Физические и химические теории образования раствора. Химическая теория растворов Д. И. Менделеева Тепловой эффект процесса растворения. В результате изучения данной темы вы узнаете

Закон электронейтральности

При диссоциации молекул, число положительных и отрицательных ионов определяется стехиометрическими индексами в формуле молекулы. Электролиты, в которых ионы обладают одинаковым зарядом катиона и аниона, например, 1-1-электролит KCl или 2-2-электролит , распадаются на два иона - называются симметричные или симметричными. Электролиты, в которых ионы обладают неодинаковым зарядом катиона и аниона, например, 1-2-электролит или 3-1–электролит , называются несимметричными . Для любого типа электролита в элементарном объеме сумма зарядов анионов и катионов всегда одинакова (закон электронейтральности) :

Где число частиц в растворе.

Степень диссоциации, изотонический коэффициент

Количественно диссоциация характеризуется степенью диссоциации

Величина может изменяться от нуля (диссоциация отсутствует) до единицы (в растворе присутствуют только ионы). У сильных электролитов , у слабых - у неэлектролитов

Изотонический коэффициент Вант-Гоффа i характеризует во сколько раз изменилось общее число частиц в растворе в результате диссоциации:

где числитель - общее число вещества в растворе: распавшихся на ионы и оставшихся непродиссоциированными а знаменатель - число молекул, введенных в раствор.

Для сильных электролитов изотонический коэффициент теоретически должен быть равен числу ионов, на которые распадается молекула при диссоциации: при (например, для и v =2, для и v =3, для v =4 и т.д.). Однако обычно экспериментальные величины i <v . Причиной этого является электростатическое взаимодействие между ионами, величина которого характеризуется осмотическим коэффициентом



g I(g<1): i =v g. Для неэлектролитов i =1.

Закон разбавления Оствальда

Степень диссоциации зависит от концентрации слабого электролита в

растворе.

Рассмотрим в качестве примера реакцию:

Если исходная концентрация уксусной кислоты была равна c, то концентрация образовавшихся в результате диссоциации ионов

,

а концентрация непродиссоциировавшей уксусной кислоты

Тогда, с учетом уравнения (32.2):

(32.3)

а если то и,

Выражение (32.3) носит название закона разбавления Оствальда. Как видно из этого уравнения, при разведении степень диссоциации возрастает, достигая в области бесконечных разбавлений значения, близкого к единице, т. е уменьшается вероятность ассоциации ионов в молекулу из-за уменьшения степени вероятности их столкновения.

Константа гидролиза

Если растворитель диссоциирует на ионы, то их взаимодействие с ионами растворенного вещества приводит к возникновению новых ионных равновесий. Обменные реакции между растворенным веществом и растворителем называется сольволизом (для водных растворов - гидролизом).

Гидролизу подвергаются все вещества, образованные с участием слабых электролитов. Например, при гидролизе соли слабой кислоты и сильного основания устанавливается равновесие:

(щелочная реакция)

(кислая реакция)

Наиболее сильно подвержены гидролизу соли, образованные слабой кислотой и слабым основанием

Равновесие реакции гидролиза может быть количественно охарактеризовано константой гидролиза . Например, константа равновесия реакции гидролиза ацетата натрия имеет вид:

Поскольку то и Это произведение носит название константы гидролиза . Умножая числитель и знаменатель дроби на активность ионов водорода и произведя перестановки, получим



Как следует из приведенного выражения, константа гидролиза обратно пропорциональна константе диссоциации слабого электролита, участвующего в образовании соли (если в образовании соли участвуют два слабых электролита, то обратно пропорциональна произведению их констант диссоциации).

Степень гидролиза является величиной аналогичной степени диссоциации.

Уравнение, связывающую константу гидролиза со степенью гидролиза, по форме аналогично уравнению (32.3):

где h - число частиц введенных в раствор.

При повышении температуры степень диссоциации воды сильно увеличивается, тогда как у большинства других электролитов она изменяется незначительно. Вследствие этого степень гидролиза водных растворов при повышении температуры увеличивается.

