Когда возникает резонанс. Чем опасен резонанс. Вредный резонанс: примеры

«Механические колебания и волны» - Содержание. Свободные Вынужденные Автоколебания. Механические колебания. Законы отражения. Волны. Распространение колебаний от точки к точке (от частицы к частице) в пространстве с течением времени. Циклическая частота и период колебаний равны, соответственно: Материальная точка, закрепленная на абсолютно упругой пружине.

«Частота колебаний» - Что называется чистым тоном? Скорость звука. Чаще всего таким веществом оказывается воздух. Ультразвук применяется для обнаружения в литых деталях различных дефектов. Каждый из нас знаком с таким звуковым явлением, как эхо. Скорость звука зависит от свойств среды, в которой распространяется звук. Инфразвук.

«Свободные колебания» - Из закона Ома для участка цепи переменного тока: Магнитный поток Ф сквозь плоскость рамки: Уравнение изменения заряда q на обкладках конденсатора во времени: Затухающие электромагнитные колебания. Циклическая частота свободных электромагнитных колебаний в контуре: Свободные электромагнитные колебания.

«Механические колебания» - Механические колебания и волны. Длина волны (?) – расстояние между ближайшими частицами, колеблющимися в одинаковой фазе. Продольные. Вынужденные. График гармонических колебаний. Волны - распространение колебаний в пространстве с течением времени. Частота колебаний- число полных колебаний, совершаемых в единицу времени.

«Физика Колебания и волны» - Рис 53. Обобщение темы Литература для работы: 1.Физика-9 – учебник 2.Физика -8 .автор Громов 3. Физика, человек, окружающая среда. (приложение к учебнику). Изучив тему.Колевания и волны, ты должен... Колебания и волны. Знать: уравнение гармонического колебания и определения характеристик колебания: амплитуды, периода, частоты колебаний; определения механической, поперечной и продольной волн; характеристики волны: длину, скорость; примеры использования звуковых волн в технике.

«Гармонические колебания» - A1 – амплитуда 1-го колебания. Биения. Геометрическая и волновая оптика. Кузнецов Сергей Иванович доцент кафедры ОФ ЕНМФ ТПУ. (2.2.4). Рисунок 5. Амплитуда А результирующего колебания зависит от разности начальных фаз. Колебания в противофазе. (2.2.5). Графический; геометрический, с помощью вектора амплитуды (метод векторных диаграмм).

Всего в теме 14 презентаций

Суть явления резонанса (в переводе с латинского – «звучу в ответ» или «откликаюсь») состоит в резком увеличении размаха собственных колебаний, наблюдаемых в структурах, подверженных воздействию внешних факторов. Основное условие его возникновения – совпадение частоты этих внешних по отношению к системе колебаний с её собственными частотными параметрами, вследствие чего они начинают работать «в унисон».

Png?x15027" alt="Механический резонанс" width="370" height="508">

Механический резонанс

Виды резонансных явлений

Наиболее часто резонанс в физике наблюдается при изучении так называемых «линейных» образований, параметры которых не зависят от текущего состояния. Типичным их представителем являются структуры с одной степенью свободы (к ним можно отнести груз, подвешенный на пружинке, или цепь с последовательно включённой индуктивностью и емкостным элементом).

Обратите внимание! В обоих этих случаях предполагается наличие внешнего по отношению к данной системе воздействия (механического или электрического).

Рассмотрим, что такое резонанс, и в чём состоит его суть более подробно.

Механический резонанс

Явление резонанса может наблюдаться в конструкциях со следующим механическим устройством. Допустим, что имеется груз массой M, свободно подвешенный на упругой пружине. На него действует внешняя сила, амплитуда которой меняется по синусоиде:

Для оценки характера колебаний такой системы необходимо воспользоваться законом Гука, согласно которому обусловленная пружиной сила равна kx, где х – величина отклонения массы M от среднего положения. Коэффициент k описывает внутренние свойства, связанные с её упругостью.

