Математическим моделированием являются. Пример математической модели. Определение, классификация и особенности

ЭВМ прочно вошла в нашу жизнь, и практически нет такой области человеческой деятельности, где не применялась бы ЭВМ. ЭВМ сейчас широко используется в процессе создания и исследования новых машин, новых технологических процессов и поиске их оптимальных вариантов; при решении экономических задач, при решении задач планирования и управления производством на различных уровнях. Создание же крупных объектов в ракетотехнике, авиастроении, судостроении, а также проектирование плотин, мостов, и др. вообще невозможно без применения ЭВМ.

Для использования ЭВМ при решении прикладных задач, прежде всего прикладная задача должна быть "переведена" на формальный математический язык, т.е. для реального объекта, процесса или системы должна быть построена его математическая модель.

Слово "Модель" происходит от латинского modus (копия, образ, очертание). Моделирование - это замещение некоторого объекта А другим объектом Б. Замещаемый объект А называется оригиналом или объектом моделирования, а замещающий Б - моделью. Другими словами, модель - это объект-заменитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала.

Целью моделирования являются получение, обработка, представление и использование информации об объектах, которые взаимодействуют между собой и внешней средой; а модель здесь выступает как средство познания свойств и закономерности поведения объекта.

Математическое моделирование - это средство изучения реального объекта, процесса или системы путем их замены математической моделью, более удобной для экспериментального исследования с помощью ЭВМ.

Математическое моделирование - процесс построения и изучения математических моделей реальных процессов и явлений. Все естественные и общественные науки, использующие математический аппарат, по сути занимаются математическим моделированием: заменяют реальный объект его моделью и затем изучают последнюю. Как и в случае любого моделирования, математическая модель не описывает полностью изучаемое явление, и вопросы о применимости полученных таким образом результатов являются весьма содержательными. Математическая модель - это упрощенное описание реальности с помощью математических понятий.



Математическая модель выражает существенные черты объекта или процесса языком уравнений и других математических средств. Собственно говоря, сама математика обязана своим существованием тому, что она пытается отразить, т.е. промоделировать, на своем специфическом языке закономерности окружающего мира.

При математическом моделировании исследование объекта осуществляется посредством модели, сформулированной на языке математики с использованием тех или иных математических методов.

Путь математического моделирования в наше время гораздо более всеобъемлющ, нежели моделирования натурного. Огромный толчок развитию математического моделирования дало появление ЭВМ, хотя сам метод зародился одновременно с математикой тысячи лет назад.

Математическое моделирование как таковое отнюдь не всегда требует компьютерной поддержки. Каждый специалист, профессионально занимающийся математическим моделированием, делает все возможное для аналитического исследования модели. Аналитические решения (т.е. представленные формулами, выражающими результаты исследования через исходные данные) обычно удобнее и информативнее численных. Возможности аналитических методов решения сложных математических задач, однако, очень ограниченны и, как правило, эти методы гораздо сложнее численных.

Математическая модель является приближенным представлением реальных объектов, процессов или систем, выраженным в математических терминах и сохраняющим существенные черты оригинала. Математические модели в количественной форме, с помощью логико-математических конструкций, описывают основные свойства объекта, процесса или системы, его параметры, внутренние и внешние связи

Все модели можно разделить на два класса:

  1. вещественные,
  2. идеальные.

В свою очередь вещественные модели можно разделить на:

  1. натурные,
  2. физические,
  3. математические.

Идеальные модели можно разделить на:

  1. наглядные,
  2. знаковые,
  3. математические.

Вещественные натурные модели - это реальные объекты, процессы и системы, над которыми выполняются эксперименты научные, технические и производственные.

Вещественные физические модели - это макеты, муляжи, воспроизводящие физические свойства оригиналов (кинематические, динамические, гидравлические, тепловые, электрические, световые модели).

Вещественные математические - это аналоговые, структурные, геометрические, графические, цифровые и кибернетические модели.

Идеальные наглядные модели - это схемы, карты, чертежи, графики, графы, аналоги, структурные и геометрические модели.

Идеальные знаковые модели - это символы, алфавит, языки программирования, упорядоченная запись, топологическая запись, сетевое представление.

Идеальные математические модели - это аналитические, функциональные, имитационные, комбинированные модели.

В приведенной классификации некоторые модели имеют двойное толкование (например - аналоговые). Все модели, кроме натурных, можно объединить в один класс мысленных моделей, т.к. они являются продуктом абстрактного мышления человека.

Элементы теории игры

В общем случае решение игры представляет довольно трудную задачу, причем сложность задачи и объем необходимых для решения вычислений резко возрастает с увеличением . Однако это трудности не носят принципиального характера и связаны только сочень большим объемом расчетов, который в ряде случаев может оказаться практически невыполнимым. Принципиальная сторона метода отыскания решения остается при любом одной и той же.

Проиллюстрируем это на примере игры . Дадим ей геометрическую интерпретацию - уже пространственную. Три наши стратегии , изобразим тремя точками на плоскости ; первая лежит в начале координат (рис.1). вторая и третья - на осях Ох и Оу на расстояниях 1 от начала.

Через точки проводятся оси I-I, II-II и III-III, перпендикулярные к плоскости . На оси I-I откладываются выигрыши при стратегии на осях II-II и III-III - выигрыши при стратегиях . Каждая стратегия противника изобразится плоскостью, отсекающей на осях I-I, II-II и III-III, отрезки, равные выигрышам

при соответствующих стратегия и стратегия . Построив, таким образом, все стратегии противника, мы по­лучим семейство плоскостей над треугольником (рис2) .

Для этого семейства также можно построить нижнюю границу выигрыша, как мы это делали в случае, и найти на этой границе точку N с максимальной высотой нал плоскостью . Эта высота и будет ценой игры .

Частоты стратегий в оптимальной стра­тегии будут определяться координатами (x, у) точки N, а именно:

Однако такое геометрическое построение даже для случая нелегко осуществимо и требует большой затраты времени и усилий воображения. В общем же случае игры оно переносится в - мерное пространство и теряет всякую наглядность, хотя употребление геометрической терминологии в ряде случаев может оказаться полезным. При решении игр на практике удобнее пользоваться не геометрическими аналогиями, а расчетными аналитическими методами, тем более, что для решения задачи на вычислительных машинах эти методы единственно пригодны.

Все эти методы по существу сводятся к решению задачи путем последовательных проб, но упорядочение последо­вательности проб позволяет построить алгоритм, приводящий к решению наиболее экономичным способом.

Здесь мы вкратце остановимся на одном расчетном методе решения игр - на так называемом методе «линейного программирования».

Для этого дадим сначала общую постановку задачи о нахождении решения игры . Пусть дана игра с т стратегиями игрока А и n стра­тегиями игрока В и задана платежная ма­трица

Требуется найти решение игры, т. е. две оптимальные смешанные стратегии игроков А и В

где (некоторые из чисел и могут быть равными нулю).

Наша оптимальная стратегия S* A должна обеспечивать нам выигрыш, не меньший , при любом поведении про­тивника, и выигрыш, равный , при его оптимальном пове­дении (стратегия S* B ).Аналогично стратегия S* B должна обе­спечивать противнику проигрыш, не больший , при любом нашем поведении и равный при нашем оптимальном пове­дении (стратегия S* A ).

Величина цены игры в данном случае нам неизвестна; будем считать, что она равна некоторому положительному числу. Полагая так, мы не нарушаем общности рассуждений; для того чтобы было > 0, очевидно, достаточно, чтобы все элементы матрицы были неотрицательными. Этого всегда можно добиться, прибавляя к элементам доста­точно большую положительную величину L;при этом цена игры увеличится на L, а решение не изменится.

Пусть мы выбрали свою оптимальную стратегию S* A . Тогда наш средний выигрыш при стратегии противника будет равен:

Наша оптимальная стратегия S* A обладает тем свойством, что при любом поведении противника обеспечивает выигрыш не меньший, чем ; следовательно, любое из чисел не может быть меньше . Получаем ряд условий:

(1)

Разделим неравенства (1) на положительную величину и обозначим:

Тогда условие (1) запишется виде

(2)

где - неотрицательные числа. Так как величины удовле­творяют условию

Мы хотим сделать свой гарантированный выигрыш максимально возможным; очевидно, при этом правая часть равенства (3) принимает минимальное значение.

Таким образом, задача нахождения решения игры сво­дится к следующей математической задаче: определить не­отрицательные величины , удовлетворяющие условиям (2), так, чтобы их сумма

была минимальной.

Обычно при решении задач, связанных с нахождением экстремальных значений (максимумов и минимумов), функцию дифференцируют и приравнивают производные нулю. Но такой прием в данном случае бесполезен, так как функ­ция Ф, которую нужно обратить в минимум, линейна, и ее производные по всем аргументам равны единице, т. е. нигде не обращаются в нуль. Следовательно, максимум функции достигается где-то на границе области изменения аргумен­тов, которая определяется требованием неотрицательности аргументов и условиями (2). Прием нахождения экстре­мальных значений при помощи дифференцирования непри­годен и в тех случаях, когда для решения игры опреде­ляется максимум нижней (или минимум верхней) границы выигрыша, как мы. например, делали при решении игр .Действительно, нижняя граница составлена из участков прямых линий, и максимум достигается не в точке, где производная равна нулю (такой точки вообще нет), а на границе интер­вала или в точке пересечения прямолинейных участков.