Буферные растворы

В природе и практической деятельности многие реакции протекают при определенном значении pH, которое должно быть постоянным и не зависеть от разведения, изменения состава раствора, добавления кислоты или щелочи и т.д. Такими свойствами обладают буферные растворы, содержащие слабую кислоту и соль, образованную этой кислотой и сильным основанием (например, ацетатный буфер ), или слабое основание и соль, образованную сильной кислотой и этим основанием (например, аммиачный буфер ). Эти растворы обладают определенными свойствами, которые проиллюстрируем на примере ацетатного буфера.

Присутствие ацетата натрия (сильного электролита), который полностью диссоциирован, настолько увеличивает концентрацию ионов CH COO , что, в соответствии с принципом Ле-Шателье, диссоциация уксусной кислоты полностью подавляется:

В результате можно считать, что в буферном растворе активность анионов равна активности анионов соли , а активность кислоты равна ее концентрации . Подставляя эти величины в выражение константы диссоциации, логарифмируя и вводя обозначение получимследующие формулы:

Эти формулы показывают, что pH буферного раствора зависит от константы диссоциации кислоты и соотношения аналитических концентраций соли и кислоты. При разбавлении буферного раствора это соотношение не меняется, а незначительное повышение pH обусловлено изменением коэффициента активности соли. Добавление сильной кислоты тоже сравнительно слабо отражается на изменении pH. При добавлении сильной кислоты к буферному раствору идет реакция с образованием недиссоциированной уксусной кислоты:

А при добавлении сильного основания- реакция нейтрализации:

Ионы в первом случае, и ионы во втором, связываются в малодиссоциированные молекулы ( и ), в результате чего в pH раствора практически не изменяется.

Способность буферных растворов противостоять изменению pH количественно выражается величиной, называемой буферной емкостью. Буферная емкость - это количество кислоты или щелочи которое нужно добавить к раство­ру, чтобы изменить его pH на единицу.

Числа переноса

Каждый вид ионов переносит определенное количество электричества, зависящее от заряда и концентрации ионов, а также скорости их движения в электрическом поле. Отношение количества электричества перенесенного ионами вида, к общему количеству электричества перенесенному всеми ионами, находящимися в растворе, называют числом переноса ионов:

В соответствии с этим определением сумма чисел переноса всех видов ионов в растворе равна единице.

Для симметричного электролита KA , диссоциирующего на два вида ионов и , количество электричества, перенесенное катионами и анионами, составит соответственно:

На степень гидратации ионов, величины их абсолютной скорости и числа переноса влияют концентрация раствора и температура. С ростом концентрации примерно до 0,1 моль/л для большинства электролитов числа переноса ионов изменяются незначительно; в области более высоких концентраций это изменение заметнее. При повышении температуры размеры гидратных оболочек слабо гидратированных ионов уменьшаются менее резко, чем сильно гидрати-рованных (а иногда даже увеличиваются). В результате величины абсолютной подвижности катионов и анионов сближаются, и их числа переноса стремятся к 0,5.


Диэлектрическая проницаемость - величина, показывающая, во сколько раз сила взаимодействия двух зарядов в изучаемой среде меньше, чем в вакууме.

Зарядом иона z называют отношение заряда иона, выраженного в кулонах, к заряду электрона Кл; заряд иона, в кулонах, соответственно, равен произведению ez.

Далее во всех случаях, где это особо не оговаривается, с целью упрощения мы будем говорить о коэффициенте активности и активности электролитов, понимая, что речь идет о среднем коэффициенте активности и средней активности. В дальнейшем пренебрегается и различием между тремя способами выражения активности (коэффициента активности), что вполне допустимо для разбавленных растворов.

Используют также определение – радиус (толщина) ионной атмосферы, дебаевский радиус.

Обозначение единицы электрической проводимости сименс, как и всех других единиц, происходящих от имен собственных, пишется с прописной буквы (См). Это обозначение нельзя путать с обозначением единицы измерения длины – сантиметр (см).

