Самодельный датчик влажности почвы из нержавейки. Устойчивый к коррозии датчик влажности почвы, годный для дачной автоматики. По принципу действия, гигрометры делятся на

Я немало обзоров написал про дачную автоматику, а раз речь идет про дачу - то автоматический полив - это одно из приоритетных направлений автоматизации. При этом, всегда хочется учитывать осадки, чтобы не гонять понапрасну насосы и не заливать грядки. Немало копий сломано на пути к беспроблемному получению данных о влажности почвы. В обзоре еще один вариант, устойчивый к внешним воздействиям.


Пара датчиков приехала за 20 дней в индивидуальных антистатических пакетиках:




Характеристики на сайте продавца:):
Бренд:ZHIPU
Тип: Датчик вибрации
Материал: Смесь
Выход: Коммутирующий датчик

Распаковываем:


Провод имеет длину в районе 1-го метра:


Помимо самого датчика в комплект входит управляющая платка:




Длина сенсоров датчика порядка 4 см:


Кончики датчика, похоже на графит - пачкаются черным.
Припаиваем контакты к платке и пробуем подключить датчик:




Самым распространенным датчиком влажности почвы в китайских магазинах является такой:


Многие знают, что через непродолжительное время его съедает внешняя среда. Эффект влияния коррозии можно немного снизить подавая питание непосредственно перед измерением и отключая, при отсутствии измерений. Но это мало что меняет, вот так выглядел мой через пару месяцев использования:




Кто-то пробует использовать толстую медную проволоку или пруты из нержавейки, альтернатива предназначенная специально для агрессивной внешней среды выступает в качестве предмета обзора.

Отложим плату из комплекта в сторону, и займемся самим датчиком. Датчик резистивного типа, меняет свое сопротивление в зависимости от влажности среды. Логично, что без влажной среды сопротивление датчика огромное:


Опустим датчик в стакан с водой и видим, что его сопротивление составит порядка 160 кОм:


Если вынуть, то все вернется в исходное состояние:


Перейдем к испытаниям на земле. В сухой почве видим следующее:


Добавим немного воды:


Еще (примерно литр):


Почти полностью вылил полтора литра:


Долил еще литр и подождал 5 минут:

Плата имеет 4 вывода:
1 + питания
2 земля
3 цифровой выход
4 аналоговый выход
После прозвонки выяснилось, что аналоговый выход и земля напрямую соединены с датчиком, так что, если планируете использовать этот датчик подключая к аналоговому входу, плата не имеет большого смысла. Если нет желания использовать контроллер, то можно использовать цифровой выход, порог срабатывания настраивается потенциометром на плате. Рекомендуемая продавцом схема подключения при использовании цифрового выхода:


При использовании цифрового входа:


Соберем небольшой макет:


Arduino Nano я использовал тут как источник питания, не загружая программу. Цифровой выход подключил к светодиоду. Забавно что светодиоды на плате красный и зеленый горят при любом положении потенциометра и влажности среды датчика, единственное при срабатывании порога, зеленый светит чуть слабже:


Выставив порог получаем, что при достижении заданной влажности на цифровом выходе 0, при недостатки влажности напряжение питания:




Ну раз уж у нас в руках контроллер, то напишем программу для проверки работы аналогового выхода. Аналоговый выход датчика подключим к выводу А1, а светодиод к выводу D9 Arduino Nano.
const int analogInPin = A1; // сенсор const int analogOutPin = 9; // Вывод на светодиод int sensorValue = 0; // считанное значение с сенсора int outputValue = 0; // значение выдаваемое на ШИМ вывод со светодиодом void setup() { Serial.begin(9600); } void loop() { // считываем значение сенсора sensorValue = analogRead(analogInPin); // переводим диапазон возможных значений сесора (400-1023 - установлено экспериметально) // в диапазон ШИМ вывода 0-255 outputValue = map(sensorValue, 400, 1023, 0, 255); // включаем светодиод на заданную яркость analogWrite(analogOutPin, outputValue); // выводим наши цифры Serial.print("sensor = "); Serial.print(sensorValue); Serial.print("\t output = "); Serial.println(outputValue); // задержка delay(2); }
Весь код я прокомментировал, яркость светодиода обратно-пропорциональна влажности детектируемой сенсором. Если необходимо чем-то управлять, то достаточно сравнить полученное значение с определенным экспериментально порогом и, например, включить реле. Единственное, рекомендую обработать несколько значений и использовать среднее для сравнения с порогом, так возможны случайные всплески или спады.
Погружаем датчик и видим:


