Какие химические элементы могут быть радиоактивными. Самые удивительные вещества

Немногие знают, что радиоактивные вещества могут таиться в самых повседневных и, на первый взгляд, безопасных предметах. Более того, многие из нас ежедневно сталкиваются с ними, и результаты от подобных «встреч» бывают самыми разными. Поэтому каждый человек должен понимать, что именно подразумевают под данной формулировкой и где может скрываться опасность. Тем более что с каждым годом радиация окутывает нас всё более плотным покрывалом….

Смертельное излучение

Для начала разберёмся, какие вещества относятся к радиоактивным. Всем известно, что такое периодическая система химических элементов Менделеева. На сегодняшний день в неё входит около 120 веществ, каждое из которых содержит атомное ядро. Некоторые из них способны распадаться на материнское и дочернее. В ходе этого процесса происходит высвобождение опасного излучения.

Разные химические элементы характеризуются определённым периодом полураспада ядра. Разъяснение данного явления звучит так: «время, за которое количество выживших частиц снижается в два раза».

Процесс распада будет происходить до тех пор, пока не появится стабильное, то есть нерадиоактивное и безопасное ядро. При этом в окружающую среду будут выделяться частицы, несущие разную степень опасности. Встречаются следующие их разновидности:

  • альфа: самые слабые, они не способны преодолеть расстояние более 5 см и могут быть остановлены обычным бумажным листком;
  • бета: способны проникать под кожу человека на глубину в несколько сантиметров;
  • гамма-лучи (или изомерный переход): в состоянии проникнуть ко внутренним органам;
  • нейтронное: в природе не существует, является делом человеческих рук; спрятаться от такой разновидности излучения практически невозможно.

Радиоактивные вещества – это все элементы, которые расположены после свинца (а он находится под номером 81). Время их полураспада может составлять от нескольких десятков секунд до миллиардов лет. Чем меньше этот показатель, тем опасней элемент: так он может быстрее попасть в клетки растений, животных и человека.

От того, насколько велика была доза, зависит многое. Радиация может накапливаться много лет, постепенно выводя из строя один орган за другим, а может нанести один мощный удар, в результате которого живое существо погибнет в короткие сроки.

От кальция до ливермория

Полный список радиоактивных веществ впечатляет! Ведь в нём не менее 80 позиций, среди которых встречаются те, которые далёкий от химии человек никогда бы не подумал заподозрить в наличии опасных свойств. К примеру, кальций, из которого состоит скелет каждого человека. Или калий, необходимый для нормальной работы сердца. Или селен – врачи называют его микроэлементом долголетия… Но есть и радиоактивные вещества, известные даже обывателю. Среди них:

  • полоний;
  • стронций;
  • цезий;
  • радий;
  • висмут;
  • франций;
  • резерфордий;
  • германий.

Некоторые радиоактивные вещества встречаются в природе. Как правило, они отличаются максимально продолжительным периодом распада и неспособны нанести большой вред человеку.

Другая группа химических элементов была создана в лабораторных условиях. Именно в ней встречаются наиболее опасные представители.

Так, самые опасные вещества на сегодняшний день – ливерморий и унунпентий. Широкому кругу людей они неизвестны, и это скорее хорошо, чем плохо.

Ведь эти элементы не встречаются в природе: они синтезированы искусственным путём. Время их распада – 61 и 87 секунд соответственно. Для сравнения: у всем известного и чрезвычайно опасного полония-210 данный показатель составляет 138 дней и 9 часов.

Невидимая опасность

Радиоактивные вещества обладают рядом специфических свойств.

  • Отсутствие запаха, цвета, вкуса. Это делает их особенно опасными, ведь человек может жить рядом с источником радиации много лет и даже не подозревать об этом.
  • Способность поражать на значительном расстоянии от источника. Оно может достигать нескольких сотен метров.
  • Распад этих веществ не зависит от внешних факторов. Поэтому опасность нельзя устранить химическим, физическим или каким-нибудь другим путём.

Где же могут находиться радиоактивные вещества, опасные для человека? В первую очередь, в воде и воздухе. Оттуда они попадают в растения, которые являются частью рациона питания. Доказано, что чаще всего радионуклиды встречаются в капусте и свёкле.