Физическая и химическая теории растворов.

Растворы являются сложными системами, в которых имеют место различные виды взаимодействия между частицами (Ван-дер-Ваальсовы, электростатические и т.д.).

Существуют две точки зрения на природу растворения и растворов. Согласно физической точке зрения, растворение является чисто физическим процессом (разрушение кристаллической решетки при растворении твердых тел). Растворы при этом рассматриваются как молекулярные смеси нескольких веществ, не взаимодействующих химически. Противоположные представления были развиты Д. И. Менделеевым, который считал растворение химическим процессом, а растворы рассматривал как непрочные соединения компонентов раствора, находящихся в состоянии частичной диссоциации и отличающихся от обычных соединений переменным составом.

В настоящее время используются представления обеих теорий и доминирующая роль физической или химической компонент, в процессе растворения, определяется свойствами растворителя и растворенного вещества (системы).

Физическая теория растворов (Вант – Гофф, Аррениус – ученые внесшие вклад в развитие) рассматривала, растворитель, как инертную среду и приравнивала растворы к простым механическим смесям.

Недостатки теории: а) не объясняла энергетический эффект растворителя; б) не объясняла изменения объема в процессе растворения; в) не объясняла изменение окраски в процессе растворения

Химическая теория растворов (Д.И.Менделеев) Растворы рассматривались, как химические соединения. Однако, в растворах нет строгого соотношения между веществом и растворителем, т.е. растворы не подчиняются закону постоянства состава. Кроме того в свойствах растворов можно обнаружить многие свойства, его отдельных компонентов, чего не наблюдается в случае химического соединения.

Физико-химическая теория растворов (Каблуков) С этой точки зрения растворы занимают промежуточное положение, между механическими смесями и химического соединения.

Процесс растворения тесно связан с диффузией, под влияние растворителя от поверхности твердого вещества, постепенно отрываются молекулы или ионы и в растворе диффузий распределяются по всему объему растворителя. С поверхности затем снимается новый слой молекул и т.д. Перешедшие в растворе ионы остаются связанными с молекулами воды и образуют гидраты ионов. В общем случае любого растворителя эти соединения называют сольватами ионов. Одновременно происходит обратный процесс выделения молекул из раствора. Обратный процесс тем больше, чем выше концентрация раствора при динамическом равновесии, сколько молекул растворяются, столько же выделяется из раствора.

5.Гидролиз растворов солей. Степень гидролиза и факторы, влияющие на нее. Типичные случаи гидролиза (показать на примерах).

Взаимодействие ионов соли с водой приводящее к образованию слабого электролита называется гидролизом соли. Различают несколько случаев гидролиза:

Соль сильного основания и слабой кислоты. (CH 3 COONa, NaCO 3 , KCN, Na 2 S)

В водном растворе соль сначала диссоциирует на катионы и анионы

диссоциация:

Анион слабой кислоты взаимодействует с водой, создавая щелочную среду (гидролиз по аниону):

гидролиз:

Константа диссоциации уравнения гидролиза:

т.к. =const, то К Д = К Г (константе гидролиза)

т.к. Кводы = ·, то = Кводы/

Т.е. чем слабее кислота, тем меньше ее Кд, тем сильнее будет гидролизована соль.

Гидролиз солей многоосновных кислот протекает ступенчато:

1 ступень:

2 ступень:

В растворах обычной концентрации гидролиз этой соли идет лишь по первой ступени с образованием кислой соли. В сильно разбавленных растворах гидролиз частично идет по 2 ступени с образованием свободной угольной кислоты. Гидролиз по 2 ступени не значителен, т.к. велика концентрация ионов ОН.

Соль слабого основания и сильной кислоты (nh4no3, ZnCl2, Al2(so4)3)

диссоциация:

Катион слабого основания взаимодействует с водой, создавая кислую среду:

гидролиз:

молекулярное уравнение гидролиза:

Чем слабее основание, тем сильнее будет гидролизована соль.

