Что называется корнем квадратного уравнения. Формулы корней квадратных уравнений, разложение на множители

Разложение многочленов для получения произведения иногда кажется запутанным. Но это не так сложно, если разобраться в процессе пошагово. В статье подробно рассказано, как разложить на множители квадратный трехчлен.

Многим непонятно, как разложить на множители квадратный трехчлен, и для чего это делается. Сначала может показаться, что это бесполезное занятие. Но в математике ничего не делается просто так. Преобразование нужно для упрощения выражения и удобства вычисления.

Многочлен, имеющий вид – ax²+bx+c, называется квадратным трехчленом. Слагаемое «a» должно быть отрицательным или положительным. На практике это выражение называется квадратным уравнением. Поэтому иногда говорят и по-другому: как разложить квадратное уравнение.

Интересно! Квадратным многочлен называют из-за самой его большой степени – квадрата. А трехчленом — из-за 3-х составных слагаемых.

Некоторые другие виды многочленов:

  • линейный двучлен (6x+8);
  • кубический четырехчлен (x³+4x²-2x+9).

Разложение квадратного трехчлена на множители

Сначала выражение приравнивается к нулю, затем нужно найти значения корней x1 и x2. Корней может не быть, может быть один или два корня. Наличие корней определяется по дискриминанту. Его формулу надо знать наизусть: D=b²-4ac.

Если результат D получается отрицательный, корней нет. Если положительный – корня два. Если в результате получился ноль – корень один. Корни тоже высчитываются по формуле.

Если при вычислении дискриминанта получается ноль, можно применять любую из формул. На практике формула просто сокращается: -b / 2a.

Формулы для разных значений дискриминанта различаются.

Если D положительный:

Если D равен нулю:

Онлайн калькуляторы

В интернете есть онлайн калькулятор. С его помощью можно выполнить разложение на множители. На некоторых ресурсах предоставляется возможность посмотреть решение пошагово. Такие сервисы помогают лучше понять тему, но нужно постараться хорошо вникнуть.

Полезное видео: Разложение квадратного трехчлена на множители

Примеры

Предлагаем просмотреть простые примеры, как разложить квадратное уравнение на множители.

Пример 1

Здесь наглядно показано, что в результате получится два x, потому что D положительный. Их и нужно подставить в формулу. Если корни получились отрицательные, знак в формуле меняется на противоположный.

Нам известна формула разложения квадратного трехчлена на множители: a(x-x1)(x-x2). Ставим значения в скобки: (x+3)(x+2/3). Перед слагаемым в степени нет числа. Это значит, что там единица, она опускается.

Пример 2

Этот пример наглядно показывает, как решать уравнение, имеющее один корень.

Подставляем получившееся значение:

Пример 3

Дано: 5x²+3x+7

Сначала вычислим дискриминант, как в предыдущих случаях.

D=9-4*5*7=9-140= -131.

Дискриминант отрицательный, значит, корней нет.

После получения результата стоит раскрыть скобки и проверить результат. Должен появиться исходный трехчлен.

Альтернативный способ решения

Некоторые люди так и не смогли подружиться с дискриминантом. Можно еще одним способом произвести разложение квадратного трехчлена на множители. Для удобства способ показан на примере.

Дано: x²+3x-10

Мы знаем, что должны получиться 2 скобки: (_)(_). Когда выражение имеет такой вид: x²+bx+c, в начале каждой скобки ставим x: (x_)(x_). Оставшиеся два числа – произведение, дающее «c», т. е. в этом случае -10. Узнать, какие это числа, можно только методом подбора. Подставленные числа должны соответствовать оставшемуся слагаемому.

К примеру, перемножение следующих чисел дает -10:

  • -1, 10;
  • -10, 1;
  • -5, 2;
  • -2, 5.
  1. (x-1)(x+10) = x2+10x-x-10 = x2+9x-10. Нет.
  2. (x-10)(x+1) = x2+x-10x-10 = x2-9x-10. Нет.
  3. (x-5)(x+2) = x2+2x-5x-10 = x2-3x-10. Нет.
  4. (x-2)(x+5) = x2+5x-2x-10 = x2+3x-10. Подходит.