Однако очистка овощей от кожуры и последующая термическая обработка способны уменьшить концентрацию опасных веществ почти вдвое.

Другое дело – радиоактивные вещества, находящиеся в стройматериалах. Существуют даже определённые нормативы, которые определяют максимально допустимую концентрацию урана, тория и калия-40 в минеральном сырье. Благонадёжные компании следуют этим стандартам. Однако на строительном рынке всегда существует риск столкнуться с теми, кто не готов усложнять свою жизнь какими-то нормативами. И в этом случае человек может приобрести квартиру или дом, которые были построены из опасных материалов.

За примерами не нужно далеко ходить! Так, при строительстве одного из омских домов был использован гранитный щебень, добытый на севере Казахстана, а точнее в Макинском массиве. Существуют данные, согласно которым этот щебень содержит до 20 г/т урана и до до 60 г/т тория. Как результат – нормативы по мощности гамма-излучения в этом доме были значительно превышены.

Осторожно, радиация!

Разумеется, человеку сложно защитить себя от радиации на все 100%. Однако, если быть внимательными и следовать некоторым правилам, можно свести возможность поражения к минимуму.

Для этого нужно время от времени осуществлять замеры в помещениях, где вы часто находитесь. Специальные дозиметры и радиометры помогут получить достоверные данные.

Кстати, эти же приборы позволят определить, есть ли радиоактивное вещество в продуктах питания.

Кроме того, желательно избавить дом от некоторых предметов. Например, часов со светящимся циферблатом: есть вероятность, что они произведены с участием радия. А при строительстве обязательно запрашивать у продавцов материалов документы, свидетельствующие о радиационной безопасности товара.

Конечно, полностью обезопасить себя не удастся, и риски есть всегда. Но задача каждого человека – внимательно следить за своим здоровьем, за тем, что он ест и в каких условиях проживает.

Источник:

РАДИОАКТИВНЫЕ ВЕЩЕСТВА

вещества, которые содержат (в высокой концентрации) радионуклиды.

Радиоактивные вещества

не относящиеся к ядерным материалам вещества, испускающие ионизирующее излучение.

Федеральный закон от 21.11.95 N 170-ФЗ, ст.3

РАДИОАКТИВНЫЕ ВЕЩЕСТВА

по определению ФЗ «Об использовании атомной энергии» от 20 октября 1995 г. «не относящиеся к ядерным материалам вещества, испускающие ионизирующее излучение».

Вещества радиоактивные

вещества в любом агрегатном состоянии, содержащие радионуклиды с активностью, на которые распространяются требования норм радиационной безопасности нрб-99 и санитарных правил сп 2.6.1.758-99.

Радиоактивные вещества

вещи (в т.ч. вещества),

радиоактивные отходы

(«Порядок организации таможенного контроля за радиоактивными

веществами», утв. приказом Государственного таможенного

комитета Республики Беларусь от 23.12.97 г. N 434-ОД)

РАДИОАКТИВНЫЕ ВЕЩЕСТВА

вещества естественного или искусственного происхождения, содержащие в своем составе радиоактивные изотопы. Это не относящиеся к ядерным материалам вещества, испускающие ионизирующее излучение. К ним относятся, напр., тритий, уран, торий, актиний, натрий22, стронций-89, технеций, цезий-137, радий-228 и др. радионуклиды, находящиеся в газообразном, жидком или твердом состоянии способные к самопроизвольному распаду и выделению вследствие этого альфа-, беттаи гамма-излучений. Многие Р. в. обладают повышенной поражающей способностью и способны причинить вред живым организмам (лучевая болезнь, ослабление иммунитета, интоксикация и т. п. патологические процессы) и заразить окружающую среду. Процесс распада в Р. в. осуществляется непрерывно, в связи с чем безопасное обращение с ними при их использовании и хранении возможно лишь с применением специальных средств защиты. В российском уголовном праве Р. в. являются предметами ряда преступлений, предусмотренных УК РФ.

Совершение преступления с использованием Р. в. признается обстоятельством, отягчающим наказание.