Соли многокислотных оснований гидролизуются ступенчато:

1 ступень:

2 ступень:

В обычных условиях гидролиз этой соли идет только по первой ступени.

Соль слабой кислоты и слабого основания (CH 3 COONH 4 , Al 2 S 3 , (NH 4 ) 2 CO 3 )

В данном случае гидролизу подвергается и катион, и анион соли (гидролиз по катиону и аниону)

Диссоциация:

Гидролиз:

Среда гидролиза определяется тем ионом соли, у которого степень гидролиза выше (кислая, щелочная, нейтральная)

Соли сильного основания и сильной кислоты (NaOH , CaCl 2 , NaNO 3 )

Эти соли при растворении в воде не гидролизуются, их растворы имеют нейтральную реакцию.

Полный (совмещенный) гидролиз

Протекает при сливании 2х растворов разных солей, причем одна из солей гидролизована по катиону, а другая по аниону, при этом образуется слабая кислота и слабое основание.

Степень гидролиза

Под степенью гидролиза подразумевается отношение части соли, подвергающейся гидролизу, к общей концентрации её ионов в растворе.

Степень гидролиза соли тем выше, чем слабее кислота или основание, её образующие.

h связано с К Г уравнением аналогичным закону разбавления Оствальда

Чаще всего гидролизованная часть соли очень мала и концентрация продуктов гидролиза не значительна, тогда h<1, а 1-h≈1

т.е. при разбавлении раствора соли степень ее гидролиза возрастает.

Кроме разбавления раствора усилить гидролиз можно нагреванием раствора, а также добавлением специальных реагентов.

Лекция 1.

«ПОНЯТИЕ «РАСТВОР». ХИМИЧЕСКАЯ ТЕОРИЯ РАСТВОРОВ»

Растворы имеют важное значение в жизни и практической деятельности человека. Растворами являются все важнейшие физиологические жидкости (кровь, лимфа и т.д.). Организм – сложная химическая система, и подавляющее большинство химических реакций в организме происходит в водных растворах. Именно по этой причине человеческий организм на 70 % состоит из воды, а сильное обезвоживание организма наступает быстро и является очень опасным состоянием.

Многие технологические процессы, например получение соды или азотной кислоты, выделение и очистка редких металлов, отбеливание и окрашивание тканей, протекают в растворах.

Чтобы понять механизм многих химических реакций, необходимо изучить процессы, протекающие в растворах.

Понятие «раствор». Виды растворов

Раствор – твердая, жидкая или газообразная гомогенная система , состоящая из двух или более компонентов.

Гомогенная система состоит из одной фазы.

Фаза - часть системы, отделенная от других ее частей поверхностью раздела, при переходе через которую свойства (плотность, теплопроводность, электропроводность, твердость и т.д.) изменяются скачкообразно. Фаза может быть твердой, жидкой, газообразной.

Наиболее важным видом растворов являются жидкие растворы, но в широком смысле растворы также бывают еще твердые (сплав латунь: медь, цинк; сталь: железо, углерод) и газообразные (воздух: смесь азота, кислорода, углекислого газа и различных примесей).

Раствор содержит не менее двух компонентов, из которых один является растворителем , а другие – растворенными веществами .

Растворитель – это компонент раствора, находящийся в том же агрегатном состоянии, что и раствор. Растворителя в растворе по массе всегда больше, чем остальных компонентов. Растворенное вещество находится в растворе в виде атомов, молекул или ионов .

От растворов отличаются:

Суспензия – это система, состоящая из мелких твердых частиц, взвешенных в жидкости (тальк в воде)

Эмульсия – это система, в которой одна жидкость раздроблена в другой, не растворяющей ее жидкости (т.е. мелкие капли жидкости, находящихся в другой жидкости: например,бензин в воде).

Аэрозоль – газ со взвешенными в нем твердыми или жидкими частицами (туман: воздух и капли жидкости)

Суспензии, эмульсии и аэрозоли состоят из нескольких фаз, они не гомогенны и являются дисперсными системами . Суспезии, эмульсии и аэрозоли – не растворы!

