к металлическим предметам, либо в составе тех устройств сигнализации, которые в случае ложных срабатываний не причиняют больших неудобств окружающим, например, - в устройствах, включающих отпугивающий световой поток и негромкий звуковой сигнал.

3. Дифференциальные емкостные датчики (устройства на дифференциальных трансформаторах).
Подобные датчики, например , отличаются от вышеописанных конструкций тем, что имеют не одну, а две антенны-датчика, что позволяет обеспечить подавление (взаимокомпенсацию) погодно-климатических воздействий (температура, влажность, снег, иней, дождь и т.п.).
При этом, для обнаружения приближения объектов к какой-либо из антенн емкостного устройства, используется симметричный измерительный LC-мост, реагирующий на изменение ёмкости между общим проводом и антенной.

Работают данные устройства следующим образом.
Чувствительные элементы датчика – антенны подключаются к измерительным входам LC-моста, а ВЧ-напряжение, необходимое для питания моста, формируется в дифференциальном трансформаторе, на первичную обмотку которого, подаётся питающий ВЧ-сигнал с выхода ВЧ-генератора (в - в целях упрощения, - катушка частотозадающего контура генератора одновременно является первичной обмоткой дифференциального трансформатора).
Трансформатор дифференциальных конструкций содержит две идентичных вторичных обмотки, на противоположных концах которых, образуется противофазное переменное ВЧ-напряжение, для питания LС-моста.
При этом, на выходе моста, ВЧ-напряжение отсутствует т.к ВЧ-сигналы на его выходе будут одинаковы по амплитуде и противоположны по знаку, в силу чего, будет происходить их взаимокомпенсация и подавление (в измерительном LС-мосте рабочие токи идут навстречу друг другу и взаимокомпенсируются на выходе).
В своём исходном состоянии на выходе измерительного LС-моста сигнал отсутствует, в случае-же приближения объекта к какой-либо из антенн, увеличивается ёмкость того или иного плеча измерительного моста, вызывая нарушение его балансировки, в результате чего, взаимокомпенсация ВЧ-сигналов генератора становится неполной и на выходе LС-моста появляется сигнал к срабатыванию устройства.

При этом, если ёмкость возрастает (или понижается) сразу у обоих антенн, то срабатывания не происходит т.к. в этом случае балансировка LС-моста не нарушается и ВЧ-сигналы, протекающие в цепи LС-моста, по-прежнему сохраняют одинаковую амплитуду и противоположные знаки.

Благодаря вышеуказанному свойству, устройства на дифференциальных трансформаторах, также, как и описанные выше, дифференциальные конденсаторные датчики, устойчивы к погодно-климатическим колебаниям т.к. те воздействуют на обе антенны одинаково и затем взаимокомпенсируются и подавляются. Наводки и радиопомехи, при этом, не подавляются, устраняются лишь погодно-климатические воздействия, поэтому у дифференциальных датчиков, как и у датчиков на частотозадающем LС-контуре, периодически случаются ложные срабатывания.
Располагаться-же антенны должны так, что-бы при приближении объекта, воздействие на одну из них было-бы больше, чем на другую.

Особенности дифференциальных датчиков.
Дальность обнаружения у этих устройств несколько выше по сравнению с датчиками на частотозадающем LС-контуре, но при этом дифференциальные датчики сложнее по конструкции и имеют повышенный потребляемый ток из-за потерь в трансформаторе, имеющего ограниченный к.п.д. Кроме того, подобные устройства имеют зону пониженной чувствительности между антеннами.

Область применения .
Датчики на дифференциальном трансформаторе предназначены для использования в уличных условиях. Данные устройства могут применяться там-же, где и датчики на частотозадающем LС-контуре, с той лишь разницей, что для установки дифференциального датчика необходимо место для второй антенны.

4. Резонансные емкостные датчики (патент РФ № 2419159; ссылка Роспатента).
Высокочувствительные емкостные устройства - сигнал срабатывания в данных конструкциях формируется во входном LС-контуре, находящемся в частично расстроенном состоянии по отношению к сигналу с рабочего ВЧ-генератора, с которым контур соединён через конденсатор малой ёмкости (необходимый элемент сопротивления в цепи).
Принцип действия подобных конструкций имеет две составляющие: первая - это настроенный соответствующим образом LС-контур, и вторая - это элемент сопротивления, через который LС-контур подключается к выходу генератора.