ВЕЩЕСТВА РАДИОАКТИВНЫЕ

вещества, содержащие естественные или искусственные радиоактивные изотопы. В больших количествах В.р. образуются при ядерных взрывах и работе ядерных реакторов. Попадая в окружающую среду, В.р. приводят к радиоактивному загрязнению местности (акватории) и атмосферы, опасному для здоровья людей и животных. Распад радиоактивных изотопов сопровождается ионизирующим излучением - электромагнитным (рентгеновские и гамма-лучи) и корпускулярным (альфа- и бета-частицы, поток нейтронов и протонов), проникающим в живые ткани и производящим ионизацию атомов и молекул. Рентгеновские лучи - электромагнитное излучение с длиной волны 10–5-102 нм, проникающие через некоторые материалы. Испускаются при торможении быстрых электронов в веществе и при переходах электронов с внешних электронных оболочек атома на внутренние. Источники - рентгеновская трубка, некоторые радиоактивные изотопы, ускорители и накопители электронов. Приемники - фотопленки, люминисцентные экраны, детекторы ядерных излучений. Рентгеновские лучи применяют в медицине, дефектоскопии, рентгеновском структурном и спектральном анализе. Гамма-излучение - коротковолновое электромагнитное излучение, обладает большой энергией (до 5 Мэв у природных радиоактивных веществ и до 70 Мэв при искусственных ядерных реакциях) и может проникать через большие толщи вещества, для человека особенно опасно при внешнем облучении. Альфа-излучение - испускание ядер атомов гелия (альфа-частиц), которое ввиду малой проникающей способности (порядка долей миллиметра) практическую опасность представляет только при попадании внутрь организма. Альфа-частицы обладают большой энергией (от 2 до 9 Мэв) и высокой ионизирующей способностью. Бета-излучение - поток электронов или позитронов (бета-частиц), испускаемых атомными ядрами при бета-распаде радиоактивных изотопов. Проникающая способность бета-частиц не превышает нескольких мм, поэтому при внешнем облучении организма поражаются лишь поверхностные ткани. Нейтрон - нейтральная элементарная частица. Вместе с протонами образует атомное ядро. Протон - стабильная элементарная частица, имеющая положительный заряд. Мощный поток нейтронов и протонов, образующийся при ядерных реакциях деления и синтеза, обладает большой проникающей и ионизирующей способностью.

Радиоактивные элементы

Радиоактивные элементы, химическиеэлементы, все изотопы которых радиоактивны. К числу радиоактивных элементов принадлежат технеций (атомный номер 43), прометий (61), полоний (84) и все последующие элементы в периодической системе Менделеева. К 1975 известно 25 радиоактивных элементов. Те из них, которые расположены в периодической системе за ураном, называются трансурановыми элементами. 14 радиоактивных элементов с атомным номером 90-103 во многом сходны между собой; они составляют семейство актиноидов. Из природных радиоактивных элементов только два - торий (атомный номер 90) и уран (92) имеют изотопы, периоды полураспада которых (T 1 /2) сравнимы с возрастом Земли. Это 232 Th (T 1 /2 = 1,41×10 10 лет), 235 U (T 1 /2 = 7,13×10 8 лет) и 238 U (T 1 /2 = 4,51×10 9 лет). Поэтому торий и уран сохранились на нашей планете со времён её формирования и являются первичными радиоактивными элементами. Изотопы 232 Th, 235 U и 238 U дают начало естественным радиоактивным рядам, в состав которых входят в качестве промежуточных членов вторичные природные радиоактивные элементы с атомными номерами 84-89 и 91.

Периоды полураспадов всех изотопов этих элементов сравнительно невелики, и, если бы их запасы не пополнялись непрерывно за счёт распада долгоживущих изотопов U и Th, они давно бы уже полностью распались.

Радиоактивные элементы с атомными номерами 43, 61, 93 и все последующие называются искусственными, т.к. их получают с помощью искусственно проводимых ядерных реакций. Это деление радиоактивных элементов на природные и искусственные довольно условно; так, астат (атомный номер 85) был сначала получен искусственно, а затем обнаружен среди членов естественных радиоактивных рядов. В природе найдены также ничтожные количества технеция, прометия, нептуния (атомный номер 93) и плутония (94), возникающих при делении ядерурана - либо спонтанном, либо вынужденном (под действием нейтронов космических лучей и др.).

