Электрическое поле графическое изображение. Графическое изображение электростатических полей

Зная вектор напряженности электростатического поля в каждой его точке, можно представить это поле наглядно с помощью силовых линий напряженности (линий вектора E →). Силовые линии напряженности проводят так, чтобы касательная к ним в каждой точке совпадала с направлением вектора напряженности E → (рис. 4, а).

Число линий, пронизывающих единичную площадку dS, перпендикулярную к ним, проводят пропорционально модулю вектора E → (рис. 4, б). Силовым линиям приписывают направление, совпадающее с направлением вектора E → . Полученная картина распределения линий напряженности позволяет судить о конфигурации данного электрического поля в разных его точках. Силовые линии начинаются на положительных зарядах и оканчиваются на отрицательных зарядах. На рис. 5 приведены линии напряженности точечных зарядов (рис. 5, а, б); системы двух разноименных зарядов (рис. 5, а б Рис. 4 Рис. 5 в) − пример неоднородного электростатического поля и двух параллельных разноименно заряженных плоскостей (рис. 5, г) − пример однородного электрического поля.

Теорема Остроградского–Гаусса и её применение.

Введем новую физическую величину, характеризующую электрическое поле – поток вектора напряженности электрического поля. Пусть в пространстве, где создано электрическое поле, расположена некоторая достаточно малая площадка , в пределах которой напряженность , т. е. электростатическое поле однородно. Произведение модуля вектора на площадь и на косинус угла между вектором и нормалью к площадке называется элементарным потоком вектора напряженности через площадку (рис. 10.7):

где - проекция поля на направление нормали .

Рассмотрим теперь некоторую произвольную замкнутую поверхность . В случае замкнутой поверхности всегда выбирается внешняя нормаль к поверхности, т. е. нормаль, направленная наружу области.

Если разбить эту поверхность на малые площадки, определить элементарные потоки поля через эти площадки, а затем их просуммировать, то в результате мы получим поток вектора напряженности через замкнутую поверхность (рис. 10.8):

. (10.9)

Рис. 10.7
Рис. 10.8

Теорема Остроградского-Гаусса утверждает: поток вектора напряженности электростатического поля через произвольную замкнутую поверхность прямо пропорционален алгебраической сумме свободных зарядов, расположенных внутри этой поверхности:

, (10.10)

где - алгебраическая сумма свободных зарядов, находящихся внутри поверхности , - объемная плотность свободных зарядов, занимающих объем .

Из теоремы Остроградского-Гаусса (10.10), (10.12) следует, что поток не зависит от формы замкнутой поверхности (сфера, цилиндр, куб и т.п.), а определяется только суммарным зарядом внутри этой поверхности.

Используя теорему Остроградского-Гаусса, можно в ряде случаев легко вычислить напряженность электрического поля заряженного тела, если заданное распределение зарядов обладает какой-либо симметрией.

Пример использования теоремы Остроградского-Гаусса . Рассмотрим задачу о вычислении поля тонкостенного пологооднородно заряженного длинного цилиндра радиуса (тонкой бесконечной заряженной нити). Эта задача имеет осевую симметрию. Из соображений симметрии электрическое поле должно быть направлено по радиусу. Выберем замкнутую поверхность в виде цилиндра произвольного радиуса и длины , закрытого с обоих торцов (рис. 10.9)

Электрическое поле изображают с помощью электрических линий и следов эквипотенциальных поверхностей.

Поверхность, проведённая в пространстве так, что все её точки имеют одинаковый потенциал, называется эквипотенциальной .

Рисунок 1.7 – Неоднородное симметричное поле

Рисунок 1.8 – Неоднородное несимметричное поле

Рисунок 1.9 – Однородное несимметричное поле

Если вектор напряженности в каждой точке поля одинаков по величине и направлению то поле считается однородным .

Силовые линии магнитного поля (линии напряженности) проводятся так что:

2. Густота силовых линий отражает величину напряженности;

3. Проводятся так, чтобы вектор напряженности в каждой точке линии был направлен по касательной к ней.