Благодаря тому, что LС-контур находится в состоянии частичного резонанса (на скате характеристики), его сопротивление в цепи ВЧ-сигнала сильно зависит от ёмкости - как своей, так и ёмкости присоединённой к нему антенны-датчика. В результате - при приближении какого-либо объекта к антенне, ВЧ-напряжение на LС-контуре значительно меняет свою амплитуду, что является сигналом к срабатыванию устройства.

LC-контур при этом, не теряет своих избирательных свойств и эффективно подавляет (шунтирует на корпус) приходящие с антенны-датчика посторонние воздействия - наводки и радиопомехи, обеспечивая высокий уровень помехоустойчивости конструкции.

В резонансных емкостных датчиках рабочий сигнал с выхода ВЧ-генератора должен подаваться на LС-контур через некоторое сопротивление, величина которого должна быть сравнима с сопротивлением LС-контура на рабочей частоте, в противном случае, при приближении объектов к антенне-датчику, рабочее напряжение на LС-контуре будет очень слабо реагировать на изменения сопротивления LС-контура в цепи (ВЧ-напряжение контура будет просто повторять выходное напряжение генератора).

Может показаться, что LС-контур, находящийся в состоянии частичного резонанса, будет работать нестабильно и чрезмерно зависеть от температурных изменений. В действительности-же, - при условии использования контурного конденсатора с малым значением т.к.е. (М33 – М75) - контур достаточно стабилен, в том числе - и при работе емкостного устройства в уличных условиях. Например, при изменении температуры от +25 до -12 град. ВЧ-напряжение на LС-контуре изменяется не более чем на 6 %.

Кроме того, в резонансных емкостных конструкциях антенна соединена с LС-контуром через конденсатор малой ёмкости (использовать сильную связь в подобных устройствах нет необходимости), благодаря чему, погодные воздействия на антенну-датчик не нарушают работу LС-контура и его рабочее ВЧ-напряжение остаётся практически неизменным даже во время дождя.
По своей дальности действия резонансные емкостные датчики - значительно (иногда в разы) превосходят устройства на частотозадающих LС-контурах и на дифференциальных трансформаторах, обнаруживая приближение человека на расстоянии, значительно превышающем 1 метр.

При всём этом, высокочувствительные конструкции с использованием резонансного принципа действия появились лишь недавно - первой публикацией на данную тему является статья "Емкостное реле" (журн. "Радио" 2010 / 5, стр. 38, 39); кроме того, дополнительная информация о резонансных емкостных устройствах и их модификациях имеется так-же на интернет-странице автора вышеуказанной статьи: http://sv6502.narod.ru/index.html .

Особенности резонансных емкостных датчиков .
1) При изготовлении резонансного датчика, предназначенного для работы в уличных условиях, требуется обязательная проверка входного узла на термостабильность, для чего производится измерение потенциала на выходе детектора при различных температурах (для этого можно использовать морозилку холодильника), детектор при этом, должен быть термостабильным (на полевом транзисторе).
2) В резонансных емкостных датчиках связь между антенной и ВЧ-генератором слабая и поэтому излучение радиопомех в эфир у подобных конструкций очень незначительное, - в несколько раз меньшее по сравнению с другими типами емкостных устройств.

Область применения .
Резонансные емкостные датчики можно эффективно использовать не только в сельских и полевых, но и в городских условиях, воздерживаясь при этом, от размещения датчиков вблизи мощных источников радиосигналов (радиостанции, телецентры и т.п.), иначе и у резонансных емкостных устройств будут наблюдаться ложные срабатывания.
Устанавливать резонансные датчики можно в том числе и в непосредственной близости от других электронных устройств, - благодаря малому уровню излучения радиосигнала и высокой помехоустойчивости, резонансные емкостные конструкции имеют повышенную электромагнитную совместимость с другими устройствами.