Исходя из этих предположений и после применения несложных математических выкладок, удаётся получить результат, позволяющий сделать следующие выводы:

  • Вынужденные механические колебания относятся к разряду гармонических явлений, имеющих частоту, совпадающую с тем же параметром для внешнего раздражителя;
  • Амплитуда (размах), а также фазовые характеристики механических структур зависят от того, как соотносятся её собственные параметры с характеристиками гармонического воздействия;
  • Когда на линейную систему подавался сигнал или механическое воздействие, меняющееся не по синусоидальному закону, резонансные явления наблюдались лишь в особых ситуациях;
  • Для их появления необходимо, чтобы во внешней подкачке (сигнале) содержались гармонические составляющие, сравнимые с собственной частотой системы.

Каждая из этих составляющих, даже если их обнаружится несколько, будет вызывать свой резонансный отклик. Причём комплексная реакция (согласно суперпозиционному принципу) равняется сумме тех же откликов, наблюдаемых от действия каждой из внешних гармонических составляющих.

Важно! В том случае, когда в таком воздействии совсем не содержится компонентов с близкими частотами, резонанс наступить вообще не сможет.

Для анализа всех компонентов смесей, резонирующих с системными частотами, используется метод Фурье, позволяющий раскладывать сложное колебание произвольной формы на простейшие гармонические составляющие.

Электрический колебательный контур

В электрических цепочках, состоящих из ёмкостной компоненты С и катушки индуктивности L, при наблюдении резонансных явлений нужно различать следующие две отличные по характеристикам ситуации:

  • Последовательное соединение элементов в контуре;
  • Параллельное их включение.

В первом случае при совпадении собственных колебаний с частотой внешнего воздействия (ЭДС), изменяющейся по синусоидальному закону, наблюдаются резкие всплески амплитуды, совпадающие по фазе с внешним источником сигнала.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/2-posledovatelnyj-rezonans-768x576..jpg 960w" sizes="(max-width: 600px) 100vw, 600px">

Последовательный резонанс

При параллельном включении тех же элементов под воздействием внешней гармонической ЭДС проявляется явление «антирезонанса», состоящее в резком снижении амплитуды ЭДС.

Дополнительная информация. Этот эффект, получивший название параллельного (или резонанса токов), объясняется несовпадением фаз собственных и внешних колебаний ЭДС.

На резонансных частотах реактивные сопротивления каждой из параллельных ветвей выравниваются по величине, так что в них протекают примерно одинаковые по амплитуде токи (но они всегда не совпадают по фазе).

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/3-parallelnyj-rezonans-768x576..jpg 960w" sizes="(max-width: 600px) 100vw, 600px">

Параллельный резонанс

Вследствие этого общий для всей цепи токовый сигнал оказывается на порядок меньше. Указанные свойства прекрасно описывают поведение фильтрующих контуров и цепочек, в которых применение резонанса для электротехнических нужд выражено очень наглядно.

Сложные колебательные структуры

В системах с линейными характеристиками, характеризующихся использованием нескольких (двух в частном случае) контуров, резонансные явления возможны лишь при наличии связи между ними.

Jpeg?.jpeg 600w, https://elquanta.ru/wp-content/uploads/2018/03/4-svjazannye-kontury-768x280..jpeg 900w" sizes="(max-width: 600px) 100vw, 600px">

Связанные контуры

Для связанных контуров справедливы следующие правила:

  • Они сохраняют все основные свойства одноконтурных линейных структур;
  • В таких контурах возможны колебания на двух резонансных частотах, называемых нормальными;
  • Если принудительное воздействие по частоте не совпадает ни с одной из них, при плавном её изменении «отклик» в системе будет наступать последовательно на каждой;
  • В этом случае его график будет иметь вид слитного или двойного резонанса с тупой вершиной и двумя небольшими всплесками («горбами»);
  • Когда нормальные частоты не сильно отличаются одна от другой и близки к тому же параметру для внешней ЭДС, ответ системы будет иметь тот же вид, но два «горба» практически сольются в один;
  • Форма резонансной кривой в последнем случае будет иметь почти такой же вид, как и при одноконтурном линейном варианте.