Силовые линии это мысленные траектории движения пробного положительного заряда, внесенного в данную точку поля.

Следы эквипотенциальных поверхностей проводятся так, чтобы они пересекались с силовыми линиями под прямым углом, между каждыми двумя соседними эквипотенциальными поверхностями разность потенциалов одинакова.

1.3 Электропроводность веществ: проводники, диэлектрики, полупроводники

Почти в любом объёме любого вещества содержится некоторое количество свободных зарядов, их число в единице объёма называется концентрацией .

При отсутствии внешнего электрического поля свободные заряды совершают хаотическое тепловое движение, попадая в электрическое поле они приобретают скорость упорядоченного, направленного движения.

Упорядоченное направленное движение зарядов под действием сил внешнего электрического поля называется электрическим током .

Способность веществ, проводить электрический ток называется электропроводностью .

В зависимости от электропроводности все вещества делят на три группы:

1) Проводники – вещества, обладающие хорошей электропроводимостью, следовательно, хорошо проводящие электрический ток. Делятся на две подгруппы:

а) Первого рода – металлы и их сплавы. В них большое количество свободных электронов, которые под действием сил внешнего электрического поля приобретают скорость направленного движения, следовательно ток в проводника первого рода – это упорядоченное направленное движение электронов, а значит не сопровождается переносом вещества и химическими реакциями.

Проводник первого рода помещён в электростатическое поле, происходит явление электромагнитной индукции –мгновенное перемещение свободных зарядов к одной поверхности проводника. На этой поверхности возникает избыточный отрицательный заряд, недостаток электронов у противоположной поверхности создаёт избыточный положительный заряд, следовательно заряженные поверхности проводника создают собственное поле, направленное против внешнего и всегда его уравновешивающего. На этом основано экранирование – защита части пространства от внешних электрических полей.


б) Второго рода – это электролиты – водные растворы солей, кислот, щелочи, в них под действием растворителя (воды) происходит расход молекул на положительно и отрицательно заряженные ионы (электролитическая диссонация). Во внешнем электрическом поле ионы приобретают скорость направленного движения, значит ток в проводниках второго рода – это направленное движение ионов, а значит, сопровождается переносом вещества и химическими реакциями.

2) Диэлектрики – вещества, не имеющие свободных зарядов, а потому не способные проводить постоянный электрический ток. Делятся на две группы: неполярные и полярные диэлектрики .

У неполярных диэлектриков электронные орбиты расположены так, что при отсутствии внешнего поля электрические центры «+» и « - » в одной точке атом не создаёт диполя. Во внешнем поле орбиты смещаются так, что электрические центры «+» и « - » в разных точках, образовалась диполь – два одинаковых по величине, но противоположных по знаку связанных заряда. Произошла поляризация диэлектрика – деформационная .

У полярных диэлектриков диполи существуют от природы без всякого внешнего поля, но ариентированны хаотически. Во внешнем поле диполи поворачиваются и выстраиваются вдоль линий внешнего поля, происходит поляризация, которая называется ориентационной .

Внутри любого поляризованного диэлектрика поле существует, но по сравнению со внешним оно ослаблено в E раз.

Постоянный электрический ток диэлектрики не проводят, а переменный ток проводят – направленное колебательное движение диполей под действием сил внешнего переменного электрического поля.

О том, что колебательные движения диполей можно назвать электрическим током говорит опыт Эйхенвольда.

При протягивании диэлектрика в месте AB происходит … временный поворот на 180° и это сопровождается возникновением магнитного поля , которое всегда сопутствует электрическому току.

Существуют:

Ток проводимости – упорядоченное направленное движение свободных зарядов под действием сил внешнего электрического поля (постоянный и переменный).

Ток смещения связанных зарядов (в диэлектрике) – колебательное движение диполей под действием сил внешнего переменного электрического поля

3) Полупроводники – вещества, занимающие промежуточное положение по электропроводимости между проводниками и диэлектриками. Ток в них это направленное движение свободных электронов и дырок, зависит от некоторых факторов (температура, освещённость, наличие примесей).