Два радиоактивных элемента - Th и U - образуют большое число различных минералов. Переработка природного сырья позволяет получать эти элементы в больших количествах. Радиоактивные элементы - члены естественных радиоактивных рядов - могут быть выделены радиохимическими методами из отходов производства Th и U, а также из торий- или урансодержащих препаратов, хранившихся долгое время. Np, Pu и др. лёгкие трансурановые элементы получают в атомных реакторах за счёт ядерных реакцийизотопа 238 U с нейтронами. С помощью различных ядерных реакций получают и тяжёлые трансурановые элементы Tc и Pm образуются в атомных реакторах и могут быть выделены из продуктов деления.

Многие радиоактивные элементы имеют важное практическое значение. U и Ри используют как делящийся материал в ядерных реакторах и в ядерном оружии. Облучение тория (его природного изотопа 232 Th) нейтронами позволяет получить изотоп 233 U - делящийся материал. Pm, Po, Pu и др. Радиоактивные элементы применяют для изготовления атомных электрических батареек со сроком непрерывной работы до нескольких лет. См. статьи об отдельных радиоактивных элементах, а также Радиоактивные минералы, Ториевые руды, Урановые руды.

Лит.: Несмеянов Ан. Н., Радиохимия, М., 1972.

С. С. Бердоносов.

Рис. к ст. Радиоактивные элементы.

Главная | Основы безопасности жизнедеятельности | Материалы к урокам | Материалы к урокам ОБЖ для 8 класса | План проведения занятий на учебный год |

Основы безопасности жизнедеятельности
8 класс

Урок 18

Последствия радиационных аварий

Для аварий на радиационно опасных объектах характерен выброс радиоактивных продуктов в окружающую среду . Он приводит к радиационному загрязнению воздуха, воды, почвы и, следовательно, к облучению персонала объекта, а в некоторых случаях и населения (см. схему 11). При этом из атомных реакторов выбрасываются в атмосферу радиоактивные вещества в виде мельчайших пылинок и аэрозолей. Может произойти разлив жидкости, приводящий к радиоактивному загрязнению местности, водоемов.

Радиоактивные вещества имеют специфические свойства:

— у них нет запаха, цвета, вкусовых качеств или других внешних признаков, из-за чего только приборы могут указать на заражение людей, животных, местности, воды, воздуха, предметов домашнего обихода, транспортных средств, продуктов питания;
— они способны вызывать поражение не только при непосредственном соприкосновении, но и на расстоянии (до сотен метров) от источника загрязнения;
— поражающие свойства радиоактивных веществ не могут быть уничтожены химическим и/или каким-либо другим способом, так как их радиоактивный распад не зависит от внешних факторов, а определяется периодом полураспада данного вещества.

Период полураспада - это время, в течение которого распадается половина всех атомов радиоактивного вещества. Период полураспада различных радиоактивных веществ колеблется в широких временных пределах.

При радиационной аварии происходит загрязнение продуктов питания, воды и водоемов, что влечет за собой возникновение у людей и животных различных форм лучевой болезни, тяжелых отравлений, инфекционных заболеваний.

В результате аварийного выброса радиоактивных веществ в атмосферу возможны виды радиационного воздействия на людей и животных, приведеиные на рисунке.

Особенности радиоактивного загрязнения (заражения) местности

Радиоактивное загрязнение при аварии на предприятии (объекте) ядерной энергетики имеет несколько особенностей:

— радиоактивные продукты легко проникают внутрь помещений, так большая часть их находится в парообразном или аэрозольном состоянии;
— наибольшую опасность представляет внутреннее облучение, обусловленное попаданием радиоактивных веществ внутрь организма;
— при большой продолжительности радиоактивного выброса, когда направление ветра может многократно меняться, возникает вероятность радиоактивного загрязнения местности практически во все стороны от источника аварии.

Рассмотрим характерные особенности радиоактивного загрязнения местности при авариях на АЭС в отличие от радиоактивного загрязнения местности при ядерных взрывах.

При наземном ядерном взрыве в его облако вовлекаются десятки тысяч тонн грунта. Радиоактивные частицы смешиваются с минеральной пылью, оплавляются и оседают на местности.