Вывод контроллера:

Если вынуть то вывод контроллера изменится:

Видео работы данной тестовой сборки:

В целом, датчик мне понравился, производит впечатление устойчивого к воздействию внешней среды, так ли это - покажет время.
Данный датчик не может использоваться как точный показатель влажности (как впрочем и все аналогичные), основным его применением, является определение порога и анализ динамики.

Если будет интересно, продолжу писать про свои дачные поделки.
Спасибо всем, кто дочитал этот обзор до конца, надеюсь кому-то данная информация окажется полезной. Всем полного контроля над влажностью почвы и добра!

Планирую купить +74 Добавить в избранное Обзор понравился +55 +99 Датчик влажности почвы Arduino предназначен для определения влажности земли, в которую он погружен. Он позволяет узнать о недостаточном или избыточном поливе ваших домашних или садовых растений. Подключение данного модуля к контроллеру позволяет автоматизировать процесс полива ваших растений, огорода или плантации (своего рода "умный полив").

Модуль состоит из двух частей: контактного щупа YL-69 и датчика YL-38, в комплекте идут провода для подключения.. Между двумя электродами щупа YL-69 создаётся небольшое напряжение. Если почва сухая, сопротивление велико и ток будет меньше. Если земля влажная - сопротивление меньше, ток - чуть больше. По итоговому аналоговому сигналу можно судить о степени влажности. Щуп YL-69 соединен с датчиком YL-38 по двум проводам. Кроме контактов соединения с щупом, датчик YL-38 имеет четыре контакта для подключения к контроллеру.

  • Vcc – питание датчика;
  • GND – земля;
  • A0 - аналоговое значение;
  • D0 – цифровое значение уровня влажности.
Датчик YL-38 построен на основе компаратора LM393, который выдает напряжение на выход D0 по принципу: влажная почва – низкий логический уровень, сухая почва – высокий логический уровень. Уровень определяется пороговым значением, которое можно регулировать с помощью потенциометра. На вывод A0 подается аналоговое значение, которое можно передавать в контроллер для дальнейшей обработки, анализа и принятия решений. Датчик YL-38 имеет два светодиода, сигнализирующих о наличие поступающего на датчик питания и уровня цифрового сигналы на выходе D0. Наличие цифрового вывода D0 и светодиода уровня D0 позволяет использовать модуль автономно, без подключения к контроллеру.

Технические характеристики модуля

  • Напряжение питания: 3.3-5 В;
  • Ток потребления 35 мА;
  • Выход: цифровой и аналоговый;
  • Размер модуля: 16×30 мм;
  • Размер щупа: 20×60 мм;
  • Общий вес: 7.5 г.

Пример использования

Рассмотрим подключение датчика влажности почвы к Arduino. Создадим проект индикатора уровня влажности почвы для комнатного растения (ваш любимый цветок, который вы иногда забываете поливать). Для индикации уровня влажности почвы будем использовать 8 светодиодов. Для проекта нам понадобятся следующие детали:
  • Плата Arduino Uno
  • Датчик влажности почвы
  • 8 светодиодов
  • Макетная плата
  • Соединительные провода.
Соберем схему, показанную на рисунке ниже