Силовые линии напряженности электрического поля - линии, касательные к которым в каждой точке совпадают с вектором Е По их направлению можно судить, где расположены положительные (+) и отрицательные (–) заряды, создающие электрическое поле. Густота линий (количество линий, пронизывающих единичную площадку поверхности, перпендикулярную к ним) численно равно модулю вектора Е.




Силовые линии напряженности электрического поля Силовые линии напряженности электрического поля не замкнуты, имеют начало и конец. Можно говорить, что электрическое поле имеет «источники» и «стоки» силовых линий. Силовые линии начинаются на положительных (+) зарядах (Рис. а), заканчиваются на отрицательных (–) зарядах (Рис. б). Силовые линии не пересекаются.






Поток вектора напряженности электрического поля Произвольная площадка dS. Поток вектора напряженности электрического поля через площадку dS: - псевдовектор, модуль которого равен dS, а направление совпадает с направление вектора n к площадке dS. Е = constdФ Е = N - числу линий вектора напряженности электрического поля Е, пронизывающих площадку dS.




Поток вектора напряженности электрического поля Если поверхность не плоская, а поле неоднородное, то выделяют малый элемент dS, который считать плоским, а поле – однородным. Поток вектора напряженности электрического поля: Знак потока совпадает со знаком заряда.


Закон (теорема) Гаусса в интегральной форме. Телесный угол – часть пространства, ограниченная конической поверхностью. Мера телесного угла – отношение площади S сферы, вырезаемой на поверхности сферы конической поверхностью к квадрату радиуса R сферы. 1 стерадиан – телесный угол с вершиной в центре сферы, вырезающий на поверхности сферы площадь, равную площади квадрата со стороной, по длине равной радиусу этой сферы.


Теорема Гаусса в интегральной форме Электрическое поле создается точечным зарядом +q в вакууме. Поток d Ф Е, создаваемого этим зарядом, через бесконечно малую площадку dS, радиус вектор которой r. dS n – проекция площадки dS на плоскость перпендикулярную в ектору r. n – единичный вектор положительной нормали к площадке dS.










Если произвольная поверхность окружает k– зарядов, то согласно принципу суперпозиции: Теорема Гаусса: для электрического поля в вакууме поток вектора напряженности электрического поля сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленных на ε 0.






Методика применения теоремы Гаусса для расчета электрических полей – второй способ определения напряженности электрического поля Е Теорема Гаусса применяется для нахождения полей, созданных телами, обладающими геометрической симметрией. Тогда векторное уравнение сводится к скалярному.


Методика применения теоремы Гаусса для расчета электрических полей – второй способ определения напряженности электрического поля Е 1) Находится поток Ф Е вектора Е по определению потока. 2) Находится поток Ф Е по теореме Гаусса. 3) Из условия равенства потоков находится вектор Е.


Примеры применения теоремы Гаусса 1. Поле бесконечной однородно заряженной нити (цилиндра) с линейной плотностью τ (τ = dq/dl, Кл/м). Поле симметричное, направлено перпендикулярно нити и из соображений симметрии на одинаковом расстоянии от оси симметрии цилиндра (нити) имеет одинаковое значение.






2.Поле равномерно заряженной сферы радиуса R. Поле симметричное, линии напряженности Е электрического поля направлены в радиальном направлении, и на одинаковом расстоянии от точки О поле имеет одно и то же значение. Вектор единичной нормали n к сфере радиуса r совпадает с вектором напряженности Е. Охватим заряженную (+q) сферу вспомогательной сферической поверхностью радиуса r.




2.Поле равномерно заряженной сферы При поле сферы находится как поле точечного заряда. При r


(σ = dq/dS, Кл/м 2). Поле симметричное, вектор Е перпендикулярен плоскости с поверхностной плотностью заряда +σ и на одинаковом расстоянии от плоскости имеет одинаковое значение. 3. Поле равномерно заряженной бесконечной плоскости с поверхностной плотностью заряда + σ В качестве замкнутой поверхности возьмем цилиндр, основания которого параллельны плоскости, и который делится заряженной плоскостью на две равные половины.