Для решения подобных задач, довольно часто встречаю­щихся на практике, в математике разработан специальный аппарат линейного программирования.

Задача линейного программирования ставится следующим образом.

Дана система линейных уравнений:

(4)

Требуется найти неотрицательные значения величин удовлетворяющие условиям (4) и вместе с тем обращающие в минимум заданную однородную линейную функцию величин (линейную форму):

Легко убедиться, что поставленная выше задача теории игр является частным случаем задачи линейного программирование при

С первого взгляда может показаться, что условия (2) не эквивалентны условиям (4), так как вместо знаков равенства они содержат знаки неравенства. Однако от знаков неравенства легко избавиться, вводя новые фиктивные неотрицательные переменные и записывая условия (2) в виде:

(5)

Форма Ф, которую нужно обратить в минимум, равна

Аппарат линейного программирования позволяет путем сравнительно небольшого числа последовательных проб подобрать величины , удовлетворяющие поставленным требованиям. Для большей ясности мы здесь продемонстрируем применение этого аппарата прямо на материале решения конкретных игр.

ЛЕКЦИЯ 4

Определение и назначение математического моделирования

Под моделью (от латинского modulus - мера, образец, норма) будем понимать такой материально или мысленно представляемый объект, который в процессе познания (изучения) замещает объект-оригинал, сохраняя некоторые важные для данного исследования типичные его черты. Процесс построения и использования модели называется моделированием.

Суть математического моделирования (ММ ) заключается в замене изучаемого объекта (процесса) адекватной математической моделью и последующем исследовании свойств этой модели с помощью либо аналитических методов, либо вычислительных экспериментов.

Иногда полезнее вместо того, чтобы давать строгие определения, описывать то или инее понятие на конкретном примере. Поэтому проиллюстри-руем приведенные выше определения ММ на примере задачи расчета удельного импульса. В начале 60-х годов перед учеными ставилась задача разработки ракетного топлива с наибольшим удельным импульсом. Принцип движения ракеты состоит в следующем: жидкое топливо и окислитель из баков ракеты подаются в двигатель, где происходит их сгорание, а продукты сгорания вылетают в атмосферу. Из закона сохранения импульса следует, что в этом ракета будет двигаться со скоростью.

Удельный импульс топлива – это полученный импульс, деленный на массу топлива. Проведение экспериментов было очень дорогостоящим и приводило к систематической порче оборудования. Оказалось, что легче и дешевле рассчитать термодинамические функции идеальных газов, вычислить с их помощью состав вылетающих газов и температуру плазмы, а затем и удельный импульс. То есть провести ММ процесса горения топлива.

Понятие математического моделирования (ММ) сегодня одно из самых распространенных в научной литературе . Подавляющее большинство современных дипломных и диссертационных работ связано с разработкой и использованием соответствующих математических моделей. Компьютерное ММ сегодня является составной частью многих областей человеческой деятельности (наука, техника, экономика, социология и т. д.). Это одна из причин сегодняшнего дефицита специалистов в области информационных технологий .

Бурный рост математического моделирования обусловлен стремительным совершенствованием вычислительной техники. Если еще 20 лет назад проведением численных расчетов занималось лишь небольшое число программистов, то теперь объем памяти и быстродействие современных компьютеров, позволяющих решать задачи математического моделирования доступных всем специалистам, включая студентов ВУЗов.

В любой дисциплине вначале дается качественное описание явлений. А затем уже – количественное, сформулированное в виде законов, устанавливающих связи между различными величинами (напряженность поля, интенсивность рассеяния, заряд электрона, …) в форме математических уравнений. Поэтому можно сказать, что в каждой дисциплине столько науки, сколько в ней есть математики, и этот факт позволяет успешно решать многие задачи методами математического моделирования.

Данный курс предназначен для студентов, специализирующихся в области прикладной математики, которые выполняют дипломные работы под руководством ведущих ученых, работающих в различных областях. Поэтому данный курс необходим не только как учебный материал, но и как подготовка к дипломной работе. Для изучения данного курса нам будут необходимы следующие разделы математики:

1. Уравнения математической физики (кантовая механика, газо - и гидродинамика)

2. Линейная алгебра (теория упругости)

3. Скалярные и векторные поля (теория поля)

4. Теория вероятностей (квантовая механика, статистическая физика, физическая кинетика)

5. Специальные функции.

6. Тензорный анализ (теория упругости)

7. Математический анализ

ММ в естествознании, технике, и экономике

Рассмотрим вначале различные разделы естествознания, техники, экономики, в которых используются математические модели.

Естествознание

Физика, устанавливающая основные законы естествознания, давно разделилась на теоретическую и экспериментальную. Выводом уравнений, описывающих физические явления, занимается теоретическая физика. Таким образом, теоретическая физика также может считаться одним из направлений математического моделирования. (Вспомним, что название первой книги по физике – «Математические начала натуральной философии» И. Ньютона можно перевести на современный язык как «Математические модели естествознания».) На основании полученных законов проводятся инженерные расчеты, которые проводятся в различных институтах, фирмах, КБ. Эти организации разрабатывают технологии изготовления современной продукции, которые являются наукоемкими.Таким образом, понятие наукоемкие технологии включает в себя расчеты с помощью соответствующих математических моделей.

Один из наиболее обширных разделов физики – классическая механика (иногда этот раздел называется теоретической или аналитической механикой). Данный раздел теоретической физики изучает движение и взаимодействие тел. Расчеты с помощью формул теоретической механики необходимы при изучении вращения тел (расчет моментов инерции, гиростатов – устройств сохраняющих в неподвижности оси вращения), анализе движения тела в безвоздушном пространстве, и др. Один из разделов теоретической механики называется теорией устойчивости и лежит в основе многих математических моделей, описывающих движение самолетов, кораблей, ракет. Разделы практической механики – курсы «Теория машин и механизмов», «Детали машин», изучается студентами почти всех технических вузов (включая МГИУ).

Теория упругости – часть раздела механики сплошных сред , предполагающая, что материал упругого тела однороден и непрерывно распределен по всему объему тела, так что самый малый элемент, вырезанный из тела, обладает теми же физическими свойствами, что и все тело. Приложение теории упругости – курс «сопротивление материалов», изучается студентами всех технических вузов (включая МГИУ). Данный раздел необходим для всех расчетов прочности. Здесь и расчет прочности корпусов кораблей, самолетов, ракет, расчет прочности стальных и железобетонных конструкций зданий и многое другое.

Газо- и гидродинамика , как и теория упругости – часть раздела механики сплошных сред , рассматривает законы движения жидкости и газа. Уравнения газо - и гидродинамики необходимы при анализе движения тел в жидкой и газообразной среде (спутники, подводные лодки, ракеты, снаряды, автомобили), при расчетах истечения газа из сопел двигателей ракет, самолетов. Практическое приложение гидродинамики – гидравлика (тормоз, руль,…)

Предыдущие разделы механики рассматривали движении тел в макромире, и физические законы макромира неприменимы в микромире, в котором движутся частицы вещества - протоны, нейтроны, электроны. Здесь действуют совершенно другие принципы, и для описания микромира необходима квантовая механика . Основное уравнение, описывающее поведение микрочастиц - уравнение Шредингера: . Здесь - оператор Гамильтона (гамильтониан). Для одномерного уравнения движения частицы https://pandia.ru/text/78/009/images/image005_136.gif" width="35" height="21 src=">-потенциальная энергия. Решение этого уравнения – набор собственных значений энергии и собственных функций..gif" width="55" height="24 src=">– плотность вероятности. Квантовомеханические расчеты нужны для разработки новых материалов (микросхемы), создания лазеров, разработки методов спектрального анализа, и др.

Большое количество задач решает кинетика , описывающая движение и взаимодействие частиц. Здесь и диффузия , теплообмен, теория плазмы – четвертого состояния вещества.

Статистическая физика рассматривает ансамбли частиц, позволяет сказать о параметрах ансамбля, исходя из свойств отдельных частиц. Если ансамбль состоит из молекул газа, то выведенные методами статистической физики свойства ансамбля представляют собой хорошо известные со средней школы уравнения газового состояния: https://pandia.ru/text/78/009/images/image009_85.gif" width="16" height="17 src=">.gif" width="16" height="17">-молекулярный вес газа. К – постоянная Ридберга. Статистическими методами рассчитываются также свойства растворов, кристаллов, электронов в металлах. ММ статистической физики – теоретическая основа термодинамики, которая лежит в основе расчета двигателей, тепловых сетей и станций.

Теория поля описывает методами ММ одну из основных форм материи – поле. При этом основной интерес представляют электромагнитные поля. Уравнения электромагнитного поля (электродинамики) были выведены Максвеллом: , , , . Здесь и https://pandia.ru/text/78/009/images/image018_44.gif" width="16" height="17"> - плотность заряда, -плотность тока. Уравнения электродинамики лежат в основе расчетов распространения электромагнитных волн, необходимых для описания распространения радиоволн (радио, телевидение, сотовая связь), объяснения работы радиолокационных станций.