Нечаев И . «Емкостное реле», журн. «Радио» 1988 /1, стр.33.
Ершов М . «Емкостной датчик», журн. «Радио» 2004 / 3, стр. 41, 42.
Москвин А . «Бесконтактные емкостные датчики», журн. «Радио» 2002 / 10,
стр. 38, 39.
Галков А., Хомутов О., Якунин А . «Емкостная адаптивная охранная система» патент РФ № 2297671 (С2), с приоритетом от 23. 06. 2005 г. – Бюллетень «Изобретения. Полезные модели», 2007, № 11.
Савченко В, Грибова Л. «Бесконтактный емкостный датчик с кварцевым
резонатором», журн. «Радио» 2010 / 11, стр. 27, 28.
«Емкостное реле» - журн. «Радио» 1967 / 9, стр. 61 (раздел зарубежных
конструкций).
Рубцов В. «Устройство охранной сигнализации», журн. «Радиолюбитель» 1992 / 8, стр. 26.
Глузман И . «Реле присутствия», журн. «Моделист-конструктор» 1981 / 1,
стр. 41, 42).

Датчики движения – невероятно удобная вещь, которая позволяет управлять светом в комнате или контролировать открытие и закрытие дверей, а также может оповестить вас о нежелательных гостях. В этой статье мы расскажем, как сделать датчик движения своими руками в домашних условиях и рассмотрим сферу возможного применения данных устройств.

Кратко о датчиках

Один из самых простых видов датчиков — концевой выключатель или самовозвратная кнопка (без фиксации).

Она устанавливается у двери и реагирует на ее открытие и закрытие. С помощью нехитрой схемы данный аппарат включает свет в холодильнике. Ей можно оснастить кладовку или тамбур прихожей, дверь в подъезде, дежурную светодиодную подсветку, использовать данный выключатель как сигнализацию, которая оповестит об открытии или закрытии двери. Недостатками конструкции могут являться сложности в установке, и порой непрезентабельный внешний вид.

Аппараты, на основе и магнита, можно заметить на дверях и окнах охраняемых объектов. Их принцип работы очень похож на работу кнопки. Геркон может размыкать или соединять контакты при поднесении к нему обычного магнита. Таким образом, сам геркон устанавливается на дверной проем, а магнит вешается на дверь. Такая конструкция аккуратно выглядит и используется чаще, чем обычная кнопка. Недостаток устройств в узко специализированном применении. Для контроля открытых территорий, площадей, проходов они не годны.

Для открытых проходов существуют устройства, реагирующие на изменения в окружающей среде. К ним относятся фотореле, емкостные (датчики поля), тепловые (PIR), звуковые реле. Для фиксации пересечения определенного участка, контроля препятствия, наличия движения какого-либо объекта в зоне перекрытия, используют фото или звуковые эхо устройства.

Принцип работы таких датчиков основан на формировании импульса и его фиксации после отражения от объекта. При попадании в такую зону предмета, изменяется характеристика отраженного сигнала, и детектор формирует сигнал управления на выходе.

Для наглядности представлена принципиальная схема работы фотореле и звукового реле:

В качестве передающего устройства в оптических датчиках используются инфракрасные светодиоды, а в качестве приемника – фототранзисторы. Звуковые датчики работают в ультразвуковом диапазоне, поэтому их работа для нашего уха кажется бесшумной, однако каждый из них содержит маленький излучатель и улавливатель.

К примеру, замечательно снабдить детектором движения зеркало с подсветкой. Включение освещения будет происходить только в тот момент, когда человек будет находиться непосредственно возле него. Не желаете сделать такую самостоятельно?

Схемы сборки

Микроволновый

Для контроля открытых пространств и контроля наличия объектов в нужной зоне, существует емкостное реле. Принцип действия данного устройства заключается в измерении величины поглощения радиоволн. Каждый наблюдал или был участником этого эффекта, когда, приближаясь к работающему радиоприемнику, частота на которой он работает, сбивалась и появлялись помехи.

Поговорим о том, как сделать датчик движения микроволнового типа. Сердцем данного детектора является радио микроволновой генератор и специальная антенна.