Значит, преобразование выражения x2+3x-10 выглядит так: (x-2)(x+5).

Важно! Стоит внимательно следить за тем, чтобы не перепутать знаки.

Разложение сложного трехчлена

Если «a» больше единицы, начинаются сложности. Но все не так трудно, как кажется.

Чтобы выполнить разложение на множители, нужно сначала посмотреть, возможно ли что-нибудь вынести за скобку.

Например, дано выражение: 3x²+9x-30. Здесь выносится за скобку число 3:

3(x²+3x-10). В результате получается уже известный трехчлен. Ответ выглядит так: 3(x-2)(x+5)

Как раскладывать, если слагаемое, которое находится в квадрате отрицательное? В данном случае за скобку выносится число -1. К примеру: -x²-10x-8. После выражение будет выглядеть так:

Схема мало отличается от предыдущей. Есть лишь несколько новых моментов. Допустим, дано выражение: 2x²+7x+3. Ответ также записывается в 2-х скобках, которые нужно заполнить (_)(_). Во 2-ю скобку записывается x, а в 1-ю то, что осталось. Это выглядит так: (2x_)(x_). В остальном повторяется предыдущая схема.

Число 3 дают числа:

  • -1, -3;
  • -3, -1;
  • 3, 1;
  • 1, 3.

Решаем уравнения, подставляя данные числа. Подходит последний вариант. Значит, преобразование выражения 2x²+7x+3 выглядит так: (2x+1)(x+3).

Другие случаи

Преобразовать выражение получится не всегда. При втором способе решение уравнения не потребуется. Но возможность преобразования слагаемых в произведение проверяется только через дискриминант.

Стоит потренироваться решать квадратные уравнения, чтобы при использовании формул не возникало трудностей.

Полезное видео: разложение трехчлена на множители

Вывод

Пользоваться можно любым способом. Но лучше оба отработать до автоматизма. Также научиться хорошо решать квадратные уравнения и раскладывать многочлены на множители нужно тем, кто собирается связать свою жизнь с математикой. На этом строятся все следующие математические темы.

В разных практических деятельностях человека вроде физики, инженерии, архитектуры и других точных наук, часто встречаются задачи с математическими моделями, какой являются уравнения, имеющие переменную (x) в иной степени. Именно они помогают учёным в изучении внешней среды и её использовании.

Квадратные уравнения

Квадратным называется равенство вида ax² + bc + c = 0, где x является переменой, a (первый коэффициент), b (второй) и c (свободный) - это действительные числа, которые должны приводить в условии задачи. Нужно помнить при решении, что a ≠ 0. Как уже понятно, оно очень отличается от линейного уравнения, его все изучали в младших классах школы.

Чтобы понять, как решать квадратные уравнения, нужно представить футбольное поле, длина которого на 10 метров больше его ширины, а площадь равна 380 квадратных метров. Нужно найти ширину футбольного поля.

Пусть переменная x - это определённая ширина, тогда её длина будет (х +10) метров. Потом x * (x + 10) = 380, ведь дана площадь 380 квадратных метров в условии задачи, то есть x² + 10x — 380 равно нулю. Здесь а = 1, b = 10, а c = -375 Это был один из примеров квадратных равенств.

Различают два вида уравнений:

  • Приведённые - это случай, когда в квадратном равенстве a = 1.
  • Непривёденные если a ≠ 1.

При этом x² - приведённое, а уже при 5x² оно станет непривёденным.

Понятие дискриминант

Существует определенная система решения таких уравнений. Чтобы найти чётный корень такого равенства, достаточно запомнить приведённую ниже формулу квадратного уравнения.