Химию можно представить в двух аспектах, выделяя описательную химию – открытие химических факторов и их описание – и теоретическую химию – разработку теорий, позволяющих обобщить установленные факторы и представить их в виде определенной системы (Л. Полинг). Теоретическая химия называется также физической химией и является, в сущности, разделом физики, изучающей вещества и их взаимодействия. Поэтому все, что было сказано относительно физики, в полной мере относится и к химии. Разделами физической химии будут термохимия, изучающая тепловые эффекты реакций, химическая кинетика (скорости реакций), квантовая химия (строение молекул). При этом задачи химии бывают чрезвычайно сложными. Так, например, для решения задач квантовой химии – науки о строении атомов и молекул, используются программы, сравнимые по объему с программами ПВО страны. Например, для того, чтобы описать молекулу UCl4, состоящую из 5 ядер атомов и +17*4) электронов, нужно записать уравнение движения – уравнения в частных производных.

Биология

В биологию математика пришла по настоящему только во второй половине 20 века. Первые попытки математически описать биологические процессы относятся к моделям популяционной динамики. Популяцией называется сообщество особей одного вида, занимающих некоторую область пространства на Земле. Эта область математической биологии, изучающая изменение численности популяции в различных условиях (наличие конкурирующих видов, хищников, болезней и т. п.) и в дальнейшем служила математическим полигоном, на котором "отрабатывались" математические модели в разных областях биологии. В том числе модели эволюции, микробиологии, иммунологии и других областей, связанных с клеточными популяциями.
Самая первая известная модель, сформулированная в биологической постановке, ‑ знаменитый ряд Фибоначчи (каждое последующее число является суммой двух предыдущих), который приводит в своем труде Леонардо из Пизы в 13 веке. Это ряд чисел, описывающий количество пар кроликов, которые рождаются каждый месяц, если кролики начинают размножаться со второго месяца и каждый месяц дают потомство в виде пары кроликов. Ряд представляет последовательность чисел: 1, 1, 2, 3, 5, 8, 13, 21, …

1,

2 ,

3,

5,

8, 13, …

Другим примером является изучение процессов ионного трансмембранного переноса на искусственной бислойной мембране. Здесь для того, чтобы изучить законы образования поры, через которую ион проходит сквозь мембрану внутрь клетки, необходимо создать модельную систему, которую можно изучать экспериментально, и для которой можно использовать хорошо разработанное наукой физическое описание.

Классическим примером ММ также является популяция дрозофилы. Еще более удобной моделью являются вирусы , которые можно размножать в пробирке. Методами моделирования в биологии служат методы динамической теории систем, а средствами - дифференциальные и разностные уравнения, методы качественной теории дифференциальных уравнений, имитационное моделирование.
Цели моделирования в биологии:
3. Выяснение механизмов взаимодействия элементов системы
4. Идентификация и верификация параметров модели по экспериментальным данным.
5. Оценка устойчивости системы (модели).

6. Прогноз поведения системы при различных внешних воздействиях, различных способах управления и проч.
7. Оптимальное управление системой в соответствии с выбранным критерием оптимальности .

Техника

Совершенствованием техники занимается большое количество специалистов, которые в своей работе опираются на результаты научных исследований. Поэтому ММ в технике те же самые, что и ММ естествознания, о которых говорилось выше.

Экономика и социальные процессы

Принято считать, что математическое моделирование как метод анализа макроэкономических процессов было впервые применено лейб-медиком короля Людовика XV доктором Франсуа Кенэ , который в 1758 г. опубликовал работу «Экономическая таблица». В этой работе была сделана первая попытка количественно описать национальную экономику. А в 1838 г. в книге О. Курно «Исследование математических принципов теории богатства» количественные методы были впервые использованы для анализа конкуренции на рынке товара при различных рыночных ситуациях.

Широко известна также теория Мальтуса о народонаселении, в которой он предложил идею: рост населения далеко не всегда желателен, и рост этот идет быстрее, чем растут возможности обеспечения населения продовольствием. Математическая модель такого процесса достаточно проста: Пусть - прирост численности населения за время https://pandia.ru/text/78/009/images/image027_26.gif" width="15" height="24"> численность была равна . и - коэффициенты, учитывающие рождаемость и смертность (чел/год). Тогда

https://pandia.ru/text/78/009/images/image032_23.gif" width="151" height="41 src=">Инструментальные и математические методы " href="/text/category/instrumentalmznie_i_matematicheskie_metodi/" rel="bookmark">математические методы анализа (например, в последние десятилетия в гуманитарных науках появились математические теории развития культуры, построены и исследованы математические модели мобилизации, циклического развития социокультурных процессов, модель взаимодействия народа и правительства, модель гонки вооружений и др.).

В самых общих чертах процесс ММ социально-экономических процессов условно можно подразделить на четыре этапа:

    формулировка системы гипотез и разработка концептуальной модели; разработка математической модели; анализ результатов модельных расчетов, который включает сравнение их с практикой; формулировка новых гипотез и уточнение модели в случае несоответствия результатов расчетов и практических данных.

Отметим, что, как правило, процесс математического моделирования носит циклический характер, поскольку даже при исследовании сравнительно простых процессов редко удается с первого шага построить адекватную математическую модель и подобрать точные ее параметры.

В настоящее время экономика рассматривается как сложная развивающаяся система, для количественного описания которой применяются динамические математические модели различной степени сложности. Одно из направлений исследования макроэкономической динамики связано с построением и анализом относительно простых нелинейных имитационных моделей, отражающих взаимодействие различных подсистем – рынка труда, рынка товаров, финансовой системы , природной среды и др.

Успешно развивается теория катастроф. Эта теория рассматривает вопрос об условиях, при которых изменение параметров нелинейной системы вызывает перемещение точки в фазовом пространстве, характеризующей состояние системы, из области притяжения к начальному положению равновесия в область притяжения к другому положению равновесия. Последнее очень важно не только для анализа технических систем, но и для понимания устойчивости социально-экономических процессов. В этой связи представляют интерес выводы о значении исследования нелинейных моделей для управления. В книге «Теория катастроф», опубликованной в 1990 г., он, в частности, пишет: «…нынешняя перестройка во многом объясняется тем, что начали действовать хотя бы некоторые механизмы обратной связи (боязнь личного уничтожения)».

(параметры модели)

При построении моделей реальных объектов и явлений часто приходится сталкиваться с недостатком информации. Для исследуемого объекта распределение свойств, параметры воздействия и начальное состояние известны с той или иной степенью неопределенности. При построении модели возможны следующие варианты описания неопределенных параметров:

Классификация математических моделей

(методы реализации)

Методы реализации ММ можно классифицировать в соответствии с таблицей, приведенной ниже.

Методы реализации ММ

Очень часто аналитическое решение для модели представляется в виде функций. Для получения значений этих функций при конкретных значениях входных параметров используют их разложение в ряды (например, Тейлора), и значение функции при каждом значении аргумента определяется приближенно. Модели, использующие такой прием, называются приближенными .

При численном подходе совокупность математических соотношений модели заменяется конечномерным аналогом. Это чаще всего достигается дискретизацией исходных соотношений, т. е. переходом от функций непрерывного аргумента к функциям дискретного аргумента (сеточные методы).

Найденное после расчетов на компьютере решение принимается за приближен-ное решение исходной задачи.

Большинство существующих систем является очень сложными, и для них невозможно создать реальную модель, описанную аналитически. Такие системы следует изучать с помощью имитационного моделирования . Один из основных приемов имитационного моделирования связан с применением датчика случайных чисел.

Так как огромное количество задач решается методами ММ, то способы реализации ММ изучаются не в одном учебном курсе. Здесь и уравнения в частных производных, численные методы решения этих уравнений, вычислительная математика, компьютерное моделирование и т. п.

ПОЛИНГ, ЛАЙНУС КАРЛ (Pauling, Linus Carl) (), американский химик и физик, удостоенный в 1954 Нобелевской премии по химии за исследования природы химической связи и определение структуры белков. Родился 28 февраля 1901 в Портленде (шт. Орегон). В разработал квантовомеханический метод изучения строения молекул (наряду с американским физиком Дж. Слейером) - метод валентных связей, а также теорию резонанса, позволяющую объяснить строение углеродосодержащих соединений, прежде всего соединений ароматического ряда. В период культа личности СССР ученые, занимавшиеся квантовой химией подвергались гонениям и обвинялись в «полингизме».

МАЛЬТУС, ТОМАС РОБЕРТ (Malthus, Thomas Robert) (), английский экономист. Родился в Рукери близ Доркинга в Суррее 15 или 17 февраля 1766. В 1798 анонимно опубликовал труд Опыт о законе народонаселения. В 1819 Мальтус был избран членом Королевского общества.

Математическое моделирование

1. Что такое математическое моделирование?

С середины XX в. в самых различных областях человеческой деятельности стали широко применять математические методы и ЭВМ. Возникли такие новые дисциплины, как «математическая экономика», «математическая химия», «математическая лингвистика» и т. д., изучающие математические модели соответствующих объектов и явлений, а также методы исследования этих моделей.