Химическая теория растворов.

Растворитель химически взаимодействует с растворенным веществом.

Химическая теория растворов создана Д.И. Менделеевым в конце ХIХв. на основании следующих экспериментальных фактов:


1) Растворение любого вещества сопровождается поглощением или выделением теплоты. То есть растворение является экзотермической или эндотермической реакцией.

Экзотермический процесс – процесс, сопровождающийся выделением тепла во внешнюю среду (Q>0).

Эндотермический процесс – процесс, сопровождающийся поглощением тепла из внешней среды (Q<0).

(пример : растворение CuSO 4 – экзотермический процесс, NH 4 Cl – эндотермический). Объяснение : чтобы молекулы растворителя могли оторвать частицы растворенного вещества друг от друга, необходимо затратить энергию (это эндотермическая составляющая процесса растворения), при взаимодействии частиц растворяемого вещества с молекулами растворителя энергия выделяется (экзотермический процесс). В результате тепловой эффект растворения определяется более сильной составляющей. (Пример : при растворении 1моль вещества в воде на разрыв его молекул потребовалось 250 кДж, а при взаимодействии образовавшихся ионов с молекулами растворителя выделилось 450 кДж. Каков суммарный тепловой эффект растворения? Ответ: 450-250=200 кДж, экзотермический эффект, т.к. экзотермическая составляющая больше эндотермической).

2) Смешение компонентов раствора с определенным объемом не дает суммы объемов (пример : 50 мл этилового спирта +50 мл воды при смешении дают 95 мл раствора)

Объяснение : благодаря взаимодействию молекул растворенного вещества и растворителя (притяжению, химическому связыванию и т.п.) объем «экономится».

Внимание ! Масса раствора строго равна сумме масс растворителя и растворенных веществ.

3) При растворении некоторых бесцветных веществ образуются окрашенные растворы. (пример : CuSO 4 – бесцветный, дает синий раствор).

Объяснение : при растворении некоторых бесцветных солей образуются окрашенные кристаллогидраты.

Вывод: Растворение – это сложный физико-химический процесс, при котором происходит взаимодействие (электростатическое, донорно-акцепторное, образование водородной связи) между частицами растворителя и растворенных веществ.

Процесс взаимодействия растворителя с растворенным веществом называется сольватацией . Продукты этого взаимодействия – сольваты . Для водных растворов применяются термины гидратация и гидраты .

Иногда при выпаривании воды кристаллы растворенного вещества оставляют часть молекул воды в своей кристаллической решетке. Такие кристаллы называются кристаллогидратами. Записываются так: CuSO 4 *5Н 2 О. То есть, каждая молекула сульфата меди CuSO 4 удерживает около себя 5 молекул воды, встраивая их в свою кристаллическую решетку.

Раствор – это однородная смесь переменного состава, состоящая из растворяемого вещества, растворителя и продуктов их взаимодействия.

Раствор, в котором данное вещество при определённой температуре больше не растворяется, называется насыщенным , а раствор, в котором это вещество ещё может растворяться, – ненасыщенным .

Кристаллогидраты

Если растворитель – вода, то продукты присоединения молекул воды к частицам растворяемого вещества называются гидратами , а процесс их образования – гидратацией .

Гидраты – очень неустойчивые соединения, и при выпаривании воды из раствора они легко разрушаются. Однако некоторые гидраты могут удерживать воду даже в твёрдом кристаллическом состоянии.

Такие вещества называют кристаллогидратами . Кристаллогидратами является большинство природных минералов. Много веществ получают в чистом виде в форме кристаллогидратов.

Химическая теория была предложена Д.И. Менделеевым. Согласно представлениям Д.И. Менделеева между молекулами растворяемого вещества и растворителем происходит химическое взаимодействие с образованием неустойчивых, превращающихся друг в друга соединений растворенного вещества с растворителем – сольватов.

Сольваты – это неустойчивые соединения переменного состава. Если растворителем является вода, их называют гидратами . Сольваты (гидраты) образуются за счет ион-дипольного, донорно-акцепторного взаимодействий, образования водородных связей и т.д.