Буква D - это дискриминант. Звучит сложно, но не стоит пугаться, ведь с латинского языка слово переводится, как разность. Он равен: D = b² — 4 ac. Следуя этому, можно записать, что (2ax + b)² = D. Есть определенные правила, как надо решать дискриминант:

Пример первого способа нахождения через формулу дискриминанта квадратного уравнения и правильным разложением чисел:

  • 9х²-6х+1=0;
  • D = (-6)² — 4 × 9 ×1 = 0;
  • D эквивалентен нулю;
  • x = -6/2×9 = 1/3.

Как пример можно показать уравнивание: -8x² = 0, у которого b и с равны нулю. Или 2x² — 3 = 0, b ничему не равно. В уравнении -7x² + 4x² = 0 c эквивалентно нулю.

Разные квадратные уравнения

Помимо обычных дискриминантов, есть и половинные. Их ищут для равенств, у которых второй коэффициент - это чётное число, по формуле: D1 = 4 k² — 4 ac = 4 (k² — ac). Чтобы делать меньше ошибок, лучше использовать формулу со скобками. Благодаря этому в ответе получается четверть дискриминанта.

Квадратные равенства с комплексными переменными почти ничем не отличаются от плоскости действительных чисел и тем, которые должны проходить в восьмых классах. И чтобы без проблем их решать, нужно использовать формулу.

Если в квадратном равенстве хотя бы один из общих коэффициентов квадратного трехчлена B или C равен нулю, то такое равенство называют неполным.

Следовательно оно бывает только трёх видов:

Из истории математики

Неполные квадратные равенства и некоторые виды неизвестных корней вавилонские математики умели решить и создать ещё 4000 лет тому назад. Такие произведения в Древней Греции решали тем же способом. Люди, обладающие знаниями точных наук, решали некоторые квадратные уравнения геометрическими приёмами.

Это показал древнегреческий учёный Диофант . Много внимания таким уравнениям также выделял арабский математик Мухаммед Альхорезми. Он нашёл как решать уравнение видов: ах²=bx; ax²=c; ax²+bx=c; ax²+c=bx; bc+c=ax² и получил положительные корни.

Формулы, что связывают между собой корни равенства и его коэффициенты, впервые нашёл французский математик Франсуа Виет в 1591 году. Его заключения в современных обозначениях имеют вид: (а + b)x — x² = 0.

После быстрой публикации работы нидерландского математика Жераром, а также француза Декарда и англичанина Ньютона равенство корней квадратного уравнения приобрело современный вид.

Сейчас речь идёт о теореме Виета , на которую нужно обратить внимание. Её так называют из-за известного французского математика Франсуа Виета, которым и было открыто это свойство. Сумма корней сведенного квадратного равенства равно другому коэффициенту, взятому с отрицательным знаком, а произведение корней - свободному члену. Часто его записывают в таком виде: х² + px + q эквивалентно нулю.

Теорему можно сформулировать так .

Если х1 и х2 - корни сведенного квадратного равенства х²+px+q эквивалентны нулю, то х1 + х2 = -p; x1 * x2 = q. Поскольку a ≠ 0, поделим две части уравнения на а и получается современная формула: x² — b/a * x + c/a равно нулю.

Изучение многих физических и геометрических закономерностей часто приводит к решению задач с параметрами. Некоторые ВУЗы также включают в экзаменационные билеты уравнения, неравенства и их системы, которые часто бывают весьма сложными и требующими нестандартного подхода к решению. В школе же этот один из наиболее трудных разделов школьного курса алгебры рассматривается только на немногочисленных факультативных или предметных курсах.
На мой взгляд, функционально-графический метод является удобным и быстрым способом решения уравнений с параметром.
Как известно, в отношении уравнений с параметрами встречаются две постановки задачи.

  1. Решить уравнение (для каждого значения параметра найти все решения уравнения).
  2. Найти все значения параметра, при каждом из которых решения уравнения удовлетворяют заданным условиям.

В данной работе рассматривается и исследуется задача второго типа применительно к корням квадратного трехчлена, нахождение которых сводится к решению квадратного уравнения.
Автор надеется, что данная работа поможет учителям при разработке уроков и при подготовке учащихся к ЕГЭ.