Воздух загрязняется незначительно. Формирование следа радиоактивного облака завершается за несколько часов. За это время метеорологические условия, как правило, резко не изменяются, и след облака имеет конкретные геометрические размеры и очертания. В этом случае главную опасность для людей, оказавшихся на следе радиоактивного облака, представляет внешнее облучение (90-95% общей дозы облучения). Доза внутреннего облучения незначительна. Она обусловлена попаданием внутрь организма радиоактивных веществ через органы дыхания и с продуктами питания.

При авариях на АЭС значительная часть продуктов деления ядерного топлива находится в парообразном или аэрозольном состоянии. Их выброс в атмосферу может продолжаться от нескольких суток до нескольких недель. Воздействие радиоактивного загрязнения окружающей среды на людей в первые часы и сутки после аварии определяется как внешним облучением от радиоактивного облака и радиоактивных выпадений на местности, так и внутренним облучением в результате вдыхания радионуклидов из облака выброса. В последующем в течение многих лет вредное воздействие и накопление дозы облучения у людей будет обусловлено вовлечением в биологическую цепочку выпавших радионуклидов и употреблением загрязненных продуктов питания и воды. Суммарную дозу облучения, прогнозируемую на 50 ближайших после аварии лет, в этом случае принято рассчитывать следующим образом: 15% -внешнее облучение, 85% - внутреннее облучение.

Характер поражения людей и животных.
Загрязнение сельскохозяйственных растений и продуктов питания

При авариях на ядерных энергетических установках сложно создать условия, полностью предохраняющие людей от облучения .

Однако, зная, что воздействие ионизирующих излучений на отдельные ткани и органы человека не одинаково, его можно значительно ослабить.

Итак, одни органы более чувствительны к воздействию ионизирующих излучений, другие - менее .

При сравнительно равномерном облучении организма ущерб здоровью определяют по уровню облучения всего тела, что соответствует первой группе критических органов.

К первой группе критических органов относят также половые органы и красный костный мозг.

Ко второй группе критических органов относят мышцы, щитовидную железу, жировую ткань, печень, почки, селезенку, желудочно-кишечный тракт, легкие, хрусталики глаз.

Третью группу критических органов составляют кожный покров, костная ткань, кисти рук, предплечья, голени и стопы.

При действиях на местности, загрязненной радиоактивными веществами, устанавливают определенные допустимые дозы облучения на тот или иной промежуток времени, которые, как правило, не должны вызывать у людей радиоактивных поражений.

Степень лучевых (радиационных) поражений зависит от полученной дозы излучения и времени , в течение которого человек ему подвергался. Не всякая доза облучения опасна. Если она не превышает 50 Р, то исключена даже потеря трудоспособности. Доза в 200-300 Р, полученная за короткий промежуток времени, может вызвать тяжелые радиационные поражения. Однако такая же доза, полученная в течение нескольких месяцев, не приведет к заболеванию: здоровый организм человека способен за это время вырабатывать новые клетки взамен погибших при облучении.

При определении допустимых доз облучения учитывают, что оно может быть однократным или многократным.

Однократным считают облучение, полученное за первые четверо суток. Оно может быть импульсивным (при воздействии проникающей радиации) или равномерным (при облучении на загрязненной местности).

Облучение, полученное за время, превышающее четверо суток, считают многократным.

Соблюдение установленных пределов допустимых доз облучения исключает возможность массовых радиационных поражений в зонах радиоактивного заражения местности. В табл. 9, 10 приведены возможные последствия острого однократного и многократного облучения организма человека в зависимости от полученной дозы.

Образовавшиеся в процессе аварии ядерной энергетической установки радиоактивные продукты в виде пыли, аэрозолей и других мельчайших частиц оседают на местности. Их разносит ветер, заражая все вокруг. Если запасы продовольствия окажутся не укрытыми или будет нарушена целостность их упаковки, то радиоактивные вещества загрязнят их. Радиоактивные вещества могут быть также занесены в пищу при ее обработке с зараженных поверхностей тары, кухонного инвентаря и оборудования, одежды и рук.