Запустим Arduino IDE. Создадим новый скетч и внесем в него следующие строчки: // Датчик влажности почвы // http://сайт // контакт подключения аналогового выхода датчика int aPin=A0; // контакты подключения светодиодов индикации int ledPins={4,5,6,7,8,9,10,11}; // переменная для сохранения значения датчика int avalue=0; // переменная количества светящихся светодиодов int countled=8; // значение полного полива int minvalue=220; // значение критической сухости int maxvalue=600; void setup() { // инициализация последовательного порта Serial.begin(9600); // настройка выводов индикации светодиодов // в режим OUTPUT for(int i=0;i<8;i++) { pinMode(ledPins[i],OUTPUT); } } void loop() { // получение значения с аналогового вывода датчика avalue=analogRead(aPin); // вывод значения в монитор последовательного порта Arduino Serial.print("avalue=");Serial.println(avalue); // масштабируем значение на 8 светодиодов countled=map(avalue,maxvalue,minvalue,0,7); // индикация уровня влажности for(int i=0;i<8;i++) { if(i<=countled) digitalWrite(ledPins[i],HIGH); //зажигаем светодиод else digitalWrite(ledPins[i],LOW); // гасим светодиод } // пауза перед следующим получением значения 1000 мс delay(1000); } Аналоговый вывод датчика подключен к аналоговому входу Arduino, который представляет собой аналого-цифровой преобразователь (АЦП) с разрешением 10 бит, что позволяет на выходе получать значения от 0 до 1023. Значение переменных для полного полива (minvalue) и сильной сухости почвы (maxvalue) получим экспериментально. Большей сухости почвы соответствует большее значение аналогового сигнала. С помощью функции map масштабируем аналоговое значение датчика в значение нашего светодиодного индикатора. Чем больше влажность почвы, тем больше значение светодиодного индикатора (количество зажженных светодиодов). Подключив данный индикатор к цветку, мы издали можем видеть на индикаторе степень влажности и при определять необходимость полива.

Часто задаваемые вопросы FAQ

1. Не горит светодиод питания
  • Проверьте наличие и полярность подаваемого на датчик YL-38 питания (3,3 – 5 В).
2. При поливе почвы не загорается светодиод индикации влажности почвы
  • Настройте потенциометром порог срабатывания. Проверьте соединение датчика YL-38 с щупом YL-69.
3. При поливе почвы не изменяется значение выходного аналогового сигнала
  • Проверьте соединение датчика YL-38 с щупом YL-69.
  • Проверьте наличие щупа в земле.

Многие огородники и садоводы лишены возможности ежедневно ухаживать за посаженными овощами, ягодами, фруктовыми деревьями в силу загруженности по работе или во время отпуска. Тем не менее, растения нуждаются в своевременном поливе. С помощью простых автоматизированных систем можно добиться того, что почва на вашем участке будет сохранять необходимую и стабильную влажность на протяжении всего вашего отсутствия. Для построения огородной системы автополива потребуется основной контрольный элемент – датчик влажности почвы.

Датчик влажности

Датчики влажности также называют иногда влагомерами или сенсорами влажности. Почти все предлагаемые на рынке влагомеры почвы измеряют влажность резистивным способом. Это не совсем точный метод, потому что он не учитывает электролизные свойства измеряемого объекта. Показания прибора могут быть разными при одной и той же влажности грунта, но с разной кислотностью или содержанием солей. Но огородникам-экспериментаторам не столь важны абсолютные показания приборов, как относительные, которые можно настроить для исполнительного устройства подачи воды в определенных условиях.

Суть резистивного метода заключается в том, что прибор измеряет сопротивление между двумя проводниками, помещенными в грунт на расстоянии 2-3 см друг от друга. Это обычный омметр , который входит в любой цифровой или аналоговый тестер. Раньше такие инструменты называли авометрами .

Также существуют приборы со встроенным или выносным индикатором для оперативного контроля над состоянием почвы.

Легко сделать замер разницы проводимости электрического тока перед поливом и после полива на примере горшка с домашним растением алоэ. Показания до полива 101.0 кОм.

Показания после полива через 5 минут 12.65 кОм.

Но обычный тестер лишь покажет сопротивление участка почвы между электродами, но не сможет помочь в автополиве.

Принцип действия автоматики

В системах автополива обычно действует правило «поливай или не поливай». Как правило, никто не нуждается в регулировании силы напора воды. Это связано с использованием дорогостоящих управляемых клапанов и других, ненужных, технологически сложных, устройств.

Почти все предлагаемые на рынке датчики влажности, помимо двух электродов, имеют в своей конструкции компаратор. Это простейший аналого-цифровой прибор, который преобразует входящий сигнал в цифровую форму. То есть при установленном уровне влажности вы получите на его выходе единицу или ноль (0 или 5 вольт). Этот сигнал и станет исходным для последующего исполнительного устройства.

Для автополива наиболее рациональным будет использование в качестве исполнительного устройства электромагнитного клапана. Он включается в разрыв трубы и может также использоваться в системах микро-капельного орошения. Включается подачей напряжения 12 В.