1. Что такое параметр

Выражение вида 2 + bх + c в школьном курсе алгебры называют квадратным трехчленом относительно х, где a, b, c – заданные действительные числа, причем, a =/= 0. Значения переменной х, при которых выражение обращается в нуль, называют корнями квадратного трехчлена. Для нахождения корней квадратного трехчлена, необходимо решить квадратное уравнение 2 + bх + c = 0.
Вспомним из школьного курса алгебры основные уравнения aх + b = 0;
aх2 + bх + c = 0. При поиске их корней, значения переменных a, b, c, входящих в уравнение считаются фиксированными и заданными. Сами переменные называют параметром. Поскольку, в школьных учебниках нет определения параметра, я предлагаю взять за основу следующий его простейший вариант.

Определение. Параметром называется независимая переменная, значение которой в задаче считается заданным фиксированным или произвольным действительным числом, или числом, принадлежащим заранее оговоренному множеству.

2. Основные типы и методы решения задач с параметрами

Среди задач с параметрами можно выделить следующие основные типы задач.

  1. Уравнения, которые необходимо решить либо для любого значения параметра (параметров), либо для значений параметра, принадлежащих заранее оговоренному множеству. Например. Решить уравнения: aх = 1, (a – 2)х = a 2 4.
  2. Уравнения, для которых требуется определить количество решений в зависимости от значения параметра (параметров). Например. При каких значениях параметра a уравнение 4х 2 4 aх + 1 = 0 имеет единственный корень?
  3. Уравнения, для которых при искомых значениях параметра множество решений удовлетворяет заданным условиям в области определения.

Например, найти значения параметра, при которых корни уравнения (a – 2)х 2 2aх + a + 3 = 0 положительные.
Основные способы решения задач с параметром: аналитический и графический.

Аналитический – это способ так называемого прямого решения, повторяющего стандартные процедуры нахождения ответа в задачах без параметра. Рассмотрим пример такой задачи.

Задача № 1

При каких значениях параметра а уравнение х 2 2aх + a 2 – 1 = 0 имеет два различных корня, принадлежащих промежутку (1; 5)?

Решение

х 2 2aх + a 2 1 = 0.
По условию задачи уравнение должно иметь два различных корня, а это возможно лишь при условии: Д > 0.
Имеем: Д = 4a 2 – 2(а 2 – 1) = 4. Как видим дискриминант не зависит от а, следовательно, уравнение имеет два различных корня при любых значениях параметра а. Найдем корни уравнения: х 1 = а + 1, х 2 = а – 1
Корни уравнения должны принадлежать промежутку (1; 5), т.е.
Итак, при 2 < а < 4 данное уравнение имеет два различных корня, принадлежащих промежутку (1; 5)

Ответ: 2 < а < 4.
Такой подход к решению задач рассматриваемого типа возможен и рационален в тех случаях, когда дискриминант квадратного уравнения «хороший», т.е. является точным квадратом какого либо числа или выражения или корни уравнения можно найти по теореме обратной т.Виета. Тогда, и корни не представляют собой иррациональных выражений. В противном случае решения задач такого типа сопряжено с достаточно сложными процедурами с технической точки зрения. Да и решение иррациональных неравенств требует от ученика новых знаний.

Графический – это способ, при котором используют графики в координатной плоскости (х;у) или (х;а). Наглядность и красота такого способа решения помогает найти быстрый путь решения задачи. Решим задачу № 1 графическим способом.
Как известно из курса алгебры корни квадратного уравнения (квадратного трехчлена) являются нулями соответствующей квадратичной функции: У = х 2 – 2ах + а 2 – 1. Графиком функции является парабола, ветви направлены вверх (первый коэффициент равен 1). Геометрическая модель, отвечающая всем требованиям задачи, выглядит так.

Теперь осталось «зафиксировать» параболу в нужном положении необходимыми условиями.