Математическая модель - это приближенное описание какого-либо класса явлений или объектов реального мира на языке математики. Основная цель моделирования - исследовать эти объекты и предсказать результаты будущих наблюдений. Однако моделирование - это еще и метод познания окружающего мира, дающий возможность управлять им.

Математическое моделирование и связанный с ним компьютерный эксперимент незаменимы в тех случаях, когда натурный эксперимент невозможен или затруднен по тем или иным причинам. Например, нельзя поставить натурный эксперимент в истории, чтобы проверить, «что было бы, если бы...» Невозможно проверить правильность той или иной космологической теории. В принципе возможно, но вряд ли разумно, поставить эксперимент по распространению какой-либо болезни, например чумы, или осуществить ядерный взрыв, чтобы изучить его последствия. Однако все это вполне можно сделать на компьютере, построив предварительно математические модели изучаемых явлений.

2. Основные этапы математического моделирования

1) Построение модели . На этом этапе задается некоторый «нематематический» объект - явление природы, конструкция, экономический план, производственный процесс и т. д. При этом, как правило, четкое описание ситуации затруднено. Сначала выявляются основные особенности явления и связи между ними на качественном уровне. Затем найденные качественные зависимости формулируются на языке математики, то есть строится математическая модель. Это самая трудная стадия моделирования.

2) Решение математической задачи, к которой приводит модель . На этом этапе большое внимание уделяется разработке алгоритмов и численных методов решения задачи на ЭВМ, при помощи которых результат может быть найден с необходимой точностью и за допустимое время.

3) Интерпретация полученных следствий из математической модели. Следствия, выведенные из модели на языке математики, интерпретируются на языке, принятом в данной области.

4) Проверка адекватности модели. На этом этапе выясняется, согласуются ли результаты эксперимента с теоретическими следствиями из модели в пределах определенной точности.

5) Модификация модели. На этом этапе происходит либо усложнение модели, чтобы она была более адекватной действительности, либо ее упрощение ради достижения практически приемлемого решения.

3. Классификация моделей

Классифицировать модели можно по разным критериям. Например, по характеру решаемых проблем модели могут быть разделены на функциональные и структурные. В первом случае все величины, характеризующие явление или объект, выражаются количественно. При этом одни из них рассматриваются как независимые переменные, а другие - как функции от этих величин. Математическая модель обычно представляет собой систему уравнений разного типа (дифференциальных, алгебраических и т. д.), устанавливающих количественные зависимости между рассматриваемыми величинами. Во втором случае модель характеризует структуру сложного объекта, состоящего из отдельных частей, между которыми существуют определенные связи. Как правило, эти связи не поддаются количественному измерению. Для построения таких моделей удобно использовать теорию графов. Граф - это математический объект, представляющий собой некоторое множество точек (вершин) на плоскости или в пространстве, некоторые из которых соединены линиями (ребрами).

По характеру исходных данных и результатов предсказания модели могут быть разделены на детерминистические и вероятностно-статистические. Модели первого типа дают определенные, однозначные предсказания. Модели второго типа основаны на статистической информации, а предсказания, полученные с их помощью, имеют вероятностный характер.

4. Примеры математических моделей

1) Задачи о движении снаряда.

Рассмотрим следующую задачу механики.

Снаряд пущен с Земли с начальной скоростью v 0 = 30 м/с под углом a = 45° к ее поверхности; требуется найти траекторию его движения и расстояние S между начальной и конечной точкой этой траектории.

Тогда, как это известно из школьного курса физики, движение снаряда описывается формулами:

где t - время, g = 10 м/с 2 - ускорение свободного падения. Эти формулы и дают математическую модель поставленной задачи. Выражая t через x из первого уравнения и подставляя во второе, получим уравнение траектории движения снаряда:

Эта кривая (парабола) пересекает ось x в двух точках: x 1 = 0 (начало траектории) и (место падения снаряда). Подставляя в полученные формулы заданные значения v0 и a, получим

ответ: y = x – 90x 2 , S = 90 м.

Отметим, что при построении этой модели использован ряд предположений: например, считается, что Земля плоская, а воздух и вращение Земли не влияют на движение снаряда.

2) Задача о баке с наименьшей площадью поверхности.

Требуется найти высоту h 0 и радиус r 0 жестяного бака объема V = 30 м 3 , имеющего форму закрытого кругового цилиндра, при которых площадь его поверхности S минимальна (в этом случае на его изготовление пойдет наименьшее количество жести).

Запишем следующие формулы для объема и площади поверхности цилиндра высоты h и радиуса r:

V = p r 2 h, S = 2p r(r + h).

Выражая h через r и V из первой формулы и подставляя полученное выражение во вторую, получим:

Таким образом, с математической точки зрения, задача сводится к определению такого значения r, при котором достигает своего минимума функция S(r). Найдем те значения r 0 , при которых производная

обращается в ноль:Можно проверить, что вторая производная функции S(r) меняет знак с минуса на плюс при переходе аргумента r через точку r 0 . Следовательно, в точке r0 функция S(r) имеет минимум. Соответствующее значение h 0 = 2r 0 . Подставляя в выражение для r 0 и h 0 заданное значение V, получим искомый радиус и высоту

3) Транспортная задача.

В городе имеются два склада муки и два хлебозавода. Ежедневно с первого склада вывозят 50 т муки, а со второго - 70 т на заводы, причем на первый - 40 т, а на второй - 80 т.

Обозначим через a ij стоимость перевозки 1 т муки с i-го склада на j-й завод (i, j = 1,2). Пусть

a 11 = 1,2 р., a 12 = 1,6 р., a 21 = 0,8 р., a 22 = 1 р.

Как нужно спланировать перевозки, чтобы их стоимость была минимальной?

Придадим задаче математическую формулировку. Обозначим через x 1 и x 2 количество муки, которое надо перевезти с первого склада на первый и второй заводы, а через x 3 и x 4 - со второго склада на первый и второй заводы соответственно. Тогда:

x 1 + x 2 = 50, x 3 + x 4 = 70, x 1 + x 3 = 40, x 2 + x 4 = 80. (1)

Общая стоимость всех перевозок определяется формулой

f = 1,2x 1 + 1,6x 2 + 0,8x 3 + x 4 .

С математической точки зрения, задача заключается в том, чтобы найти четыре числа x 1 , x 2 , x 3 и x 4 , удовлетворяющие всем заданным условиям и дающим минимум функции f. Решим систему уравнений (1) относительно xi (i = 1, 2, 3, 4) методом исключения неизвестных. Получим, что

x 1 = x 4 – 30, x 2 = 80 – x 4 , x 3 = 70 – x 4 , (2)

а x 4 не может быть определено однозначно. Так как x i і 0 (i = 1, 2, 3, 4), то из уравнений (2) следует, что 30Ј x 4 Ј 70. Подставляя выражение для x 1 , x 2 , x 3 в формулу для f, получим

f = 148 – 0,2x 4 .

Легко видеть, что минимум этой функции достигается при максимально возможном значении x 4 , то есть при x 4 = 70. Соответствующие значения других неизвестных определяются по формулам (2): x 1 = 40, x 2 = 10, x 3 = 0.

4) Задача о радиоактивном распаде.

Пусть N(0) - исходное количество атомов радиоактивного вещества, а N(t) - количество нераспавшихся атомов в момент времени t. Экспериментально установлено, что скорость изменения количества этих атомов N"(t) пропорциональна N(t), то есть N"(t)=–l N(t), l >0 - константа радиоактивности данного вещества. В школьном курсе математического анализа показано, что решение этого дифференциального уравнения имеет вид N(t) = N(0)e –l t . Время T, за которое число исходных атомов уменьшилось вдвое, называется периодом полураспада, и является важной характеристикой радиоактивности вещества. Для определения T надо положить в формуле Тогда Например, для радона l = 2,084 · 10 –6 , и следовательно, T = 3,15 сут.

5) Задача о коммивояжере.

Коммивояжеру, живущему в городе A 1 , надо посетить города A 2 , A 3 и A 4 , причем каждый город точно один раз, и затем вернуться обратно в A 1 . Известно, что все города попарно соединены между собой дорогами, причем длины дорог b ij между городами A i и A j (i, j = 1, 2, 3, 4) таковы:

b 12 = 30, b 14 = 20, b 23 = 50, b 24 = 40, b 13 = 70, b 34 = 60.

Надо определить порядок посещения городов, при котором длина соответствующего пути минимальна.

Изобразим каждый город точкой на плоскости и пометим ее соответствующей меткой Ai (i = 1, 2, 3, 4). Соединим эти точки отрезками прямых: они будут изображать дороги между городами. Для каждой «дороги» укажем ее протяженность в километрах (рис. 2). Получился граф - математический объект, состоящий из некоторого множества точек на плоскости (называемых вершинами) и некоторого множества линий, соединяющих эти точки (называемых ребрами). Более того, этот граф меченый, так как его вершинам и ребрам приписаны некоторые метки - числа (ребрам) или символы (вершинам). Циклом на графе называется последовательность вершин V 1 , V 2 , ..., V k , V 1 такая, что вершины V 1 , ..., V k - различны, а любая пара вершин V i , V i+1 (i = 1, ..., k – 1) и пара V 1 , V k соединены ребром. Таким образом, рассматриваемая задача заключается в отыскании такого цикла на графе, проходящего через все четыре вершины, для которого сумма всех весов ребер минимальна. Найдем перебором все различные циклы, проходящие через четыре вершины и начинающиеся в A 1:

1) A 1 , A 4 , A 3 , A 2 , A 1 ;
2) A 1 , A 3 , A 2 , A 4 , A 1 ;
3) A 1 , A 3 , A 4 , A 2 , A 1 .