Радиоактивные вещества, попадающие на поверхность продуктов, если они не упакованы, или через щели и неплотности тары, проникают внутрь: в хлеб и сухари - на глубину пор; в сыпучие продукты (муку, крупу, сахарный песок, поваренную соль) - в поверхностные (10-15 мм) и нижележащие слои в зависимости от плотности продукта. Мясо, рыба, овощи и фрукты обычно загрязняются радиоактивной пылью (аэрозолями) с поверхности, к которой она весьма плотно прилипает. В жидких продуктах крупные частицы оседают на дно тары, а мелкие образуют взвеси.

Наибольшую опасность представляет попадание радиоактивных веществ внутрь организма с зараженной ими пищей и водой, причем поступление их в количествах более установленных величин вызывает лучевую болезнь. Поэтому в целях исключения опасного внутреннего облучения организма человека установлены допустимые пределы радиоактивного загрязнения продуктов питания и воды (табл. 11). Их соблюдение необходимо строго контролировать.

Примечание: удельная активность радионуклида - отношение активности радионуклида в образце к массе образца. Активность радионуклида в образце измеряют в кюри (Ки). 1 Ки = 3, 7 1010 ядерных превращений в секунду.

2.2.2. Природные (естественные) радиоактивные вещества

Встречающиеся в природе радиоактивные элементы принято называть естественными. Большинство из них – тяжелые элементы с порядковыми номерами от 81 до 96. Природные радиоактивные элементы путем альфа- и бета-распада превращаются в другие радиоактивные изотопы. Эта цепь радиоактивных превращений называется радиоактивным рядом или семейством.

Тяжелые естественные радиоизотопы образуют четыре радиоактивных семейства: урана-радия; тория; актиния; нептуния. Массовые числа членов урано-радиевого ряда всегда четные и подчиняются закону: А = 4n + 2, где n изменяется от 51 до 59. Для ториевого ряда массовые числа четные и определяются по формуле: А = 4n, где n изменяется от 52 до 58. Для актиниевого ряда массовые числа элементов всегда нечетные и могут быть определены по формуле: А = 4n + 3, где n изменяется от 51 до 58. Массовые числа элементов ряда нептуния нечетные и определяются по формуле: А = 4n + 1, где n изменяется от 52 до 60.

Родоначальники каждого семейства характеризуются очень большими периодами полураспада (см. табл. 2), которые сопоставимы с временем жизни Земли и всей Солнечной системы.

Таблица 2 – Родоначальники естественных радиоактивных семейств

Самый большой период полураспада у тория (14 млрд лет), поэтому он со времени аккреации Земли сохранился почти полностью. Уран-238 распался в значительной степени, распалась подавляющая часть урана-235, а изотоп нептуния-232 распался весь. По этой причине в земной коре много тория (почти в 20 раз больше урана), а урана-235 в 140 раз меньше, чем урана-238. Поскольку родоначальник четвертого семейства (нептуний) со времени аккреации Земли весь распался, то в горных породах его почти нет. В ничтожных количествах нептуний обнаружен в урановых рудах. Но происхождение его вторичное и обязано бомбардировке ядер урана-238 нейтронами космических лучей. Сейчас нептуний получают с помощью искусственных ядерных реакций. Для эколога он не представляет интереса.

Периоды полураспада и типы распада членов естественных радиоактивных рядов приведены в таблице 2.

Естественные радиоактивные семейства обладают рядом общих особенностей, которые заключаются в следующем:

1. Родоначальники каждого семейства характеризуются большими периодами полураспада, находящимися в пределах 10 8 -10 10 лет.

2. Каждое семейство имеет в середине цепи превращений изотоп элемента, относящийся к группе благородных газов (эманацию).

3. За радиоактивными газами следуют твердые короткоживущие элементы.

4. Все изотопы трех радиоактивных семейств распадаются двумя путями: альфа- и бета-распадами. Причем короткоживущие ядра семейств испытывают конкурирующие альфа- и бета-распад, тем самым образуя разветвления рядов. Если при альфа- и бета-распадах ядра не переходят сразу в нормальное состояние, то эти акты сопровождаются гамма-излучением.

Ряды заканчиваются стабильными изотопами свинца с массовыми числами 206, 208 и 207, соответственно, для уранового, ториевого, актиноуранового ряда.

Семейства урана-радия и тория являются активными гамма-излучателями по сравнению с семейством актиния, мощность дозы гамма-излучения которого весьма невелика.