    1. Так как парабола имеет две точки пересечения с осью х , то Д > 0.
    2. Вершина параболы находится между вертикальными прямыми х = 1 и х = 5, следовательно абсцисса вершины параболы х о принадлежит промежутку (1; 5), т.е.
      1 <х о < 5.
    3. Замечаем, что у (1) > 0, у (5) > 0.

Итак, переходя от геометрической модели задачи к аналитической, получаем систему неравенств.

Ответ: 2 < а < 4.

Как видно из примера, графический способ решения задач рассматриваемого типа возможен в случае, когда корни «нехорошие», т.е. содержат параметр под знаком радикала (в этом случае дискриминант уравнения не является полным квадратом).
Во втором способе решения мы работали с коэффициентами уравнения и областью значения функции у = х 2 – 2ах + а 2 – 1.
Такой способ решения нельзя назвать только графическим, т.к. здесь приходится решать систему неравенств. Скорее этот способ комбинированный: функционально-графический. Из этих двух способов последний является не только изящным, но и наиболее важным, так как в нем просматриваются взаимосвязь между всеми типами математической модели: словесное описание задачи, геометрическая модель – график квадратного трехчлена, аналитическая модель – описание геометрической модели системой неравенств.
Итак, мы рассмотрели задачу, в которой корни квадратного трехчлена удовлетворяют заданным условиям в области определения при искомых значениях параметра.

А каким еще возможным условиям могут удовлетворять корни квадратного трехчлена при искомых значениях параметра?

Рассмотрим квадратное уравнение:
(1) .
Корни квадратного уравнения (1) определяются по формулам:
; .
Эти формулы можно объединить так:
.
Когда корни квадратного уравнения известны, то многочлен второй степени можно представить в виде произведения сомножителей (разложить на множители):
.

Далее считаем, что - действительные числа.
Рассмотрим дискриминант квадратного уравнения :
.
Если дискриминант положителен, , то квадратное уравнение (1) имеет два различных действительных корня:
; .
Тогда разложение квадратного трехчлена на множители имеет вид:
.
Если дискриминант равен нулю, , то квадратное уравнение (1) имеет два кратных (равных) действительных корня:
.
Разложение на множители:
.
Если дискриминант отрицателен, , то квадратное уравнение (1) имеет два комплексно сопряженных корня:
;
.
Здесь - мнимая единица, ;
и - действительная и мнимая части корней:
; .
Тогда

.

Графическая интерпретация

Если построить график функции
,
который является параболой, то точки пересечения графика с осью будут корнями уравнения
.
При , график пересекает ось абсцисс (ось ) в двух точках.
При , график касается оси абсцисс в одной точке.
При , график не пересекает ось абсцисс.

Ниже приводятся примеры таких графиков.

Полезные формулы, связанные с квадратным уравнением

(f.1) ;
(f.2) ;
(f.3) .

Вывод формулы для корней квадратного уравнения

Выполняем преобразования и применяем формулы (f.1) и (f.3):




,
где
; .

Итак, мы получили формулу для многочлена второй степени в виде:
.
Отсюда видно, что уравнение

выполняется при
и .
То есть и являются корнями квадратного уравнения
.

Примеры определения корней квадратного уравнения

Пример 1


(1.1) .

Решение


.
Сравнивая с нашим уравнением (1.1), находим значения коэффициентов:
.
Находим дискриминант:
.
Поскольку дискриминант положителен, , то уравнение имеет два действительных корня:
;
;
.

Отсюда получаем разложение квадратного трехчлена на множители:

.

График функции y = 2 x 2 + 7 x + 3 пересекает ось абсцисс в двух точках.

Построим график функции
.
График этой функции является параболой. Она пересевает ось абсцисс (ось ) в двух точках:
и .
Эти точки являются корнями исходного уравнения (1.1).

Ответ

;
;
.

Пример 2

Найти корни квадратного уравнения:
(2.1) .

Решение

Запишем квадратное уравнение в общем виде:
.
Сравнивая с исходным уравнением (2.1), находим значения коэффициентов:
.
Находим дискриминант:
.
Поскольку дискриминант равен нулю, , то уравнение имеет два кратных (равных) корня:
;
.