Для простых систем, работающих по принципу « датчик сработал - вода пошла», достаточно использование компаратора LM393. Микросхема представляет собой сдвоенный операционный усилитель с возможностью получения на выходе командного сигнала при регулируемом уровне входного. Чип имеет дополнительный аналоговый выход, который можно подключить к программируемому контроллеру или тестеру. Приблизительный советский аналог сдвоенного компаратора LM393 - микросхема 521СА3.

На рисунке представлено готовое реле влажности вместе с датчиком в китайском исполнении всего за 1$.

Ниже представлен усиленный вариант, с выходным током 10А при переменном напряжении до 250 В, за 3-4$.

Системы автоматизации полива

Если вас интересует полноценная систем автополива, то необходимо задуматься о приобретении программируемого контроллера. Если участок небольшой, то достаточно установить 3-4 датчика влажности для разных типов полива. Например, сад нуждается в меньшем поливе, малина любит влагу, а для бахчи достаточно воды из почвы, за исключением чрезмерно засушливых периодов.

На основании собственных наблюдений и измерений датчиков влажности можно приблизительно рассчитать экономичность и эффективность подачи воды на участках. Процессоры позволяют вносить сезонные корректировки, могут использовать показания измерителей влажности, учитывают выпадение осадков, время года.

Некоторые датчики влажности почвы оснащены интерфейсом RJ-45 для подключения к сети. Прошивка процессора позволяет настроить систему так, что она будет оповещать о необходимости полива через социальные сети или SMS-сообщением. Это удобно в тех случаях, когда невозможно подключить автоматизированную систему полива, например, для комнатных растений.

Для системы автоматизации полива удобно использовать контроллеры с аналоговыми и контактными входами, которые соединяют все датчики и передают их показания по единой шине к компьютеру, планшету или мобильному телефону. Управление исполнительными приборами происходит через WEB-интерфейс. Наиболее распространены универсальные контроллеры:

  • MegaD-328;
  • Arduino;
  • Hunter;
  • Toro.

Это гибкие устройства, позволяющие точно настроить систему автополива и доверить ей полный контроль над садом и огородом.

Простая схема автоматизации полива

Простейшая система автоматизации полива состоит из датчика влажности и управляющего устройства. Можно изготовить датчик влажности почвы своими руками. Понадобится два гвоздя, резистор с сопротивлением 10 кОм и источник питания с выходным напряжением 5 В. Подойдет от мобильного телефона.

В качестве прибора, который выдаст команду к поливу можно использовать микросхему LM393 . Можно приобрести готовый узел или собрать его самостоятельно, тогда понадобятся:

  • резисторы 10 кОм – 2 шт;
  • резисторы 1 кОм – 2 шт;
  • резисторы 2 кОм – 3 шт;
  • переменный резистор 51-100 кОм – 1 шт;
  • светодиоды – 2 шт;
  • диод любой, не мощный – 1 шт;
  • транзистор, любой средней мощности PNP (например, КТ3107Г) – 1 шт;
  • конденсаторы 0.1 мк – 2 шт;
  • микросхема LM393 – 1 шт;
  • реле с порогом срабатывания 4 В;
  • монтажная плата.

Схема для сборки представлена ниже.

После сборки подключите модуль к блоку питания и датчику уровня влажности почвы. На выход компаратора LM393 подсоедините тестер. С помощью построечного резистора установите порог срабатывания. Со временем нужно будет его откорректировать, возможно, не один раз.

Принципиальная схема и распиновка компаратора LM393 представлена ниже.

Простейшая автоматизация готова. Достаточно подключить к замыкающим клеммам исполнительное устройство, например, электромагнитный клапан, включающий и отключающий подачу воды.

Исполнительные устройства автоматизации полива

Основным исполнительным устройством автоматизации полива является электронный клапан с регулировкой потока воды и без. Вторые дешевле, проще в обслуживании и управлении.

Существует множество управляемых кранов и других производителей.

Если на вашем участке случаются проблемы с подачей воды, приобретайте электромагнитные клапаны с датчиком потока. Это предотвратит выгорание соленоида при падении давления воды или прекращении водоснабжения.