Найдем теперь длины этих циклов (в км): L 1 = 160, L 2 = 180, L 3 = 200. Итак, маршрут наименьшей длины - это первый.

Заметим, что если в графе n вершин и все вершины попарно соединены между собой ребрами (такой граф называется полным), то число циклов, проходящих через все вершины, равно Следовательно, в нашем случае имеется ровно три цикла.

6) Задача о нахождении связи между структурой и свойствами веществ.

Рассмотрим несколько химических соединений, называемых нормальными алканами. Они состоят из n атомов углерода и n + 2 атомов водорода (n = 1, 2 ...), связанных между собой так, как показано на рисунке 3 для n = 3. Пусть известны экспериментальные значения температур кипения этих соединений:

y э (3) = – 42°, y э (4) = 0°, y э (5) = 28°, y э (6) = 69°.

Требуется найти приближенную зависимость между температурой кипения и числом n для этих соединений. Предположим, что эта зависимость имеет вид

y » a n + b,

где a , b - константы, подлежащие определению. Для нахождения a и b подставим в эту формулу последовательно n = 3, 4, 5, 6 и соответствующие значения температур кипения. Имеем:

– 42 » 3a + b, 0 » 4a + b, 28 » 5a + b, 69 » 6a + b.

Для определения наилучших a и b существует много разных методов. Воспользуемся наиболее простым из них. Выразим b через a из этих уравнений:

b » – 42 – 3a , b » – 4a , b » 28 – 5a , b » 69 – 6a .

Возьмем в качестве искомого b среднее арифметическое этих значений, то есть положим b » 16 – 4,5a . Подставим в исходную систему уравнений это значение b и, вычисляя a , получим для a следующие значения: a » 37, a » 28, a » 28, a » 36. Возьмем в качестве искомого a среднее значение этих чисел, то есть положим a » 34. Итак, искомое уравнение имеет вид

y » 34n – 139.

Проверим точность модели на исходных четырех соединениях, для чего вычислим температуры кипения по полученной формуле:

y р (3) = – 37°, y р (4) = – 3°, y р (5) = 31°, y р (6) = 65°.

Таким образом, ошибка расчетов данного свойства для этих соединений не превышает 5°. Используем полученное уравнение для расчета температуры кипения соединения с n = 7, не входящего в исходное множество, для чего подставим в это уравнение n = 7: y р (7) = 99°. Результат получился довольно точный: известно, что экспериментальное значение температуры кипения y э (7) = 98°.

7) Задача об определении надежности электрической цепи.

Здесь мы рассмотрим пример вероятностной модели. Сначала приведем некоторые сведения из теории вероятностей - математической дисциплины, изучающей закономерности случайных явлений, наблюдаемых при многократном повторении опыта. Назовем случайным событием A возможный исход некоторого опыта. События A 1 , ..., A k образуют полную группу, если в результате опыта обязательно происходит одно из них. События называются несовместными, если они не могут произойти одновременно в одном опыте. Пусть при n-кратном повторении опыта событие A произошло m раз. Частотой события A называется число W = . Очевидно, что значение W нельзя предсказать точно до проведения серии из n опытов. Однако природа случайных событий такова, что на практике иногда наблюдается следующий эффект: при увеличении числа опытов значение практически перестает быть случайным и стабилизируется около некоторого неслучайного числа P(A), называемого вероятностью события A. Для невозможного события (которое никогда не происходит в опыте) P(A)=0, а для достоверного события (которое всегда происходит в опыте) P(A)=1. Если события A 1 , ..., A k образуют полную группу несовместимых событий, то P(A 1)+...+P(A k)=1.

Пусть, например, опыт состоит в подбрасывании игральной кости и наблюдении числа выпавших очков X. Тогда можно ввести следующие случайные события A i ={X = i}, i = 1, ..., 6. Они образуют полную группу несовместных равновероятных событий, поэтому P(A i) = (i = 1, ..., 6).

Суммой событий A и B называется событие A + B, состоящее в том, что в опыте происходит хотя бы одно из них. Произведением событий A и B называется событие AB, состоящее в одновременном появлении этих событий. Для независимых событий A и B верны формулы

P(AB) = P(A) P(B), P(A + B) = P(A) + P(B).

8) Рассмотрим теперь следующую задачу . Предположим, что в электрическую цепь последовательно включены три элемента, работающие независимо друг от друга. Вероятности отказов 1-го, 2-го и 3-го элементов соответственно равны P 1 = 0,1, P 2 = 0,15, P 3 = 0,2. Будем считать цепь надежной, если вероятность того, что в цепи не будет тока, не более 0,4. Требуется определить, является ли данная цепь надежной.

Так как элементы включены последовательно, то тока в цепи не будет (событие A), если откажет хотя бы один из элементов. Пусть A i - событие, заключающееся в том, что i-й элемент работает (i = 1, 2, 3). Тогда P(A1) = 0,9, P(A2) = 0,85, P(A3) = 0,8. Очевидно, что A 1 A 2 A 3 - событие, заключающееся в том, что одновременно работают все три элемента, и

P(A 1 A 2 A 3) = P(A 1) P(A 2) P(A 3) = 0,612.

Тогда P(A) + P(A 1 A 2 A 3) = 1, поэтому P(A) = 0,388 < 0,4. Следовательно, цепь является надежной.

В заключение отметим, что приведенные примеры математических моделей (среди которых есть функциональные и структурные, детерминистические и вероятностные) носят иллюстративный характер и, очевидно, не исчерпывают всего разнообразия математических моделей, возникающих в естественных и гуманитарных науках.

ПРЕДИСЛОВИЕ

Целью курса моделирование подъемно-транспортных систем является обучение основам моделирования подъемно-транспортных машин (ПТМ), что включает в себя составление математических моделей ПТМ, программную реализацию моделей на ЭВМ, а также получение, обработку и анализ результатов моделирования.

Для самостоятельного ознакомления с перечисленными вопросами рекомендуется следующая литература: Брауде В. И., Тер-Мхитаров М. С. «Системные методы расчета грузоподъемных машин», Игнатьев Н. Б., Ильевский Б. З., Клауз Л. П. «Моделирование системы машин», Рачков Е. В., Силиков Ю. В. «Подъемно - транспортные машины и механизмы», а также справочники и учебные пособия по численным методам вычислительной математики и использованию математического редактора MathCad.

§1. ОСНОВНЫЕ ЦЕЛИ, ОПРЕДЕЛЕНИЯ И ПРИНЦИПЫ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ, ВИДЫ МОДЕЛЕЙ

1.1 Основные определения

Моделирование - это теоретико-экспериментальный метод познавательной деятельности, это метод исследования и объяснения явлений, процессов и систем (объектов-оригиналов) на основе создания новых объектов - моделей.

Моделирование – это замещение исследуемого объекта (оригинала) его условным образом или другим объектом (моделью) и изучение свойств оригинала путем исследования свойств модели.

В зависимости от способа реализации все модели можно разделить на 4 группы: физические, математические, предметно-математические и комбинированные [, ].

Физическая модель – реальное воплощение тех свойств оригинала, которые интересует исследователя. Физические модели называют еще макетами, поэтому физическое моделирование называется макетированием.

Математическая модель – это формализованное описание системы (или процесса) с помощью некоторого абстрактного языка (математически), например, в виде графов, уравнений, алгоритмов, математических соответствий и пр.

Предметно-математические модели являются аналоговыми, т.е. при этом для моделирования используется принцип одинакового математического описания процессов, реального и протекающего в модели.

Комбинированные модели представляют собой сочетание математической или предметно-математической и физической модели. Они используются тогда, когда математическое описание одного из элементов исследуемой системы неизвестно или затруднительно, а также по условиям моделирования необходимо ввести в качестве элемента физическую модель (например, тренажер).

Математическое моделирование – это замещение оригинала математической моделью и исследование свойств оригинала на данной модели.

Системой называется объединение нескольких объектов (элементов), взаимосвязанных между собой, образующее определенную целостность.

Элемент - это относительно самостоятельная часть системы, рассматриваемая на данном уровне анализа как единое целое, предназначенная для реализацию некоторой функции.

Система обладает следующими, т.н. «системными» свойствами:

    структурой, т.е. строго определенным порядком объединения элементов в группы;

    целенаправленностью или функциональностью, т.е. наличием цели, для которой создана система;

    эффективностью, способностью достигать цели с наименьшими затратами ресурсов;

    устойчивостью, способностью сохранять характеристики своих свойств неизменными в определенных пределах при изменении внешних условий.