На данной принципиальной схеме представлен простой способ сделать микроволновый датчик движения. Транзистор VT1 является высокочастотным генератором и по совместительству радио приемником. Детекторный диод выпрямляет напряжение, подавая смещение на базу транзистора VT2. Обмотки трансформатора Т1 настроены на разную частоту. В начальном состоянии, когда на антенну не воздействует внешняя емкость, амплитуды сигналов взаимно компенсируются и на детекторе VD1 нет напряжения.При изменении частоты, их амплитуды складываются и детектируются диодом. Транзистор VT2 начинает открываться. В качестве компаратора для четкой отработки состояний «включено» и «выключено», используется тиристор VS1, который управляет силовым реле на 12 Вольт.

Ниже предоставлена действенная схема реле присутствия на доступных компонентах, которая поможет собрать детектор движения своими руками или просто пригодится для ознакомления с устройством.

Тепловой

Тепловой ДД (PIR) самый распространенный сенсорный аппарат в хозяйственном секторе. Это объясняется дешевыми комплектующими, простой схемой сборки, отсутствием дополнительных сложных настроек, широким температурным диапазоном работы.

Готовый аппарат можно купить в любом магазине электротоваров. Часто этим сенсором снабжаются светильники, устройства сигнализации и прочие контроллеры. Однако сейчас мы расскажем, как сделать тепловой датчик движения в домашних условиях. Простая схема для повторения выглядит следующим образом:

Специальный тепловой датчик В1 и фото элемент VD1 составляют автоматизированный комплекс управления освещением. Устройство начинает работать только после наступления сумерек, порог срабатывания можно выставить резистором R2. Датчик подключает нагрузку при попадании перемещающегося человека в зону контроля. Время встроенного таймера для отключения можно выставить регулятором R5.

Самоделка из модуля для Arduino

Недорогой сенсор можно сделать из специальных готовых плат для радио конструктора. Так можно получить довольно миниатюрное устройство. Для сборки нам понадобятся модуль датчика движения для микроконтроллеров Arduino и модуль одноканального реле.

На каждой плате распаян разъем из трех штырьков, VCC +5 вольт, GND -5 вольт, OUT выход на детекторе и IN вход на плате реле. Для того, чтобы сделать устройство своими руками, необходимо с источника питания подать на платы 5 Вольт (плюс и минус), например, от зарядки для телефонов, а out и in соединить вместе. Соединения можно проводить с помощью разъемов, но надежнее будет все спаять. Можно руководствоваться схемой ниже. Миниатюрный транзистор, как правило, уже встроен в модуль реле, поэтому дополнительно его ставить не нужно.

При перемещении человека модуль подает сигнал на реле, и оно открывается. Обратите внимание, что есть реле высокого и низкого уровня. Его необходимо подбирать исходя из того, какой сигнал выдает датчик на выходе. Готовый детектор можно поместить в корпус и замаскировать в нужном месте. Дополнительно рекомендуем просмотреть видео, в которых наглядно демонстрируются инструкции по сборке самодельных датчиков движения в домашних условиях. Если у вас останутся какие-либо вопросы, вы всегда можете задать их в комментариях.

Емкостные реле в быту

Емкостный датчик в качестве противоугонного устройства

При несанкционированном проникновении злоумышленника в салон автомобиля срабатывает емкостное реле и разрывает контактную цепь, идущую к замку зажигания (Рис.1). Емкостное реле самоблокируется и включает реле времени, находящееся до этого в ждущем режиме. Реле времени начинает отсчет времени, находящийся в пределах 10...60 с, после чего контакты реле времени включают мощную многотональную звуковую сигнализацию. При желании владельца автомобиля контакты реле времени могут включать электрошоковое устройство, тогда угонщик будет подвержен слабому воздействию электрического тока силой 1...6 мА и напряжением 300....3000 В. Дверные замки автомобиля автоматически закрываются и самоблокируются. Может также включаться радиомаяк, расположенный внутри автомобиля. Эти дополнительные устройства могут быть установлены по желанию автовладельца.