9.Концентрация растворов. Растворимость, насыщенные и ненасыщенные растворы.

Концентрация – это относительное количество растворенного вещества в растворе.

Молярная концентрация (С)– это отношение количества растворенного вещества v (в молях) к объему раствора V в литрах.

Единица молярной концентрации – моль/л. Зная число молей вещества в 1 л раствора, легко отмерить нужное количество молей для реакции с помощью подходящей мерной посуды.

Массовая доля растворенного вещества – это отношение массы растворенного вещества m 1 к общей массе раствора m, выраженное в процентах.

Нормальность раствора обозначает число грамм-эквивалентов данного вещества в одном литре раствора или число миллиграмм-эквивалентов в одном миллилитре раствора. Грамм - эквивалентом вещества называется количество граммов вещества, численно равное его эквиваленту.

Раствори́мость - способность вещества образовывать с другими веществами однородные системы - растворы, в которых вещество находится в виде отдельных атомов, ионов, молекул или частиц.

Растворимость выражается концентрацией растворённого вещества в его насыщенном растворе либо в процентах, либо в весовых или объёмных единицах, отнесённых к 100 г или 100 см³ растворителя.

Ненасыщенный раствор - раствор, в котором концентрация растворенного вещества меньше, чем в насыщенном растворе, и в котором при данных условиях можно растворить ещё некоторое его количество.

Насыщенный раствор - раствор, в котором растворённое вещество при данных условиях достигло максимальной концентрации и больше не растворяется. Осадок данного вещества находится в равновесном состоянии с веществом в растворе.

Существует 2 теории растворов : физическая и химическая .

Физическая теория растворов.

Была открыта Якобом Г. Вант-Гоффом и Свате А.Аррениусом.

Суть теории растворов : растворитель - химическая индифферентная среда, в которой равномерно распределены частицы растворенного вещества. Теория не предполагает наличие межмолекулярных связей между растворителем и растворенным веществом.

Под эту теорию подходят только идеальные растворы, где компоненты растворителя никак не воздействуют на растворимое соединение. Примером являются газовые растворы, где нереагирующие между собой газы смешиваются друг с другом в неограниченных количествах. Все физические данные (температура кипения и плавления, давление, теплоемкость) вычисляется исходя из свойств всех соединений, входящих в состав.

По закону Дальтона : общее давление газовой смеси равно сумме парциальных давлений ее компонентов:

P общ = Р 1 + Р 2 + Р 3 +…

Химическая теория растворов.

Химическую (сольватную) теорию растворов описал Д.И. Менделеев . Суть заключается в следующем: частицы растворителя и растворенного вещества реагируют друг с другом, в результате чего получаются нестойкие соединения переменного состава - гидраты (сольваты ). Основные связи тут - водородные.

Вещество может распадаться на слои (растворяться) в случае полярного растворителя (воды). Ярким примером является растворение поваренной соли.

Также может проткать реакция между компонентами смеси:

H 2 O +Cl 2 = HCl + HOCl ,

В ходе процесса растворения происходит изменение состава и объема реакционной смеси, т.к. протекают 2 процесса: разрушение структуры растворяемого вещества и химическая реакция между частицами. Оба процесса идут с изменением энергии.

Тепловые эффекты могут быть экзотермическими и эндотермическими (с выделением и поглощением энергии).

Соединения с частицами растворителя называются гидратами .

Кристаллические вещества, в состав которых входят гидраты, называются кристаллогидратами и имеют различную окраску. Например, кристаллогидрат сульфата меди: CuSO 4 ·5 H 2 О . Раствор кристаллогидрата синий. Если рассмотреть кристаллогидрат кобальта CoCl 2 · 6 H 2 O , то он обладает розовым цветом, CoCl 2 · 4 H 2 O - красный, CoCl 2 ·2 H 2 O - сине-фиолетовый, CoCl 2 · H 2 О - темно-синий, а безводный раствор хлорида кобальта - бледно-синего цвета.