В контурах с большим количеством степеней свободы в основном сохраняются те же реакции, что и в системах с двумя параметрами.

Нелинейные системы

Отклик систем, характеристики которых определяются текущим состоянием (их называют нелинейными), имеет более сложную форму и носит характер несимметричных проявлений. Последние зависят от соотношения характеристик сторонних воздействий и частот собственных вынужденных колебаний системы.

Обратите внимание! В этом случае они могут проявляться как дробные части частот, воздействующих на систему колебаний, или в виде кратных им величин.

Примером откликов, наблюдаемых в нелинейных системах, служат так называемые феррорезонансные явления. Они возможны в электрических цепях, в состав которых входит индуктивность с ферромагнитным сердечником, и относятся к разряду структурных.

Последнее объясняется особенностями состава вещества на атомистическом уровне, при исследовании которого обнаруживается, что ферромагнитные структуры представляют собой набор огромного числа элементарных магнитиков (спинов). Каждое из этих состояний при реакции на внешнюю «подкачку» определяется множеством различных факторов, то есть проявляется в технике как нелинейное.

В заключение следует резюмировать, что, независимо от вида исследуемой системы, суть резонансных явлений заключается в наблюдении откликов колебательных структур на прилагаемые к ним внешние воздействия. Тщательное изучение этих физических явлений позволяет получить практические результаты, способствующие внедрению в производство совершенно новых технологий.

Видео

Слышали ли вы о том, что отряд солдат, переходя мост, должен перестать маршировать? Солдаты, идущие до этого в ногу, перестают это делать и начинают идти свободным шагом.

Такой приказ отдается командирами вовсе не с целью дать солдатам возможность полюбоваться местными красотами. Это делается для того, чтобы солдаты не разрушили мост. Какая тут связь? Очень простая. Чтобы это понять, надо ознакомиться с явлением резонанса.

Что такое явление резонанса: частота колебаний

Чтобы проще понять, что такое резонанс, вспомните такую нехитрую и приятную забаву, как катание на подвесных качелях. Один человек сидит на них, а второй раскачивает.

И прикладывая совсем небольшие силы, даже ребенок может очень сильно раскачать взрослого. Как он этого добивается? Частота его раскачиваний совпадает с частотой качающегося, возникает резонанс, и амплитуда раскачиваний сильно возрастает. Как-то так. Но обо всем по порядку.

Частота колебаний это количество колебаний за одну секунду. Измеряется она при этом не в разах, а в герцах (1 Гц). То есть, частота колебаний в 50 герц означает, что тело совершает 50 колебаний в секунду.

В случае вынужденных колебаний всегда есть самоколеблющееся (или в нашем случае качающееся) тело и вынуждающая сила. Так вот эта сторонняя сила действует с определенной частотой на тело.

И если его частота будет сильно отличаться от частоты колебаний самого тела, то сторонняя сила будет слабо помогать телу колебаться или, говоря научно, слабо усиливать его колебания.

Например, если пытаться раскачать человека на качелях, толкая его в момент, когда он летит на вас, вы можете отбить себе руки, скинуть человека, но вряд ли сильно его раскачаете.

А вот если раскачивать его, толкая в направлении движения, то нужно совсем немного усилий, чтобы добиться результата. Вот это и есть совпадение частоты или резонанс колебаний . При этом сильно возрастает их амплитуда.

Примеры резонансных колебаний: польза и вред

Так же и при катании на другом варианте качелей в виде доски на подставке проще и эффективнее отталкиваться ногами от земли, когда ваша сторона качелей уже поднимается, а не когда она опускается.

По этой же причине застрявшую в ямке машину постепенно раскачивают и толкают вперед в моменты, когда она сама двигается вперед. Так значительно повышают ее инерцию, усиливая амплитуду колебаний.

Можно приводить множество подобных примеров, которые говорят о том, что мы на практике очень часто применяем явление резонанса, только делаем мы это интуитивно, не догадываясь, что применяем правила физики.