Рис.1

Датчиком емкостного реле служит кусок металлической фольги размером 100x50 мм или же фольгированный текстолит аналогичных размеров. Датчик может быть расположен в салоне автомобиля под сидением водителя, или же выполнен в виде какой-либо декоративной панели, привлекающей угонщика, или, наоборот, спрятанной, и тем самым не заметной для глаз злоумышленника, но к которой угонщик обязательно должен прикоснуться.
Датчиков в салоне автомобиля может быть 1... 10 штук.
Приводится противоугонное устройство в действие микровыключателем, расположенным в салоне автомобиля, известным о месте его нахождения только владельцу транспортного средства.На принципиальной схеме устройства микровыключатель не указан.
Сопротивление катушки K1 от 1 кОм до 175 Ом; число витков катушки - 3400; ток срабатывания составляет 36 мA ток отпускания - 8 мА; напряжение питания - 12 В. Катушка колебательного контура L1 намотана на бумажном каркасе диаметром 8... 10 мм и содержит 26 витков провода ПЭВ-1 диаметром 0,3...0,4 мм, намотанных виток к витку в один слой. Отвод сделан от 7-го витка.

А.Гайдук, г. Борисов

Простое емкостное устройство

Устройство, схема которого показана на рис.2, работает на звуковых частотах. Для увеличения чувствительности здесь в контур генератора НЧ введен полевой транзистор, к затвору которого подключается датчик.


Рис.2

Генератор прямоугольных импульсов со звуковой частотой около 1000 Гц собран на элементах DD 1.1 и DD 1.2. В качестве выходного каскада используется элемент DD 1.3 той же микросхемы К155ЛА3, нагрузкой которого служит телефонный капсюль.

С целью дальнейшего увеличения чувствительности емкостного реле возможно увеличение количества элементов, введенных в RC - цепочку. Однако следует учитывать, что при пяти и больше логических элементах в схеме наладка не усложняется.

Обычное емкостное реле начинает работать сразу после включения. Требуется только подстроить резистор R 1 на пороговую чувствительность.

При отладке данного реле возможны два варианта его работы: срыв или, наоборот, возникновение генерации при введении емкости. Установка требуемого варианта осуществляется подбором переменного резистора R 1. При приближении руки к датчику Е1 подстройкой резистора R 1 добиваются, чтобы расстояние, с которого срабатывало бы емкостное реле, было около 10 - 20 см.

Для подключения исполнительных механизмов к емкостному реле сигнал с элемента DD 1.3 следует подать на электронное реле.

Крылов А.

Ярославская обл.

Емкостное реле для управления освещением

В часто посещаемых помещениях для экономии электроэнергии удобно применить емкостное реле для управления освещением. При входе в помещение, если необходимо включить свет, проходят вблизи емкостного датчика, который подает сигнал в емкостное реле, и лампа включается. Выходя из помещения, если нужно выключить свет, проходят вблизи емкостного датчика на выключение, и реле выключает лампу. В ждущем режиме устройство потребляет ток около 2 мА.

Принципиальная схема емкостного реле изображена на рис.3


Рис.3

Устройство по схеме подобно реле времени, у которого времязадающий узел заменен триггером на логических элементах DD1.1, DD1.2. При включении тумблера S1 через лампу HL1 будет протекать ток, если на базу транзистора VT1 с выхода элемента DD1.1 поступает напряжение высокого уровня. Транзистор VT1 при этом открыт, и тиристор VD6 открывается в начале каждого полупериода напряжения. Триггер переключается от емкостного тока утечки, при приближении человека на некоторое расстояние к одному из емкостных датчиков, если до этого он переключился от приближения к другому. При смене напряжения высокого уровня на базе транзистора VT1 на напряжение низкого уровня тиристор VD6 закроется, и лампа погаснет.

Емкостные датчики Е1 и Е2 представляют собой отрезки коаксиального кабеля (например, РК-100, ИКМ-2), со свободного конца которых на длину около 0.5 м снят экран. Изоляцию с центрального провода снимать не нужно. Край экрана необходимо изолировать. Датчики можно прикрепить к дверной раме. Длину неэкранированной части датчиков и сопротивление резисторов R5. R6 подбирают при налаживании устройства так, чтобы триггер надежно переключался при прохождении человека на расстоянии 5...10 см от датчика.