Недостатки автоматических систем полива

Почва неоднородна и отличается по своему составу, поэтому один датчик влажности может показывать разные данные на соседних участках. Кроме того, некоторые участки затемняются деревьями и более влажные, чем те, которые расположены на солнечных местах. Также значительное влияние оказывает приближенность грунтовых вод, их уровень по отношению к горизонту.

Используя автоматизированную систему полива, следует учитывать ландшафт местности. Участок можно разбить на сектора. В каждом секторе установить один или более датчиков влажности и рассчитать для каждого собственный алгоритм работы. Это значительно усложнит систему и вряд ли удастся обойтись без контроллера, но впоследствии почти полностью избавит вас от траты времени на нелепое стояние со шлангом в руках под знойным солнцем. Почва будет наполняться влагой без вашего участия.

Построение эффективной системы автоматизированного полива не может основываться только на показаниях датчиков влажности почвы. Непременно следует дополнительно использовать температурные и световые сенсоры, учитывать физиологическую потребность в воде растений разных видов. Необходимо также учитывать сезонные изменения. Многие компании производящие комплексы автоматизации полива предлагают гибкое программное обеспечение для разных регионов, площадей и выращиваемых сельскохозяйственных культур.

Приобретая систему с датчиком влажности, не поддавайтесь на глупые маркетинговые слоганы: наши электроды покрыты золотом. Даже если это так, то вы лишь обогатите почву благородным металлом в процессе электролиза пластин и кошельки не очень честных бизнесменов.

Заключение

В данной статье рассказывалось о датчиках влажности почвы, которые являются основным контрольным элементом автоматического полива. А также был рассмотрен принцип действия системы автоматизации полива, которую можно приобрести в готовом виде или собрать самому. Простейшая система состоит из датчика влажности и управляющего устройства, схема сборки которой своими руками также была представлена в этой статье.

Автоматика заметно упрощает жизнь обладателя теплицы либо приусадебного участка. Автоматическая совокупность полива избавит от однообразной повторяющейся работы, а избежать избытка воды окажет помощь датчик влажности земли — собственными руками таковой прибор собрать не так уж сложно. На помощь садоводу приходят законы физики: влага в грунте делается проводником электрических импульсов, и чем ее больше, тем ниже сопротивление.

При понижении влажности сопротивление возрастает, и это оказывает помощь отследить оптимальное время полива.

Конструкция и принцип работы датчика влажности

Конструкция датчика влажности земли представляет собой два проводника, каковые подключаются к не сильный источнику энергии, в схеме обязан находиться резистор. Когда количество жидкости в пространстве между электродами растет, сопротивление понижается, и сила тока возрастает.

Влага высыхает – сопротивление растет, сила тока понижается.

Потому, что электроды будут пребывать во мокрой среде, их рекомендуется включать через ключ, дабы уменьшить разрушительное влияние коррозии. В простое время совокупность стоит отключённой и запускается лишь для проверки влажности нажатием кнопки.

Датчики влажности земли для того чтобы типа возможно устанавливать в теплицах – они снабжают контроль за автоматическим поливом, исходя из этого совокупность может функционировать по большому счету без участия человека. В этом случае совокупность постоянно будет пребывать в рабочем состоянии, но состояние электродов нужно будет контролировать, дабы они не испортились под действием коррозии. Подобные устройства возможно устанавливать на газонах и грядках на открытом воздухе – они разрешат мгновенно взять необходимую информацию.

Наряду с этим совокупность выясняется намного правильнее несложного тактильного ощущения. В случае если человек будет вычислять почву всецело сухой, датчик продемонстрирует до 100 единиц влажности грунта (при оценке в десятеричной совокупности), сразу после полива это значение вырастает до 600-700 единиц.

Затем датчик разрешит осуществлять контроль изменение содержания влажности в грунте.

В случае если датчик предполагается применять на улице, его верхнюю часть нужно шепетильно загерметизировать, дабы не допустить искажения информации. Для этого ее возможно покрыть влагонепроницаемой эпоксидной смолой.