Выше говорилось о полезности явления резонанса. Однако, резонанс может и вредить. Иногда возникающее увеличение амплитуды колебаний может быть очень вредным. В частности, мы говорили о роте солдат на мосту.

Так вот были несколько случаев в истории, когда под шагами солдат реально разрушались и падали в воду мосты. Последний из них произошел около ста лет назад в Петербурге. В таких случаях частота ударов солдатских сапог совпадала с частотой колебаний моста, и мост рушился.

Резонанс играет очень большую роль в самых разнообразных явлениях, причем в одних - полезную, в других - вредную. Приведем несколько примеров, относящихся к механическим колебаниям.

Идя по доске, перекинутой через ров, можно попасть шагами в резонанс с собственным периодом системы (доски с человеком на ней), и доска начинает тогда сильно колебаться (изгибаться вверх и вниз). То же самое может случиться и с мостом, по которому проходит войсковая часть или проезжает поезд (периодическая сила обусловливается ударами ног или ударами колес на стыках рельсов). Так, например, в 1906г. в Петербурге обрушился так называемый Египетский мост через реку Фонтанку. Это произошло при переходе через мост кавалерийского эскадрона, причем четкий шаг лошадей, отлично обученных церемониальному маршу, попал в резонанс с периодом моста. Для предотвращения таких случаев войсковым частям при переходе через мосты приказывают обычно идти не «в ногу», а вольным шагом. Поезда же большей частью переезжают мосты на медленном ходу, чтобы период ударов колес о стыки рельсов был значительно больше периода свободных колебаний моста. Иногда применяют обратный способ «расстройки» периодов: поезда проносятся через мосты на максимальной скорости.

Случается, что период ударов колес на стыках рельсов совпадает с периодом колебаний вагона на рессорах, и вагон тогда очень сильно раскачивается. Корабль также имеет свой период качаний на воде. Если морские волны попадают в резонанс с периодом корабля, то качка становится особенно сильной. Капитан меняет тогда скорость корабля или его курс. В результате период волн, набегающих на корабль, изменяется (вследствие изменения относительной скорости корабля и воли) и уходит от резонанса.

Неуравновешенность машин и двигателей (недостаточная центровка, прогиб вала) является причиной того, что при работе этих машин возникает периодическая сила, действующая на опору машины - фундамент, корпус корабля и т. п. Период силы может совпасть при этом с периодом свободных колебаний опоры или, например, с периодом колебаний изгиба самого вращающегося вала или с периодом крутильных колебаний этого вала. Получается резонанс, и вынужденные колебания могут быть настолько сильны, что разрушают фундамент, ломают валы и т. д. Во всех таких случаях принимаются специальные меры, чтобы избежать резонанса или ослабить его действие (расстройка периодов, увеличение затухания - демпфирование и др.).

Очевидно, для того чтобы с помощью наименьшей периодической силы получить определенный размах вынужденных колебаний, нужно действовать в резонанс. Тяжелый язык большого колокола может раскачать даже ребенок, если он будет натягивать веревку с периодом свободных колебаний языка. Но самый сильный человек не раскачает язык, дергая веревку не в резонанс.

На явлении резонанса основало действие прибора, предназначенного для определения частоты переменного тока, сила которого изменяется по гармоническому закону (см. том II, § 153). Такие приборы, носящие название язычковых частотомеров, обычно применяются для контроля постоянства частоты в электрической сети. Внешний вид прибора изображен на рис. 28, а. Он состоит из набора упругих пластинок с грузиками на концах (язычков), причем массы грузиков и жесткости пластинок подобраны так, что частоты соседних язычков отличаются на одно и то же число герц. У частотомера, изображенного на рис. 28, а, частоты язычков идут через каждые . Эти частоты написаны на шкале против язычков.

Рис. 28. Язычковый частотомер: а) внешний вид; б) схема устройства

Устройство частотомера схематически показано на рис. 28, б. Исследуемый ток пропускается через обмотку электромагнита. Колебания якоря передаются планке, с которой связаны основания всех язычков и которая укреплена на гибких пластинках. Таким образом, на каждый язычок действует гармоническая сила, частота которой равна частоте тока. Язычок, попавший в резонанс с этой силой, колеблется с большей амплитудой и показывает на шкале свою частоту, т. е. частоту тока.