При налаживании устройства необходимо соблюдать меры предосторожности, так как элементы устройства находятся под напряжением сети.

С. Лобкович, г. Минск

Схема емкостного реле на микросхеме

Что такое емкостное реле? Это электронное реле, срабатывающее при изменении емкости между его датчиком и общим проводом. Чувствительным узлом большинства емкостных реле является генератор электрических колебаний довольно высокой частоты (сотни килогерц и выше). Когда параллельно контуру такого генератора подключается дополнительная емкость, то либо изменяется в определенных пределах частота генератора, либо его колебания срываются вовсе. В любом случае срабатывает пороговое устройство, соединенное с генератором, - оно включает звуковой или световой сигнализатор.

Емкостное реле нередко используют для охраны различных объектов. При приближении к объекту человека реле извещает об этом охрану. Кроме того, оно находит применение в устройствах автоматики.

Схема емкостного реле приведена на рис.4



Рис.4

Устройство собрано на одной интегральной цифровой микросхеме и не содержит намоточных деталей, без которых не обойтись при изготовлении устройств с высокочастотным генератором.

Работает емкостное реле так. Пока емкость между датчиком, подключаемым к гнезду XS 1, относительно общего провода (минус источника питания) мала, на резисторе R 2, а значит, на соединенном с ним входе элемента DD 1.3 формируются короткие импульсы положительной полярности, а на выходе элемента (вывод 4) - такие же импульсы отрицательной полярности. Иначе говоря, напряжение на выходе элемента большую часть времени имеет уровень логической 1, а в течении очень короткого промежутка - уровень логического 0. Конденсатор С5 медленно заряжается через резистор R 3, когда на выходе элемента уровень логической 1, и быстро разряжается через диод VD 1 при появлении уровня логического 0. Поскольку разрядный ток значительно превышает зарядный, напряжение на конденсаторе С5 имеет уровень логического 0, и элемент DD 1.4 закрыт для сигнала звуковой частоты.

При приближении к датчику руки его емкость относительно общего провода увеличится, амплитуда импульсов на резисторе R 2 уменьшится и станет меньше порога включения элемента DD 1.3. На выходе элемента DD 1.3 будет постоянно уровень логической 1, до этого уровня зарядится конденсатор С5. Элемент DD 1.4 начнет пропускать сигнал звуковой частоты, и в капсюле BF 1 раздастся звук.

Чувствительность емкостного реле можно изменять подстроечным конденсатором С3.

Датчик представляет собой металлическую сетку (или пластину) размерами примерно 200 х 200 мм, чтобы обеспечить сравнительно высокую чувствительность реле.

Проверяют и настраивают реле в такой последовательности. Одной рукой берутся за неизолированный конец «земляного» провода и, поворачивая ротор подстроечного конденсатора, устанавливают его в положение, при котором звукового сигнала нет. Теперь при приближение другой руки к датчику в капсюле должен раздаваться звуковой сигнал. Если его нет, можно увеличить емкость конденсатора С3. Если же сигнал вообще не исчезает, следует уменьшить емкость конденсатора С2 или вовсе изъять его из конструкции. Более точным подбором емкости подстроечного конденсатора можно добится срабатывания реле при поднесении руки к датчику на расстоянии более десяти сантиметров.

Если емкостное реле захотите использовать для включения мощной нагрузки, соберите схему на рис.5.


Рис.5

Теперь к элементу DD 1.4 подключен транзистор VT 1, коллекторная цепь которого соединена с управляющим электродом тиристора VS 1. Тиристор, а значит, и его нагрузка могут питаться либо постоянным, либо переменным током. В первом случае после «срабатывания» реле и последующего его «отпускания» (когда от датчика уберут руку) выключить тиристор удастся лишь кратковременным отключением питания его анодной цепи. Во втором варианте тиристор будет выключатся при закрывании транзистора.

Нечаев.И.

г. Курск

Емкостное реле на транзисторах

На рис.6 показана схема простого транзисторного емкостного реле.