В настоящее время в технике для исследования работы машинных комплексов и машин используется понятие «человеко-машинной системы» (ЧМС), т.е. смешанной системы, составной частью которой наряду с техническими объектами является человек-оператор [, ]. Кроме того, ЧМС взаимодействует с окружающей средой. Таким образом, для моделирования ПТС необходимо рассматривать систему Человек-Машина-Среда, которая может быть отображена следующим графом (Рис. 1).

Р
ис. 1 Граф системы Человек-Машина-Среда.

Стрелками на графе изображены потоки энергии, вещества и информации, которыми обмениваются элементы системы.

Процессы, протекающие в технических системах, образованы совокупностью простейших операций. Операции – преобразования входных физических величин в выходные в низкоуровневом элементе системы (Рис. 2).

В каждом элементе системы (E i) происходит преобразование входных воздействий (X i) в выходные (Y i), причем выходные воздействия одного элемента могут являться входными следующего. Соединение элементов в структурную схему по характеру передачи воздействий происходит последовательно или параллельно.

Рис. 2 Структурная схема системы.

Подъемно-транспортными системами (ПТС), изучаемыми в рамках данного курса, будем называть системы, включающими в себя человека, окружающую среду и подъемно-транспортные машины (ПТМ).

ПТМ – это машины, предназначенные для перемещения груза на относительно небольшие расстояния без его переработки. ПТМ применяются для облегчения, ускорения, повышения эффективности перегрузочных работ.

1.2 Принципы и виды математического моделирования

Математические модели должны обладать следующими свойствами:

    адекватность, свойство соответствия модели и объекта исследований;

    достоверность, обеспечение заданной вероятности попадания результатов моделирования в доверительный интервал,

    точность, незначительное (в пределах допустимой погрешности) расхождение результатов моделирования с показателями реальных объектов (процессов);

    устойчивость, свойство соответствия малых изменений выходных параметров малым изменениям входных;

    эффективность, способность достижения цели с малыми затратами ресурсов;

    адаптабельность, способность легко перестраиваться для решения различных задач.

Для достижения этих свойств существуют некоторые принципы (правила) математического моделирования , ряд которых приведен ниже.

    Принцип целенаправленности заключается в том, что модель должна обеспечивать достижение строго определенных целей и, в первую очередь, отражать те свойства оригинала, которые необходимы для достижения цели.

    Принцип информационной достаточности заключается в ограничении количества информации об объекте при создании его модели и поиске оптимума между вводимой информацией и результатами моделирования. Он может быть проиллюстрирован следующей схемой.

Все возможные случаи моделирования располагаются в столбце 2.

    Принцип осуществимости состоит в том, что модель должна обеспечивать достижение поставленной цели с вероятностью близкой к 1 и за конечное время. Этот принцип можно выразить двумя условиями

и
,
(1)

где
- вероятность достижения цели, - время достижения цели,
и - допустимые значения вероятности и времени достижения цели.

    Принцип агрегатирования заключается в том, что модель должна состоять из подсистем 1-го уровня, которые, в свою очередь, состоят из подсистем 2-го уровня и т.д. Подсистемы должны оформляться в виде отдельных самостоятельных блоков. Подобное построение модели позволяет использовать стандартные процедуры расчетов, а также делает более легкой адаптацию модели к решению различных задач.

    Принцип параметризации состоит в замене при моделировании определенных параметров подсистем, описанных функциями, соответствующими числовыми характеристиками.

Процесс моделирования с использованием этих правил заключается в выполнении следующих 5 шагов (этапов).

    Определение целей моделирования.

    Разработка концептуальной модели (расчетной схемы).

    Формализация.

    Реализация модели.

    Анализ и интерпретация результатов моделирования.

Существенные различия в выполнении 3-5 этапов позволяют говорить о двух подходах к построению модели.

Аналитическое моделирование – это использование математической модели в виде дополненных системой ограничений уравнений, связывающих входные переменные с выходными параметрами. Аналитическое моделирование используется, если существует законченная постановка задачи на исследования и необходимо получить один конечный результат, соответствующий ей.

Имитационное моделирование – это использование математической модели для описания функционирования системы во времени при различных сочетаниях параметров системы и различных внешних воздействиях. Имитационное моделирование используется, если конечной постановки задачи не существует и необходимо исследовать протекающие в системе процессы. Имитационное моделирование предполагает соблюдение временного масштаба. Т.е. события на одели происходят через интервалы времени пропорциональные событиям на оригинале с постоянным коэффициентом пропорциональности.

По использованию средств для реализации модели можно выделить еще один вид моделирования, компьютерное моделирование. Компьютерное моделирование – это математическое моделирование с использованием средств вычислительной техники.

1.3 Классификация математических моделей

Все математические модели можно разделить на несколько групп по следующим классификационным признакам.

    По виду моделируемой системы модели бывают статические и динамические. Статические модели служат для исследования статических систем, динамические для исследования динамических. Динамические системы характеризуются тем, что обладают множеством состояний, которые изменяют во времени.

    По целям моделирования модели подразделяются на нагрузочные, управленческие и функциональные. Нагрузочные модели служат для определения нагрузок, действующих на элементы системы, управленческие – для определения кинематических параметров исследуемой системы, к которым относятся скорости и перемещения элементов системы, функциональные – для определения координат модели в пространстве возможных функциональных состояний системы.

    По степени дискретизации модели подразделяются на дискретные, смешанные и континуальные. Дискретные модели содержат элементы, связанные между собой, характеристики которых сосредоточены в точках. Это могут быть массы, объемы, силовые и прочие воздействия, сосредоточенные в точках. Континуальные модели содержат элементы, параметры которых распределены по длине, по площади или по объему всего элемента. Смешанные модели содержат элементы обоих типов.

Понятие модели и моделирования.

Модель в широком смысле - это любой образ, аналог мысленный или установленный изображение, описание, схема, чертеж, карта и т. п. какого либо объема, процесса или явления, используемый в качестве его заменителя или представителя. Сам объект, процесс или явление называется оригиналом данной модели.

Моделирование - это исследование какого либо объекта или системы объектов путем построения и изучения их моделей. Это использование моделей для определения или уточнения характеристик и рационализации способов построения вновь конструируемых объектов.

На идее моделирования базируется любой метод научного исследования, при этом, в теоретических методах используются различного рода знаковые, абстрактные модели, в экспериментальных - предметные модели.

При исследовании сложное реальное явление заменяется некоторой упрощенной копией или схемой, иногда такая копия служит лишь только для того чтобы запомнить и при следующей встрече узнать нужное явление. Иногда построенная схема отражает какие - то существенные черты, позволяет разобраться в механизме явления, дает возможность предсказать его изменение. Одному и тому же явлению могут соответствовать разные модели.

Задача исследователя - предсказывать характер явления и ход процесса.

Иногда, бывает, что объект доступен, но эксперименты с ним дорогостоящи или привести к серьезным экологическим последствиям. Знания о таких процессах получают с помощью моделей.

Важный момент - сам характер науки предполагает изучение не одного конкретного явления, а широкого класса родственных явлений. Предполагает необходимость формулировки каких - то общих категорических утверждений, которые называются законами. Естественно, что при такой формулировке многими подробностями пренебрегают. Чтобы более четко выявить закономерность сознательно идут на огрубление, идеализацию, схематичность, то есть изучают не само явление, а более или менее точную ее копию или модель. Все законы- это законы о моделях, а поэтому нет ничего удивительного в том, что с течением времени некоторые научные теории признаются непригодными. Это не приводит к краху науки, поскольку одна модель заменилась другой более современной .

Особую роль в науке играют математические модели, строительный материал и инструменты этих моделей - математические понятия. Они накапливались и совершенствовались в течении тысячелетий. Современная математика дает исключительно мощные и универсальные средства исследования. Практически каждое понятие в математике, каждый математический объект, начиная от понятия числа, является математической моделью. При построении математической модели, изучаемого объекта или явления выделяют те его особенности, черты и детали, которые с одной стороны содержат более или менее полную информацию об объекте, а с другой допускают математическую формализацию. Математическая формализация означает, что особенностям и деталям объекта можно поставить в соответствие подходящие адекватные математические понятия: числа, функции, матрицы и так далее. Тогда связи и отношения, обнаруженные и предполагаемые в изучаемом объекте между отдельными его деталями и составными частями можно записать с помощью математических отношений: равенств, неравенств, уравнений. В результате получается математическое описание изучаемого процесса или явление, то есть его математическая модель.

Изучение математической модели всегда связанно с некоторыми правилами действия над изучаемыми объектами. Эти правила отражают связи между причинами и следствиями.

Построение математической модели - это центральный этап исследования или проектирования любой системы. От качества модели зависит весь последующий анализ объекта. Построение модели - это процедура не формальная. Сильно зависит от исследователя, его опыта и вкуса, всегда опирается на определенный опытный материал. Модель должна быть достаточно точной, адекватной и должна быть удобна для использования.

Математическое моделирование.

Классификация математических моделей.

Математические модели могут быть детерменированными и стохастическими .

Детерменированные модели- это модели, в которых установлено взаимно-однозначное соответствие между переменными описывающими объект или явления.