Сборка датчика влажности собственными руками

Конструкция датчика планирует следующим образом:

  • Главная часть – два электрода, диаметр которых образовывает 3-4 мм, они прикрепляются к основанию, изготовленному из текстолита либо другого материала, защищенного от коррозии.
  • На одном финише электродов необходимо нарезать резьбу, иначе они делаются заостренными для более эргономичного погружения в грунт.
  • В пластине из текстолита просверливаются отверстия, в каковые вкручиваются электроды, их необходимо закрепить гайками с шайбами.
  • Под шайбы необходимо завести исходящие провода, по окончании чего электроды изолируются. Протяженность электродов, каковые будут погружаться в грунт, образовывает около 4-10 см. в зависимости от применяемой емкости либо открытой грядки.
  • Для работы датчика потребуется источник тока силой 35 мА, совокупность требует напряжения 5В. В зависимости от количества жидкости в земле диапазон возвращаемого сигнала составит 0-4,2 В. Утраты на сопротивление покажут количество воды в грунте.
  • Подключение датчика влажности земли проводится через 3 провода к процессору, для данной цели возможно купить, к примеру, Arduino. Контроллер разрешит соединить совокупность с зуммером для подачи звукового сигнала при чрезмерном уменьшении влажности земли, либо к светодиоду, яркость освещения будет изменяться при трансформациях в работе датчика.

Такое самодельное устройство может стать частью автополива в совокупности Умный дом, к примеру, с применением Ethernet-контроллера MegD-328. Веб-интерфейс показывает уровень влажности в 10-битной совокупности: диапазон от 0 до 300 показывает, что почва совсем сухая, 300-700 – в земле хватает влаги, более 700 – почва мокрая, и полив не нужно.

Конструкция, складывающаяся из контроллера, реле и элемента питания убирается в любой подходящий корпус, для которого возможно приспособить любую пластиковую коробочку.

Дома применение для того чтобы датчика влажности будет весьма несложным и вместе с тем надежным.

Сферы применения датчика влажности

Использование датчика влажности грунта возможно самым разнообразным. Чаще всего они употребляются в совокупностях автополива и ручного полива растений:

  1. Их возможно установить в цветочных горшках, в случае если растения чувствительны к уровню воды в грунте. В случае если речь заходит о суккулентах, к примеру, о кактусах, нужно вбирать долгие электроды, каковые будут реагировать на трансформацию уровня влажности конкретно у корней. Их кроме этого возможно применять для других растений и фиалок с хрупкой корневой совокупностью. Подключение к светодиоду разрешит определить, в то время, когда пора проводить полив.
  2. Они незаменимы для организации полива растений в теплице. По подобному принципу кроме этого планируют датчики влажности воздуха, каковые необходимы для запуска в работу совокупности опрыскивания растений. Все это разрешит автоматическим образом обеспечить нормальный уровень и полив растений атмосферной влажности.
  3. На даче применение датчиков разрешит не держать в памяти время полива каждой грядки, электротехника сама поведает о количестве воды в грунте. Это разрешит не допустить избыточного полива, в случае если сравнительно не так давно прошел ливень.
  4. Использование датчиков весьма комфортно и в некоторых вторых случаях. К примеру, они разрешат осуществлять контроль влажность грунта в подвале и под домом вблизи фундамента. В квартире его возможно установить под мойкой: в случае если труба начнет капать, об этом тут же скажет автоматика, и возможно будет избежать последующего ремонта и затопления соседей.
  5. Простое устройство датчика разрешит всего за пара дней всецело оборудовать совокупностью оповещения все проблемные участки дома и сада. В случае если электроды достаточно долгие, с их помощью возможно будет осуществлять контроль уровень воды, например, в неестественном маленьком водоеме.

Независимое изготовление датчика окажет помощь оборудовать дом автоматической совокупностью контроля с минимальными затратами.

Комплектующие фабричного производства легко купить через интернет либо в специальном магазине, солидную часть устройств возможно собрать из материалов, каковые постоянно найдутся в доме любителя электротехники.

Датчик влажности земли собственными руками. Новичок AVR.

Датчик влажности почвы своими руками. Новичок AVR.

Прибор, которым измеряют уровень влажности, называется гигрометром или просто датчиком влажности. В повседневной жизни влажность выступает немаловажным параметром, и часто не только для самой обычной жизни, но и для различной техники, и для сельского хозяйства (влажность почвы) и много для чего еще.