Рис.6

Транзисторы VT 1 - VT 3 формируют усилитель электрического сигнала, возникшего в результате наводки от человеческого тела. Конденсатор С1, диоды D 2 и D 3 защищают реле от ложного срабатывания.

Сенсор представляет собой пластину из алюминия или меди размером примерно 10 см х 10 см. Транзисторы VT1, VT3 возможно заменить на КТ3102, КТ815.

При наладке данной схемы, следует соблюдать меры электробезопасности, так как все элементы конструкции находятся под напряжением электросети.

Работа ёмкостных датчиков обычно основана на регистрации изменений параметров генератора, в колебательную систему которого входит ёмкость контролируемого объекта. Простейшие из таких датчиков содержат один LC-генератор на полевом транзисторе и работают по принципу возрастания потребляемого тока или уменьшения напряжения при увеличении ёмкости. Такие устройства при максимальной дальности обнаружения приближающегося объекта не более 0,1 м обладают весьма низкой стабильностью и малой помехоустойчивостью. Более высокие характеристики имеют ёмкостные датчики, схема которых выполнена на основе двух генераторов и работающие по принципу сравнения частоты или фазы колебаний образцового и перестраиваемого (измерительного) генераторов. Например, описанный в . Лучшие из них способны почувствовать приближение человека на расстоянии 2 м. Однако при выполнении на дискретных элементах они получаются слишком громоздкими, а при использовании специализированных микросхем - слишком дорогими.

В предлагаемой статье рассматривается схема ёмкостного датчика, с высокой чувствительностью на микросхеме тонального декодера NJM567 . Эта микросхема и её аналоги (например, NE567) широко используются для обнаружения узкополосных сигналов в диапазоне от 10 Гц до 500 кГц. Они применялись и в системах автоподстройки частоты вращения блока видеоголовок бытовых видеомагнитофонов. Использование встроенного в тональный декодер RC-генератора упрощает схему ёмкостного датчика, а внутренняя петля ФАПЧ этого генератора обеспечивает стабильность и помехоустойчивость датчика.
Дальность обнаружения приближающегося человека - не менее 0,5 м (при длине антенны датчика 1 м), что значительно больше, чем, например, у прибора, выполненного по схеме . В устройстве отсутствуют намоточные изделия (катушки индуктивности), что упрощает его повторение.

Схема ёмкостного датчика изображена на рис. 1. Частотозадающие элементы находящегося в микросхеме DA2 генератора - резистор R6 и конденсатор С5. Сигнал генератора частотой около 15 кГц с вывода 5 микросхемы DA2 подан на фазосдвигающую цепь, образованную подстроечным резистором R5, антенной WA1, конденсатором СЗ и резистором R3. С неё через истоковый повторитель на полевом транзисторе VT1, усилитель на транзисторе VT2 и конденсатор С4 сигнал поступает на вход IN (вывод 3) микросхемы DA2. К выводу 2 этой микросхемы подключён конденсатор С8 фильтра фазового детектора системы ФАПЧ, от ёмкости которого зависит ширина её полосы захвата. Чем ёмкость больше, тем уже полоса.

На второй фазовый детектор микросхемы образцовое напряжение подаётся от генератора с фазовым сдвигом на 90 относительно поступающего на фазовый детектор ФАПЧ. Напряжение на выводе 1 микросхемы (выходе второго детектора), подаваемое на встроенный в неё компаратор напряжения, зависит от фазового сдвига между входным сигналом и сигналом генератора, вносимого рассмотренной выше цепью, которая включает в себя антенну WA1. С7 - конденсатор выходного фильтра фазового детектора. Резистор R8, включённый между выводами 1 и 8 микросхемы, создаёт в характеристике переключения компаратора гистерезис, необходимый для повышения помехоустойчивости. Цепь R7C6 - нагрузка выхода OUT, выполненного по схеме с открытым коллектором.