В дальнейшем мы еще не раз встретимся с явлением резонанса, когда будем изучать звуковые и электрические колебания. Именно эти колебания дадут нам особенно яркие примеры полезного применения резонанса.

При резонансе энергия поступает в систему согласованно с колебаниями в ней, постоянно увеличивая их амплитуду. В стационарном режиме большая амплитуда колебаний поддерживается малыми поступлениями энергии в систему, восполняющими потери энергии колебаний (нагрев проводников, преодоление сил сопротивления, потери на излучение электромагнитных и механических волн) за один период. В системе при резонансе созданы наиболее благоприятные условия для реализации свойственных системе свободных незатухающих колебаний, и поэтому амплитуда колебаний резко возрастает.

Рассмотрим некоторые примеры проявления резонанса в природе.

Пример 1 . Солдаты проходят по мосту строевым шагом, частота ударов ног о поверхность моста может совпасть с собственной частотой колебаний моста как колебательной системы, наступает явление резонанса, при котором амплитуда колебаний моста постепенно нарастает и при больших числовых значениях может привести к его разрушению.

Пример 2 . Вентилятор плохо прикреплен к потолку и при своем вращении он создает толчки на потолок, частота которых может совпасть с собственной частотой колебаний комнаты (потолка) как колебательной системы, амплитуда колебаний потолка нарастает и может привести к его обрушению.

Пример 3 . Приборы на кораблях максимально утяжеляют (делают тяжелыми подставки) и подвешивают на мягких пружинах (коэффициент жесткости для них будет малым). В этом случае частота качки корабля будет больше собственной частоты колебаний (
) приборов на пружинах и поэтому резонанса не наступает.

Пример 4 . В радиоприемниках на основе явления резонанса можно выделить нужный сигнал из большого числа сигналов разных радиостанций, поступающих на его приемную антенну (рис. 5.23,а). Пусть на вход радиоприемника поступают сигналы малой амплитуды с различной несущей частотой

Для выделения сигнала с несущей частотой , необходимо добиться равенства частотысобственных свободных незатухающих колебаний приемного контура и частоты(=). Тогда за счет явления резонанса амплитуда сигнала с частотойна выходе конденсатора резко возрастает, а амплитуды остальных сигналов останутся прежними (рис. 5.23,б показана сплошной линией резонансная кривая, максимум которой приходится на частоту)

и тем самым происходит выделение сигнала с несущей частотой . Изменяя электроемкость конденсатора, можно настроить приемный контур антенны на несущую частоту(на рис. 5.22,б пик резонансной кривой смещается на частоту).

    1. Нелинейные системы. Автоколебания

1. Нелинейные системы . Под нелинейными системами понимают такие колебательные системы, свойства которых зависят от происходящих в них процессов. В таких системах существуют нелинейные связи, например, между: 1) силой упругости и смещениемгруза относительно положения равновесия. Это приводит к нарушению закона Гука и к зависимости коэффициента к жесткости системы от смещения , что изменяет собственную частотуколебаний системы; 2) электрическими зарядами конденсатора и создаваемой ими напряженностью поля (сегнетоэлектрик между пластинами конденсатора под действием электрического поля изменяет свою диэлектрическую проницаемость и тем самым приводит к изменению электроемкости конденсатора в зависимости от подаваемого в контур напряжения, т.е. к изменению собственной частоты колебаний контура) и т.д.

Все физические системы являются нелинейными системами. При малых амплитудах колебаний (при малых отклонениях от положения равновесия) физические системы можно считать линейными, колебания в них описываются одинаковыми дифференциальными уравнениями, что и позволяет построить общую теорию колебаний.

Нелинейные эффекты в физических системах обычно проявляются при увеличении амплитуды колебаний – это приводит к тому, что собственные колебания системы (осциллятора) уже не будут гармоническими, а их частота будет зависеть от амплитуды колебаний. Уравнения движения для них являются нелинейными, а такие системы называют ангармоническими осцилляторами(см. § 5.5).