В частности, от степени влажности воздуха немало зависит наше самочувствие. Особенно чувствительными к влажности являются метеозависимые люди, а также люди, страдающие гипертонической болезнью, бронхиальной астмой, заболеваниями сердечно-сосудистой системы.

При высокой сухости воздуха даже здоровые люди ощущают дискомфорт, сонливость, зуд и раздражение кожных покровов. Часто сухой воздух может спровоцировать заболевания дыхательной системы, начиная с ОРЗ и ОРВИ, и заканчивая даже пневмонией.

На предприятиях влажность воздуха способна влиять на сохранность продукции и оборудования, а в сельском хозяйстве однозначно влияние влажности почвы на плодородие и т. д. Здесь и спасает применение датчиков влажности — гигрометров .

Какие-то технические приборы изначально калибруются под строго требуемую важность, и иногда чтобы провести точную настройку прибора, важно располагать точным значением влажности в окружающей среде.

Влажность может измеряться несколькими из возможных величин:

    Для определения влажности как воздуха, так и других газов, измерения проводятся в граммах на кубометр, когда речь об абсолютном значении влажности, либо в единицах RH, когда речь о влажности относительной.

    Для измеряется влажности твердых тел или в жидкостях подходят измерения в процентах от массы исследуемых образцов.

    Для определения влажности плохо смешиваемых жидкостей, единицами измерения будут служить ppm (сколько частей воды приходится на 1000000 частей веса образца).

По принципу действия, гигрометры делятся на:

    емкостные;

    резистивные;

    термисторные;

    оптические;

    электронные.

Емкостные гигрометры, в самом простом случае, представляют собой конденсаторы с воздухом в качестве диэлектрика в зазоре. Известно, что у воздуха диэлектрическая проницаемость непосредственно связана с влажностью, а изменения влажности диэлектрика приводят и к изменениям в емкости воздушного конденсатора.

Более сложный вариант емкостного датчика влажности в воздушном зазоре содержит диэлектрик, с диэлектрической проницаемостью, могущей сильно меняться под влиянием на него влажности. Данный подход делает качество датчика лучше, чем просто с воздухом между обкладками конденсатора.

Второй вариант хорошо подходит для проведения измерений относительно содержания воды в твердых веществах. Исследуемый объект размещается между обкладками такого конденсатора, к примеру объектом может быть таблетка, а сам конденсатор присоединяется к колебательному контуру и к электронному генератору, при этом измеряется собственная частота полученного контура, и по измеренной частоте «вычисляется» емкость, полученная при внесении исследуемого образца.

Безусловно, данный метод обладает и некоторыми недостатками, например при влажности образца ниже 0.5% он будет неточным, кроме того, измеряемый образец должен быть очищен от частиц, имеющих высокую диэлектрическую проницаемость, к тому же важна и форма образца в процессе измерений, она не должна изменяться в ходе исследования.

Третий тип емкостного датчика влажности - это емкостный тонкопленочный гигрометр. Он включает в себя подложку, на которую нанесены два гребенчатых электрода. Гребенчатые электроды играют в данном случае роль обкладок. С целью термокомпенсации в датчик дополнительно вводят еще и два термодатчика.

Такой датчик включает в себя два электрода, которые нанесены на подложку, а поверх на сами электроды нанесен слой материала, который отличается достаточно малым сопротивлением, сильно, однако, меняющимся в зависимости от влажности.

Подходящим материалом в устройстве может выступать оксид алюминия. Данный оксид хорошо поглощает из внешней среды воду, при этом удельное сопротивление его заметно изменяется. В результате общее сопротивление цепи измерения такого датчика будет значительно зависеть от влажности. Так, об уровне влажности станет свидетельствовать величина протекающего тока. Достоинство датчиков такого типа - малая их цена.

Термисторный гигрометр состоит из пары одинаковых термисторов. К слову напомним, что — это нелинейный электронный компонент, сопротивление которого сильно зависит от его температуры.

Один из включенных в схему термисторов размещают в герметичной камере с сухим воздухом. А другой - в камере с отверстиями, через которые в нее поступает воздух с характерной влажностью, значение которой требуется измерить. Термисторы соединяют по мостовой схеме, на одну из диагоналей моста подается напряжение, а с другой диагонали считывают показания.