Такой подход основан на знании механизма функционирования объектов. Часто моделируемый объект сложен и расшифровка его механизма может оказаться очень трудоемкой и длинной во времени. В этом случае поступают следующим образом: на оригинале проводят эксперименты, обрабатывают полученные результаты и, не вникая в механизм и теорию моделируемого объекта с помощью методов математической статистики и теории вероятности, устанавливают связи между переменными, описывающими объект. В этом случае получают стахостическую модель. В стахостической модели связь между переменными носит случайный характер, иногда это бывает принципиально. Воздействие огромного количества факторов, их сочетание приводит к случайному набору переменных описывающих объект или явление. По характеру режимов модель бывают статистическими и динамическими .

Статистическая модель включает описание связей между основными переменными моделируемого объекта в установившемся режиме без учета изменения параметров во времени.

В динамической модели описываются связи между основными переменными моделируемого объекта при переходе от одного режима к другому.

Модели бывают дискретными и непрерывными , а также смешанного типа. В непрерывных переменные принимают значения из некоторого промежутка, в дискретных переменные принимают изолированные значения.

Линейные модели - все функции и отношения, описывающие модель линейно зависят от переменных и не линейные в противном случае.

Математическое моделирование.

Требования,п редъявляемые к моделям.

1. Универсальность - характеризует полноту отображения моделью изучаемых свойств реального объекта.

    1. Адекватность - способность отражать нужные свойства объекта с погрешностью не выше заданной.
    2. Точность - оценивается степенью совпадения значений характеристик реального объекта и значения этих характеристик полученных с помощью моделей.
    3. Экономичность - определяется затратами ресурсов ЭВМ памяти и времени на ее реализацию и эксплуатацию.

Математическое моделирование.

Основные этапы моделирования.

1. Постановка задачи.

Определение цели анализа и пути ее достижения и выработки общего подхода к исследуемой проблеме. На этом этапе требуется глубокое понимание существа поставленной задачи. Иногда, правильно поставить задачу не менее сложно чем ее решить. Постановка - процесс не формальный, общих правил нет.

2. Изучение теоретических основ и сбор информации об объекте оригинала.

На этом этапе подбирается или разрабатывается подходящая теория. Если ее нет, устанавливаются причинно - следственные связи между переменными описывающими объект. Определяются входные и выходные данные, принимаются упрощающие предположения.

3. Формализация.

Заключается в выборе системы условных обозначений и с их помощью записывать отношения между составляющими объекта в виде математических выражений. Устанавливается класс задач, к которым может быть отнесена полученная математическая модель объекта. Значения некоторых параметров на этом этапе еще могут быть не конкретизированы.

4. Выбор метода решения.

На этом этапе устанавливаются окончательные параметры моделей с учетом условия функционирования объекта. Для полученной математической задачи выбирается какой - либо метод решения или разрабатывается специальный метод. При выборе метода учитываются знания пользователя, его предпочтения, а также предпочтения разработчика.

5. Реализация модели.

Разработав алгоритм, пишется программа, которая отлаживается, тестируется и получается решение нужной задачи.

6. Анализ полученной информации.

Сопоставляется полученное и предполагаемое решение, проводится контроль погрешности моделирования.

7. Проверка адекватности реальному объекту.

Результаты, полученные по модели сопоставляются либо с имеющейся об объекте информацией или проводится эксперимент и его результаты сопоставляются с расчётными.

Процесс моделирования является итеративным. В случае неудовлетворительных результатов этапов 6. или 7. осуществляется возврат к одному из ранних этапов, который мог привести к разработке неудачной модели. Этот этап и все последующие уточняются и такое уточнение модели происходит до тех пор, пока не будут получены приемлемые результаты.

Математическая модель - это приближенное описание какого-либо класса явлений или объектов реального мира на языке математики. Основная цель моделирования - исследовать эти объекты и предсказать результаты будущих наблюдений. Однако моделирование - это еще и метод познания окружающего мира, дающий возможность управлять им.

Математическое моделирование и связанный с ним компьютерный эксперимент незаменимы в тех случаях, когда натурный эксперимент невозможен или затруднен по тем или иным причинам. Например, нельзя поставить натурный эксперимент в истории, чтобы проверить, «что было бы, если бы...» Невозможно проверить правильность той или иной космологической теории. В принципе возможно, но вряд ли разумно, поставить эксперимент по распространению какой-либо болезни, например чумы, или осуществить ядерный взрыв, чтобы изучить его последствия. Однако все это вполне можно сделать на компьютере, построив предварительно математические модели изучаемых явлений.

1.1.2 2. Основные этапы математического моделирования

1) Построение модели . На этом этапе задается некоторый «нематематический» объект - явление природы, конструкция, экономический план, производственный процесс и т. д. При этом, как правило, четкое описание ситуации затруднено. Сначала выявляются основные особенности явления и связи между ними на качественном уровне. Затем найденные качественные зависимости формулируются на языке математики, то есть строится математическая модель. Это самая трудная стадия моделирования.

2) Решение математической задачи, к которой приводит модель . На этом этапе большое внимание уделяется разработке алгоритмов и численных методов решения задачи на ЭВМ, при помощи которых результат может быть найден с необходимой точностью и за допустимое время.

3) Интерпретация полученных следствий из математической модели. Следствия, выведенные из модели на языке математики, интерпретируются на языке, принятом в данной области.

4) Проверка адекватности модели. На этом этапе выясняется, согласуются ли результаты эксперимента с теоретическими следствиями из модели в пределах определенной точности.

5) Модификация модели. На этом этапе происходит либо усложнение модели, чтобы она была более адекватной действительности, либо ее упрощение ради достижения практически приемлемого решения.

1.1.3 3. Классификация моделей

Классифицировать модели можно по разным критериям. Например, по характеру решаемых проблем модели могут быть разделены на функциональные и структурные. В первом случае все величины, характеризующие явление или объект, выражаются количественно. При этом одни из них рассматриваются как независимые переменные, а другие - как функции от этих величин. Математическая модель обычно представляет собой систему уравнений разного типа (дифференциальных, алгебраических и т. д.), устанавливающих количественные зависимости между рассматриваемыми величинами. Во втором случае модель характеризует структуру сложного объекта, состоящего из отдельных частей, между которыми существуют определенные связи. Как правило, эти связи не поддаются количественному измерению. Для построения таких моделей удобно использовать теорию графов. Граф - это математический объект, представляющий собой некоторое множество точек (вершин) на плоскости или в пространстве, некоторые из которых соединены линиями (ребрами).

По характеру исходных данных и результатов предсказания модели могут быть разделены на детерминистические и вероятностно-статистические. Модели первого типа дают определенные, однозначные предсказания. Модели второго типа основаны на статистической информации, а предсказания, полученные с их помощью, имеют вероятностный характер.

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ И ВСЕОБЩАЯ КОМПЬЮТЕРИЗАЦИЯ ИЛИ ИМИТАЦИОННЫЕ МОДЕЛИ

Сейчас, когда в стране происходит чуть ли не всеобщая компьютеризация, от специалистов различных профессий приходится слышать высказывания: "Вот внедрим у себя ЭВМ, тогда все задачи сразу же будут решены". Эта точка зрения совершенно не верна, сами по себе ЭВМ без математических моделей тех или иных процессов ничего сделать не смогут и о всеобщей компьютеризации можно лишь мечтать.

В подтверждение вышесказанного попытаемся обосновать необходимость моделирования, в том числе математического, раскроем его преимущества в познании и преобразовании человеком внешнего мира, выявим существующие недостатки и пойдем… к имитационному моделированию, т.е. моделированию с использованием ЭВМ. Но все по порядку.

Прежде всего, ответим на вопрос: что такое модель?

Модель – это материальный или мысленно представленный объект, который в процессе познания (изучения) замещает оригинал, сохраняя некоторые важные для данного исследования типичные свойства.

Хорошо построенная модель доступнее для исследования – нежели реальный объект. Например, недопустимы эксперименты с экономикой страны в познавательных целях, здесь без модели не обойтись.

Резюмируя сказанное можно ответить на вопрос: для чего нужны модели? Для того, чтобы

  • понять, как устроен объект (его структура, свойства, законы развития, взаимодействия с окружающим миром).
  • научиться управлять объектом (процессом) и определять наилучшие стратегии
  • прогнозировать последствия воздействия на объект.

Что положительного в любой модели? Она позволяет получить новые знания об объекте, но, к сожалению, в той или иной степени не полна.

Модель сформулированная на языке математики с использованием математических методов называется математической моделью.

Исходным пунктом ее построения обычно является некоторая задача, например экономическая. Широко распространены, как дескриптивные, так и оптимизационные математические, характеризующие различные экономические процессы и явления, например:

Каким образом происходит построение математической модели?

  • Во–первых , формулируется цель и предмет исследования.
  • Во–вторых , выделяются наиболее важные характеристики, соответствующие данной цели.
  • В–третьих, словесно описываются взаимосвязи между элементами модели.
  • Далее взаимосвязь формализуется.
  • И производится расчет по математической модели и анализ полученного решения.

Используя данный алгоритм можно решить любую оптимизационную задачу, в том числе и многокритериальную, т.е. ту в которой преследуется не одна, а несколько целей, в том числе противоречивых.