Теорема Ирншоу Система неподвижных электрических зарядов не может находиться в устойчивом равновесии. Заряд + q будет находиться в равновесии, если при его перемещении на расстояние dr со стороны всех остальных зарядов системы, расположенных вне поверхности S, будет действовать сила F, возвращающая его в исходное положение. Имеется система зарядов q 1, q 2, … q n. Один из зарядов q системы охватим замкнутой поверхностью S. n – единичный вектор нормали к поверхности S.


Теорема Ирншоу Сила F обусловлена полем Е, созданным всеми остальными зарядами. Поле всех внешних зарядов Е должно быть направлено противоположно направлению вектора перемещения dr, то есть от поверхности S к центру. Согласно теореме Гаусса, если заряды не охватываются замкнутой поверхностью, то Ф Е = 0. Противоречие доказывает теорему Ирншоу.




0 вытекает больше, чем втекает. Ф 0 вытекает больше, чем втекает. Ф 33 Закон Гаусса в дифференциальной форме Дивергенция вектора – число силовых линий, приходящихся на единицу объема, или плотность потока силовых линий. Пример: из объема вытекает и втекает вода. Ф > 0 вытекает больше, чем втекает. Ф 0 вытекает больше, чем втекает. Ф 0 вытекает больше, чем втекает. Ф 0 вытекает больше, чем втекает. Ф 0 вытекает больше, чем втекает. Ф title="Закон Гаусса в дифференциальной форме Дивергенция вектора – число силовых линий, приходящихся на единицу объема, или плотность потока силовых линий. Пример: из объема вытекает и втекает вода. Ф > 0 вытекает больше, чем втекает. Ф





Графическое изображение электрического поля

Электрическое поле – это особый вид материи, существующий вокруг тел или частиц, обладающих электрическим зарядом, а также при изменении магнитного поля – например, в электромагнитных волнах. Электрическое поле непосредственно невидимо, но может быть обнаружено благодаря его силовому воздействию на заряженные тела.

Основное свойство электростатистического поля заключается в его воздействии на неподвижные электрические заряды.

Для количественного определения электрического поля вводится силовая характеристика − напряженность электрического поля.

Напряженностью электрического поля называют физическую величину, равную отношению силы, с которой поле действует на положительный пробный заряд, помещенный в данную точку пространства, к величине этого заряда: E→=F→q.E→=F→q .

Напряженность электрического поля – векторная физическая величина. Направление вектора E→E→ в каждой точке пространства совпадает с направлением силы, действующей на положительный пробный заряд.

Электрическое поле неподвижных и не меняющихся со временем зарядов называется электростатическим. Во многих случаях для краткости это поле обозначают общим термином – электрическое поле

Если с помощью пробного заряда исследуется электрическое поле, создаваемое несколькими заряженными телами, то результирующая сила оказывается равной геометрической сумме сил, действующих на пробный заряд со стороны каждого заряженного тела в отдельности. Следовательно, напряженность электрического поля, создаваемого системой зарядов в данной точке пространства, равна векторной сумме напряженностей электрических полей, создаваемых в той же точке зарядами в отдельности: E→=E→1+E→2+... .E→=E→1+E→2+... .

Это свойство электрического поля означает, что поле подчиняется принципу суперпозиции .

В соответствии с законом Кулона напряженность электростатического поля, создаваемого точечным зарядом Q на расстоянии r от него, равна по модулюE=14πε0ċQr2.E=14πε0ċQr2.

Это поле называется кулоновским. В кулоновском поле направление вектора E→E→ зависит от знака заряда Q: если Q > 0, то вектор E→E→ направлен по радиусу от заряда, если Q

Для наглядного изображения электрического поля используют силовые линии. Эти линии проводят так, чтобы направление вектора E→E→ в каждой точке совпадало с направлением касательной к силовой линии (рис. 1.). При изображении электрического поля с помощью силовых линий, их густота должна быть пропорциональна модулю вектора напряженности поля.