В случае, когда напряжение на выходных клеммах равно нулю, температуры обоих компонентов равны, следовательно одинакова и влажность. В случае, когда на выходе будет получено не нулевое напряжение, то это свидетельствует о наличии разности влажностей в камерах. Так, по значению полученного при измерениях напряжения определяют влажность.

У неискушенного исследователя может возникнуть справедливый вопрос, почему же температура термистора меняется при его взаимодействии с влажным воздухом? А дело все в том, что при увеличении влажности, с корпуса термистора начинает испаряться вода, при этом температура корпуса уменьшается, и чем выше влажность, тем более интенсивно происходит испарение, и тем стремительнее остывает термистор.

4) Оптический (конденсационный) датчик влажности

Этот вид датчиков наиболее точен. В основе работы оптического датчика влажности — явление связанной с понятием «точка росы». В момент достижения температурой точки росы, газообразная и жидкая фазы - в условии термодинамического равновесия.

Так, если взять стекло, и установит в газообразной среде, где температура в момент исследования выше точки росы, а затем начать процесс охлаждения данного стекла, то при конкретном значении температуры на поверхности стекла начнет образовываться водяной конденсат, это водяной пар станет переходить в жидкую фазу. Данная температура и будет как раз точкой росы.

Так вот, температура точки росы неразрывно связана и зависит от таких параметров как влажность и давление в окружающей среде. В результате, имея возможность измерения давления и температуры точки росы, получится легко определить и влажность. Этот принцип служит основой для функционирования оптических датчиков влажности.

Простейшая схема такого датчика состоит из светодиода, светящего на зеркальную поверхность. Зеркало же отражает свет, меняя его направление, и направляя на фотодетектор. В данном случае зеркало можно подогревать или охлаждать посредством специального устройства регулирования температуры высокой точности. Часто таким устройством выступает термоэлектрический насос. Конечно же, на зеркало устанавливают датчик для измерения температуры.

Прежде чем начать измерения, температуру зеркала выставляют на значение, которое заведомо выше температуры точки росы. Дальше осуществляют постепенное охлаждение зеркала. В момент, когда температура начнет пересекать точку росы, на поверхности зеркала тут же начнут конденсироваться капли воды, и световой луч от диода приломится из-за них, рассеется, а это приведет к уменьшению тока в цепи фотодетектора. Через обратную связь фотодетектор взаимодействует с регулятором температуры зеркала.

Так, опираясь на информацию, полученную в форме сигналов от фотодетектора, регулятор температуры станет удерживать температуру на поверхности зеркала точно равной точке росы, а термодатчик соответственно покажет температуру. Так, при известных давлении и температуре можно точно определить основные показатели влажности.

Оптический датчик влажности обладает самой высокой точностью, недостижимой другими типами датчиков, плюс отсутствие гистерезиса. Недостаток — самая высокая цена из всех, плюс большое потребление электроэнергии. К тому же необходимо следить за тем, чтобы зеркало было чистым.

Принцип работы электронного датчика влажности воздуха основан на изменении концентрации электролита, покрывающего собой любой электроизоляционный материал. Существуют такие приборы с автоматическим подогревом с привязкой к точке росы.

Часто точка росы измеряется над концентрированным раствором хлорида лития, который является очень чувствительным к минимальным изменениям влажности. Для максимального удобства такой гигрометр зачастую дополнительно оборудуют термометром. Этот прибор обладает высокой точностью и малой погрешностью. Он способен измерять влажность независимо от температуры окружающей среды.

Популярны и простые электронные гигрометры в форме двух электродов, которые просто втыкаются в почву, контролируя ее влажность по степени проводимости в зависимости от этой самой влажности. Такие сенсоры популярны у поклонников , поскольку можно легко настроить автоматический полив грядки или цветка в горшке, на случай если поливать в ручную некогда или не удобно.

Прежде чем купить датчик, подумайте, что вам нужно будет измерять, относительную или абсолютную влажность, воздуха или почвы, каков предвидится диапазон измерений, важен ли гистерезис, и какая нужна точность. Самый точный датчик — оптический. Обратите внимание на класс защиты IP, на диапазон рабочих температур, в зависимости от конкретных условий, где будет использоваться датчик, подойдут ли вам параметры.