Тогда разложение трехчлена на множители имеет вид:
.

График функции y = x 2 - 4 x + 4 касается оси абсцисс в одной точке.

Построим график функции
.
График этой функции является параболой. Она касается оси абсцисс (ось ) в одной точке:
.
Эта точка является корнем исходного уравнения (2.1). Поскольку этот корень входит в разложение на множители два раза:
,
то такой корень принято называть кратным. То есть считают, что имеется два равных корня:
.

Ответ

;
.

Пример 3

Найти корни квадратного уравнения:
(3.1) .

Решение

Запишем квадратное уравнение в общем виде:
(1) .
Перепишем исходное уравнение (3.1):
.
Сравнивая с (1), находим значения коэффициентов:
.
Находим дискриминант:
.
Дискриминант отрицателен, . Поэтому действительных корней нет.

Можно найти комплексные корни:
;
;

Построим график функции
.
График этой функции является параболой. Она не пересекает ось абсцисс (ось ). Поэтому действительных корней нет.

Ответ

Действительных корней нет. Корни комплексные:
;
;
.

Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где коэффициенты a , b и c — произвольные числа, причем a ≠ 0.

Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

  1. Не имеют корней;
  2. Имеют ровно один корень;
  3. Имеют два различных корня.

В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант .

Дискриминант

Пусть дано квадратное уравнение ax 2 + bx + c = 0. Тогда дискриминант — это просто число D = b 2 − 4ac .

Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

  1. Если D < 0, корней нет;
  2. Если D = 0, есть ровно один корень;
  3. Если D > 0, корней будет два.

Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

Задача. Сколько корней имеют квадратные уравнения:

  1. x 2 − 8x + 12 = 0;
  2. 5x 2 + 3x + 7 = 0;
  3. x 2 − 6x + 9 = 0.

Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 · 1 · 12 = 64 − 48 = 16

Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a = 5; b = 3; c = 7;
D = 3 2 − 4 · 5 · 7 = 9 − 140 = −131.

Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a = 1; b = −6; c = 9;
D = (−6) 2 − 4 · 1 · 9 = 36 − 36 = 0.

Дискриминант равен нулю — корень будет один.

Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

Корни квадратного уравнения

Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

Основная формула корней квадратного уравнения

Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D < 0, корней нет — ничего считать не надо.

  1. x 2 − 2x − 3 = 0;
  2. 15 − 2x − x 2 = 0;
  3. x 2 + 12x + 36 = 0.

Первое уравнение:
x 2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2) 2 − 4 · 1 · (−3) = 16.

D > 0 ⇒ уравнение имеет два корня. Найдем их:

Второе уравнение:
15 − 2x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2) 2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ уравнение снова имеет два корня. Найдем их

\[\begin{align} & {{x}_{1}}=\frac{2+\sqrt{64}}{2\cdot \left(-1 \right)}=-5; \\ & {{x}_{2}}=\frac{2-\sqrt{64}}{2\cdot \left(-1 \right)}=3. \\ \end{align}\]

Наконец, третье уравнение:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 · 1 · 36 = 0.

D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

Неполные квадратные уравнения

Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

  1. x 2 + 9x = 0;
  2. x 2 − 16 = 0.

Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

Уравнение ax 2 + bx + c = 0 называется неполным квадратным уравнением, если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.

Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид ax 2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax 2 + c = 0. Немного преобразуем его:

Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c /a ) ≥ 0. Вывод:

  1. Если в неполном квадратном уравнении вида ax 2 + c = 0 выполнено неравенство (−c /a ) ≥ 0, корней будет два. Формула дана выше;
  2. Если же (−c /a ) < 0, корней нет.

Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c /a ) ≥ 0. Достаточно выразить величину x 2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

Теперь разберемся с уравнениями вида ax 2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

Вынесение общего множителя за скобку

Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

Задача. Решить квадратные уравнения:

  1. x 2 − 7x = 0;
  2. 5x 2 + 30 = 0;
  3. 4x 2 − 9 = 0.

x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.