Действительно, например, для малых отклонений потенциального поля от параболического вида () дифференциальное уравнение колебаний будет иметь вид

,

Из записанного дифференциального уравнения видно, что коэффициент жесткости зависит от амплитуды колебаний, что приводит к зависимости угловой частоты свободных незатухающих колебаний системы от амплитуды колебаний
.

Для больших отклонений от линейного поведения зависимость
усложняется, и поэтому усложняются уравнения описывающие колебания в системе.

Для нелинейных систем, в отличие от линейных, нарушается принцип суперпозиции , согласно которому результирующий эффект от сложного процесса воздействия представляет собой сумму эффектов, вызываемых каждым воздействием в отдельности, при условии, что последние взаимно не влияют друг на друга.

Изменение в нелинейных системах формы гармонического внешнего воздействия и нарушение принципа суперпозиции позволяют осуществлять с помощью таких систем генерирование и преобразование частоты электромагнитных колебаний – выпрямление, умножение частоты, модуляцию колебаний и т.д.

Резонанс в такой нелинейной системе будет отличаться тем, что в ходе раскачки осциллятора внешней силой величина расстройки (
) будет изменяться, так как частота будет зависеть от амплитуды колебаний.

2.Автоколебательные системы . Рассмотрим подробнее один из примеров нелинейных систем - автоколебательные системы.

Преимуществом использования резонансных явлений является их экономичность и большая амплитуда колебаний. Недостатком является нестабильность работы системы, связанная с необходимостью с большой степенью точности поддерживать условие резонанса (
), так как любые отклонения частоты внешнего воздействия от резонансной частоты при узкой резонансной кривой резко изменяют амплитуду колебаний в системе (рис. 5.17,а, б).

Для того чтобы избежать таких нежелательных явлений, можно заставить саму систему поддерживать это резонансное условие, такая система является автоколебательной системой. Автоколебательная система относится к группе нелинейных колебательных систем, в которых происходит компенсация диссипативных потерь за счет притока энергии от внешнего постоянного источника. При этом система сама регулирует подвод энергии в систему, подавая ее в нужный момент времени в нужном количестве.

Автоколебательная система состоит из колебательной системы, источника энергии и клапана - устройства, которое регулирует подвод энергии в систему. Работой клапана управляет сама система с помощью обратной связи (рис.5.24,а)

В качестве примера автоколебательной системы можно привести систему, состоящую из груза, прикрепленного к двум пружинам и совершающего колебания на металлическом стержне (рис. 5.24,б). Источник постоянного тока с помощью электромагнита за каждый период колебаний совершает работу по увеличению кинетической энергии груза, восполняя потери энергии колебаний на преодоление сил сопротивления.

Это происходит следующим образом. При своем движении металлическая пластина, прикрепленная к грузу, касается контакта-прерывателя (он играет роль клапана), электрическая цепь замыкается и электромагнит притягивает к себе пластину, сообщая при этом дополнительную скорость грузу. Таким образом, в системе возникают незатухающие колебания на частоте
с большой амплитудой, которую можно регулировать, меняя положение контакта прерывателя.

Примерами автоколебательных систем могут служить духовые и смычковые инструменты, колебания голосовых связок при разговоре, механические часы. Примером автоколебательной системы в природе является ядерный реактор, который проработал в течение 500 тысяч лет на урановом руднике в Африке 2,5 миллиарда лет тому назад. Для его работы необходимы были достаточное количество урана-235, который делится под действием медленных нейтронов, и замедлитель нейтронов – вода. В определенный момент времени вода скопилась в достаточном количестве и реактор заработал. Его работу поддерживала цепочка процессов, указанных на рис. 5.25:

Такая автоколебательная система работала до тех пор, пока не выгорело ядерное топливо. Здесь источником энергии является деление ядер U-235, клапаном служит изменение температуры воды, а колебательной системой является вода, уровень которой совершает колебания.