Рисунок 1 - Силовые линии электрического поля

Силовые линии кулоновских полей положительных и отрицательных точечных зарядов изображены на рисунке 2. Так как электростатическое поле, создаваемое любой системой зарядов, может быть представлено в виде суперпозиции кулоновских полей точечных зарядов, изображенные на рисунке 2 поля можно рассматривать как элементарные структурные единицы («кирпичики») любого электростатического поля.

Рисунок 2 - Силовые линии кулоновских полей

Кулоновское поле точечного заряда Q удобно записать в векторной форме. Для этого нужно провести радиус-вектор r→r→ от заряда Q к точке наблюдения. Тогда при Q > 0 вектор E→E→ параллелен r→,r→, а при Q .

Исследование электростатического поля с помощью электропроводной бумаги

Электрическое поле и его характеристики. Графическое изображение электрического поля. Силовые линии и эквипотенциальные поверхности.

Электрическое поле – особый вид материи, существующий вокруг тел или частиц, обладающих электрическим зарядом, а также при изменении магнитного поля (например, в электромагнитных волнах). Электрическое поле непосредственно невидимо, но может быть обнаружено благодаря его силовому воздействию на заряженные тела.

Основное свойство электростатического поля заключается в его воздействии на неподвижные электрические заряды.

Для количественного определения электрического поля вводится силовая характеристика - напряженность электрического поля.

Напряженность электрического поля – векторная физическая величина, численно равная силе, действующей на единичный положительный точечный заряд, помещенный в данную точку поля:

Направление вектора Е совпадает в каждой точке пространства с направлением силы, действующей на единичный положительный заряд.

Электрический потенциал – это энергетическая характеристика электрического поля, которая выражает его напряжённость. Она определяет «потенциал», запас энергии, работу, которую можно будет совершить.

Потенциал численно равен потенциальной энергии единичного точечного положительного заряда, помещённого в данную точку поля:

Каждая точка электрического поля обладает потенциалом, а между двумя разными точками образуется разница потенциалов и возникает напряжение . Оно характеризует тот запас энергии, который может высвободиться при перемещении заряда между этими двумя точками внутри рассматриваемого электрического поля.

Напряжение определяется отношением работы электрического поля A к величине заряда q , который перемещается в нём:

Для наглядного графического представления поля удобно использовать силовые линии – направленные линии, касательные к которым в каждой точке совпадают с направлением вектора напряженности электрического поля (рис. 153).

Силовые линии поля, создаваемого точечным зарядом, представляют собой набор прямых, выходящих (для положительного), или входящих (для отрицательных) в точку расположения заряда (рис. 154).

Свойства силовых линий электрического поля:

1.Силовые линии не пересекаются.

2.Силовые линии не имеют изломов.

3.Силовые линии электростатического поля начинаются и заканчиваются на зарядах или уходят в бесконечность.

Эквипотенциальная поверхность – поверхность, во всех точках которой потенциал электрического поля имеет одинаковое значение:

φ (х; y; z ) = const.

Эквипотенциальные поверхности замкнуты и не пересекаются. Между двумя любыми точками на эквипотенциальной поверхности разность потенциалов равна нулю. Это означает, что вектор силы в любой точке траектории движения заряда по эквипотенциальной поверхности перпендикулярен вектору скорости. Следовательно, линии напряженности электростатического поля перпендикулярны эквипотенциальной поверхности.

Работа сил электрического поля при любом перемещении заряда по эквипотенциальной поверхности dA = 0, так как dφ = 0.

Эквипотенциальными поверхностями поля точечного электрического заряда являются сферы, в центре которых расположен заряд (рис.136).

Эквипотенциальные поверхности однородного электрического поля представляют собой плоскости, перпендикулярные линиям напряженности (рис.137).