Таким образом, в радиоактивных семействах имеются альфа-, бета- и гамма-излучатели, причем мощность дозы каждого излучения в разных семействах неодинакова. Общее число излучателей того или иного рода для разных семейств приведено в таблице 3.

Таблица 3 – Количество излучателей естественных рядов

Название
ряда

Альфа-излучатели

Бета-излучатели

Гамма-излучатели

общее количество

количество важных

общее количество

количество важных

общее количество

количество важных

Урана-радия

В ряду урана-238 всего 19 радионуклидов и один стабильный изотоп – свинец-206. Наиболее важные альфа-излучатели этого семейства: уран-238, уран-234, торий-230, радий-226, радон-222, полоний-218, полоний-214 и полоний-210. Относительное количество других альфа-излучателей ряда невелико, поэтому они не представляют практического интереса.

К числу существенных бета-излучателей ураново-радиевого ряда относятся: протактиний-234, свинец-214, висмут-214 и висмут-210. Причем, бета-излучение протактиния-234 составляет около 50% от
бета-излучения всех изотопов семейства.

Основную долю (97,9%) в мощность гамма-излучения этого семейства вносят продукты распада радия-226 (свинец-214 и висмут-214) и радона-218 (полоний-214). Торий-234 и протактиний-234 – продукты распада родоначальника семейства (урана-238), дают около 2,1% общей мощности гамма-излучения. Вклад остальных членов ряда в суммарную интенсивность гамма-квантов ничтожно мал.

В ряду актиния находится 14 радиоизотопов и один стабильный изотоп – свинец-207. Поскольку в природном уране актиноурана (урана-235) очень мало, альфа-излучение актиниевого семейства составляет не более 5%, а гамма-излучение – около 1,25% от интенсивности соответствующих лучей ураново-радиевого ряда.

Ряд тория содержит 12 радионуклидов и один стабильный изотоп – свинец-208. Главными альфа-излучателями здесь являются: торий-232,
торий-228, радий-224, радон-220, полоний-216, висмут-212 и полоний-212.

К основным бета-излучателям в ториевом ряду относятся: актиний-228, свинец-212, висмут-212 и таллий-208.

Основной вклад в гамма-излучение ряда тория вносят продукты распада тория-228 (полоний-216, свинец-212, висмут-212 и таллий-208). Их доля – 60,2% всей интенсивности гамма-квантов. Остальная мощность гамма-излучения (39,8%) принадлежит продукту распада радия-228 (актинию-228). Доля остальных гамма-излучателей в общей мощности гамма-излучения ничтожна.

Ниже приведена краткая характеристика важнейших радиоизотопов, входящих в естественные семейства.

Уран (U). Химический элемент с порядковым номером 92. Имеет три природных изотопа 238 U, 235 U и 234 U. Период полураспада первого 4,5×10 9 лет, второго – 7,13×10 8 лет, третьего – 2,52×10 5 лет. Их относительную распространенность в рудах можно выразить так: 99,28; 0,71; 0,006% соответственно.

Этот серебристо-белый металл открыт Клапротом в 1789 году. По внешнему виду металлический уран напоминает железо. Он окисляется в воздухе до самовоспламенения и горит ярким пламенем. Плотность урана 19 г/см 3 , температура плавления 1133°С. Хорошо растворяется в минеральных кислотах.

Уран широко распространен в земной коре. Он содержится в горных породах, почве, воде озер, рек и морей.

Уран-238 является родоначальником уранового семейства. В первичных минералах он практически всегда находится в равновесии со своими короткоживущими продуктами распада, а также со своим долгоживущим изотопом – ураном-235.

Уран-235 (актиноуран) является родоначальником актиноуранового семейства, которое в природе всегда сопутствует семейству урана-238. Актиноуран открыт сравнительно недавно (в 1935 г.), т.е. значительно позднее продуктов его распада, чем и объясняется несоответствие названий актиниевого семейства и его родоначальника.

Ядро урана-235 обладает замечательным свойством. Кроме спонтанного распада он способен делиться при захвате нейтрона с освобождением колоссальной энергии, поэтому является одним из ядерных горючих.