Далее по схеме ёмкостного датчика сигнал через диод VD2 поступает на цепь из резистора R9 и конденсатора С9 и на вход логического элемента DD1.1. Цепь R10C10 формирует импульс, блокирующий ложное срабатывание датчика в момент включения питания. С выхода элемента DD1.1 сиг- нал поступает через диод VD4 на цепь R11C11, обеспечивающую длительность выходного сигнала датчика не менее заданной, и на соединённые последовательно элементы DD1.2 и DD1.3, формирующие взаимно инверсные выходные сигналы датчика на линиях “Вых. 1” и “Вых. 2”. Высокий уровень сигнала на линии “Вых. 2” и включённый светодиод HL1 свидетельствуют, что в чувствительной зоне находится человек.

Узел питания ёмкостного датчика собран на интегральном стабилизаторе LM317LZ, выходное напряжение которого установлено равным 5 В с помощью резисторов R1 и R2. Входное напряжение может находиться в пределах 10…24 В. Диод VD1 защищает датчик от неправильной полярности источника этого напряжения.
Все детали датчика смонтированы на односторонней печатной плате из фольгированного стеклотекстолита, чертёж которой изображён на рис. 2. Резисторы R1 и R2 - для поверхностного монтажа. Их монтируют на плату со стороны печатных проводников. Подстроечный резистор R5 - СПЗ-19а или его импортный аналог.

Микросхему NJM567D можно заменить на NE567, KIA567, LM567 с различными буквенными индексами, означающими тип корпуса. Если он типа DIP8 (как у NJM567D) или круглый металлический, печатную плату корректировать не придётся. Аналог микросхемы К561ЛЕ5 - CD4001A. Транзистор КП303Е заменяется на BF245, КТ3102Е -на ВС547.
Антенна WA1 - отрезок одножильного изолированного провода сечением 0,5мм2 и длиной 0,3…1,5м. Короткая антенна обеспечивает меньшую чувствительность. Следует иметь в виду, что необходимая ёмкость конденсатора СЗ зависит от собственной ёмкости антенны, а значит, от её длины. Указанная на схеме ёмкость оптимальна для антенны длиной около метра. Чтобы работать с антенной длиной 0,3 м, ёмкость необходимо уменьшить до 30 пф.

Налаживать ёмкостный датчик следует, установив его и антенну там, где предполагается их эксплуатация. При этом следует учитывать, что на порог срабатывания влияет и расположение антенны относительно заземлённых предметов и проводов.
Первоначально движок подстроечного резистора R5 устанавливают в положение максимального сопротивления. После включения питания светодиод HL1 должен оставаться погашенным. В работоспособности датчика можно убедиться по включению этого светодиода в случае прикосновения к антенне рукой. Если ёмкость конденсатора СЗ выбрана правильно, то при переводе движка подстроечного резистора R5 в положение минимального сопротивления светодиод должен включиться и без касания антенны.

Убедившись в работоспособности схемы ёмкостного датчика, его налаживание продолжают по общеизвестной методике, добиваясь требуемого порога срабатывания плавным перемещением движка подстроечного резистора. Желательно делать это с помощью диэлектрической отвёртки, оказывающей минимальное влияние на фазосдвигающие цепи.
Оптимальная настройка соответствует включению светодиода при приближении человека к антенне метровой длины на расстояние 0,5 м, а выключение - при его удалении до 0,6 м. Укорочение антенны до 0,3 м уменьшит эти значения примерно на треть.

Следует заметить, что если ёмкость конденсатора СЗ слишком велика, светодиод HL1 может светиться и в крайнем левом положении движка, а при касании антенны рукой - гаснуть. Это объясняется тем, что устройство работает по балансному принципу и при необходимости можно отрегулировать его на срабатывание при удалении охраняемого объекта из чувствительной зоны.

ЛИТЕРАТУРА
1. Табунщиков В. Волшебное реле. - Моделист-конструктор, 1991, № 1, с. 23.
2. Нечаев И. Ёмкостное реле. - Радио, 1992, №9, с. 48-51.
3. Ершов М. Ёмкостный датчик. - Радио, 2004, №3, с. 41,42.
4. NJM567 Tone Decoder / Phase Locked Loop. www.pdf.datasheet.su/njr/njm567d.pdf
5. Соломеин В. Ёмкостное реле. -Радио, 2010, № 5, с. 38, 39.

В. ТУШНОВ, г. Луганск, Украина
“Радио” №12 2012г.