Приведем пример. Теория массового обслуживания – проблема образования очередей. Нужно уравновесить два фактора – затраты на содержание обслуживающих устройств и затраты на пребывание в очереди. Построив формальное описание модели производят расчеты, используя аналитические и вычислительные методы. Если модель хороша, то ответы найденные с ее помощью адекватны моделирующей системе, если плоха, то подлежит улучшению и замене. Критерием адекватности служит практика.

Оптимизационные модели, в том числе многокритериальные, имеют общее свойство– из вестна цель(или несколько целей) для достижения которой часто приходится иметь дело со сложными системами, где речь идет не столько о решении оптимизационных задач, сколько об исследовании и прогнозировании состояний в зависимости от избираемых стратегий управления. И здесь мы сталкиваемся с трудностями реализации прежнего плана. Они состоят в следующем:

  • сложная система содержит много связей между элементами
  • реальная система подвергается влиянию случайных факторов, учет их аналитическим путем невозможен
  • возможность сопоставления оригинала с моделью существует лишь в начале и после применения математического аппарата, т.к. промежуточные результаты могут не иметь аналогов в реальной системе.

В связи с перечисленными трудностями, возникающими при изучении сложных систем, практика потребовала более гибкий метод, и он появился – имитационное моделирование "Simujation modeling ".

Обычно под имитационной моделью понимается комплекс программ для ЭВМ, описывающий функционирование отдельных блоков систем и правил взаимодействия между ними. Использование случайных величин делает необходимым многократное проведение экспериментов с имитационной системой (на ЭВМ) и последующий статистический анализ полученных результатов. Весьма распространенным примером использования имитационных моделей является решение задачи массового обслуживания методом МОНТЕ–КАРЛО.

Таким образом, работа с имитационной системой представляет собой эксперимент, осуществляемый на ЭВМ. В чем же заключаются преимущества?

–Большая близость к реальной системе, чем у математических моделей;

–Блочный принцип дает возможность верифицировать каждый блок до его включения в общую систему;

–Использование зависимостей более сложного характера, не описываемых простыми математическими соотношениями.

Перечисленные достоинства определяют недостатки

–построить имитационную модель дольше, труднее и дороже;

–для работы с имитационной системой необходимо наличие подходящей по классу ЭВМ;

–взаимодействие пользователя и имитационной модели (интерфейс) должно быть не слишком сложным, удобным и хорошо известным;

–построение имитационной модели требует более глубокого изучения реального процесса, нежели математическое моделирование.

Встает вопрос: может ли имитационное моделирование заменить методы оптимизации? Нет, но удобно дополняет их. Имитационная модель – это программа, реализующая некоторый алгоритм, для оптимизации управления которым прежде решается оптимизационная задача.

Итак, ни ЭВМ, ни математическая модель, ни алгоритм для ее исследования порознь не могут решить достаточно сложную задачу. Но вместе они представляют ту силу, которая позволяет познавать окружающий мир, управлять им в интересах человека.

1.2 Классификация моделей

1.2.1
Классификация с учетом фактора времени и области использования (Макарова Н.А.)

Статическая модель - это как бы одномоментный срез информации по объекту (результат одного обследования)
Динамическая модель-позволяет увидеть изменения объекта во времени(Карточка в поликлинике)
Можно классифицировать модели и по тому, к какой области знаний они принадлежат (биологические,исторические , экологические и т.п.)
Возврат в начало

1.2.2 Классификация по области использования (Макарова Н.А.)

Учебные- наглядные пособия, тренажеры,о бучающие программы
Опытные модели-уменьшенные копии (автомобиль в аэродинамической трубе)
Научно-технические- синхрофазотрон , стенд для проверки электронной аппаратуры
Игровые- экономические , спортивные, деловые игры
Имитационные- не просто отражают реальность, но имитируют ее(на мышах испытываеется лекарство, в школах проводятся эксперементы и т.п. .Такой метод моделирования называется методом проб и ошибок
Возврат в начало

1.2.3 Классификация по способу представления Макарова Н.А.)

Материальные модели-иначе можно назвать предметными. Они воспринимают геометрические и физические свойства оригинала и всегда имеют реальное воплощение
Информационные модели-нельзя потрогать или увидеть. Они строятся только на информации.И нформационная модель совокупность информации, характеризующая свойства и состояния объекта, процесса, явления, а также взаимосвязь с внешним миром.
Вербальная модель - информационная модель в мысленной или разговорной форме.
Знаковая модель-информационная модель выраженная знаками,т .е . средствами любого формального языка.
Компьютерная модель -м одель, реализованная средствами программной среды.

1.2.4 Классификация моделей, приведенная в книге "Земля Информатика" (Гейн А.Г.))

"...вот нехитрая на первый взгляд задача: сколько потребуется времени, чтобы пересечь пустыню Каракумы? Ответ,разумеется зависит от способа передвижения. Если путешествоватьна верблюдах , то потребуется один срок, другой-если ехать на автомобиле, третий - если лететь самолетом. А самое главное - для планирования путешествия требуются разные модели. Для первого случая требуемую модель можно найти в мемуарах знаменитых исследователей пустынь: ведь здесь не обойтись без информации об оазисах и верблюжьих тропах. Во втором случае незаменимая информация, содержащаяся в атласе автомобильных дорог. В третьем - можно воспользоваться расписанием самолетных рейсов.
Отличаются эти три модели - мемуары, атлас и расписание и характером предьявления информации. В первом случае модель представлена словесным описанием информации (описательная модель) , во втором- как бы фотографией с натуры (натурная модель) , в третьем - таблицей содержащей условные обозначения: время вылета и прилета, день недели, цена билета (так называемая знаковая модель) Впрочем это деление весьма условно- в мемуарах могут встретиться карты и схемы (элементы натурной модели), на картах имеются условные обозначения (элементы знаковой модели), в расписании приводится расшифровка условных обозначений (элементы описательной модели). Так что эта классификация моделей... на наш взгля малопродуктивна"
На мой взгляд этот фрагмент демонстрирует общий для всех книг Гейна описательный (замечательный язык и стиль изложения) и как бы, сократовский стиль обучения (Все считают что это вот так. Я совершенно согласен с вами, но если приглядеться, то...). В таких книгах достаточно сложно найти четкую систему определений (она и не предполагается автором). В учебнике под редакцией Н.А. Макаровой демонстрируется другой подход - определения понятий четко выделены и несколько статичны.

1.2.5 Классификация моделей приведенная в пособии А.И.Бочкина

Способов классификации необычно много.П риведем лишь некоторые, наиболее известные основания и признаки:дискретность и непрерывность,матричные и скалярные модели, статические и динамические модели, аналитические и информационные модели, предметные и образно-знаковые модели, масштабные и немасштабные...
Каждый признак даетопределенное знание о свойствах и модели, и моделируемой реальности. Признак может служить подсказкой о способе выполненного или предстоящего моделирования.
Дискретность и непрерывностьДискретность - характерный признак именно компьютерных моделей.В едь компьютер может находиться в конечном, хотя и очень большом количестве состояний. Поэтому даже если объект непрерывен (время), в модели он будет изменяться скачками. Можно считать непрерывность признаком моделей некомпьютерного типа.
Случайность и детерминированность . Неопределенность, случайность изначально противостоит компьютерному миру: Запущенный вновь алгоритм должен повториться и дать те же результаты. Но для имитации случайных процессов используют датчики псевдослучайных чисел. Введение случайности в детерминированные задачи приводит к мощным и интересным моделям (Вычисление площади методом случайных бросаний).
Матричность - скалярность . Наличие параметров у матричной модели говорит о ее большей сложности и, возможно, точности по сравнению со скалярной . Например, если не выделить в населении страны все возрастные группы, рассматривая его изменение как целое, получим скалярную модель (например модель Мальтуса), если выделить, - матричную (половозрастную). Именно матричная модель позволила объяснить колебания рождаемости после войны.
Статичность динамичность . Эти свойства модели обычно предопределяются свойствами реального объекта. Здесь нет свободы выбора. Просто статическая модель может быть шагом к динамической , либо часть переменных модели может считаться пока неизменной. Например, спутник движется вокруг Земли, на его движение влияет Луна. Если считать Луну неподвижной за время оборота спутника, получим более простую модель.
Аналитические модели . Описание процессов аналитически , формулами и уравнениями. Но при попытке построить график удобнее иметь таблицы значений функции и аргументов.
Имитационные модели . Имитационные модели появились давно в виде масштабных копий кораблей, мостов и пр. появились давно, но в связи с компьютерами рассматриваются недавно. Зная как связаны элементы модели аналитически и логически, проще не решать систему неких соотношений и уравнений, а отобразить реальную систему в память компьютера, с учетом связей между элементами памяти.
Информационные модели . Информационные модели принято противополагать математическим , точнее алгоритмическим. Здесь важно соотношение объемов данные/алгоритмы. Если данных больше или они важнее имеем информационную модель, иначе - математичеескую .
Предметные модели . Это прежде всего детская модель - игрушка.
Образно-знаковые модели . Это прежде всего модель в уме человека: образная , если преобладают графические образы, и знаковая , если больше слов или (и) чисел. Образно-знаковые модели строятся на компьютере.
Масштабные модели . К масштабным моделям те из предметных или образных моделей, которые повторяют форму объекта (карта).