Уран, химически выделенный из руд (естественно, что это смесь всех трех природных изотопов урана) и приготовленный в виде окиси (U 3 O 8), является стабильным источником альфа-излучения. Примерно через год после его выделения устанавливается радиоактивное равновесие между ураном-238 и короткоживущими бета-активными продуктами его распада. Тогда этот препарат может служить в качестве стабильного источника бета-излучения.

Уран связан с рудами осадочного, гидротермального и магматического происхождения. Он содержится более чем в 100 минералах. Среди них наиболее часты окислы урана, соли фосфорной, ванадиевой, кремниевой, мышьяковой, титановой и ниобиевой кислот. Наиболее важные промышленные руды урана представлены первичным минералом – уранинитом (урановой смолкой), представляющим собой окисел урана черного цвета. Кроме того есть множество вторичных минералов урана, которые называются урановыми слюдками. Наиболее распространенные из них:
торбернит – Си(UО 2) 2 (PO 4) 2 ×nH 2 О, отенит – Са(UO 2) 2 (РО 4) 2 ×nН 2 О,
карнотит – K 2 (UО 2) 2 (VО 4) 2 ×3H 2 О, тюямунит – Ca(UO 2) 2 (VO 4) 2 ×8H 2 О.
Из урановых слюдок крупные промышленные скопления образуют только карнотит и тюямунит. Они же являются рудой для получения ванадия и радия.

Уран и радий в России впервые были получены из руды месторождения Тюя-Муюн в Фергане. Носителями этих металлов здесь оказались два минерала из группы урановых слюдок – тюямунит и ферганит. Первый минерал открыт К.А. Ненадкевичем в 1912 г., а второй – И.А. Антиповым в 1899 году.

Торий (Th ) . Химический элемент с порядковым номером 90. Это светло-серый металл с плотностью 11,72 г/см 3 и температурой плавления 1750°С, открытый Берцелиусом в 1828 году. Трудно поддается действию кислот. Он имеет 6 изотопов, из которых долгоживущие только два: торий-232 (Т физ. = 1,39×10 10 лет) и ионий-230 (Т физ. = 8×10 4 лет).

Скорость распада тория очень мала. За 14 миллиардов лет количество атомов тория-232 уменьшается только в 2 раза. Поскольку возраст Земли всего лишь 4,5 млрд лет, то можно полагать, что значительное количество этого элемента сохранилось со времени аккреации нашей планеты.

Руды тория по своему генезису являются магматическими. При разрушении таких месторождений образуются россыпи, обогащенные минералами тория. Основным источником тория служат пески, содержащие минерал монацит – (Се, La, Nd, Th) PО 4 . Особенно богаты монацитом морские россыпи. Промышленное значение имеет также минерал торит – ThSiО 4 .

Актиний (Ас ) . Химический элемент с порядковым номером 89. Серебристо-белый металл с температурой плавления 1050°С, имеющий два изотопа: актиний-227 (Т физ. = 21,8 года) и мезоторий-228 (Т физ. = 6,13 часа).

Актиний, претерпевая альфа- и бета-распад, образует одно из разветвлений ряда актиния. В основном он является бета-излучателем. Ядерных гамма-лучей этот радионуклид не имеет. В смеси с бериллием актиний служит для приготовления источников нейтронов. Актиний встречается в рудах урана и тория.

Радий (Ra ) . Химический элемент с порядковым номером 88. Это серебристо-белый блестящий металл с плотностью 6 г/см 3 и температурой плавления 700°С, открытый в начале XX века супругами Кюри, имеет 4 изотопа: радий-226 (Т физ. = 1602 года), мезоторий-228 (Т физ. = 6,7 года), актиний Х-223 (Т физ. = 11,4 сут.) и торий Х-224
(Т физ. = 3,64 сут.). По химическим свойствам радий близок к барию, изоморфно замещает последний в минералах: барите (сульфат бария) и витерите (карбонат бария). В природных водах радий встречается в виде хлорида.

В результате альфа-распада радия-226, сопровождаемого гамма-излучением, образуется радиоактивный газ – радон (эманация). В закрытом сосуде радон через 40 дней приходит в состояние радиоактивного равновесия с радием, находящимся в сосуде. После этого срока препарат можно использовать в качестве эталонного источника гамма-излучения.

Радон приходит в равновесие со своими короткоживущими продуктами распада (Ra A, Ra В, и Ra С) через 3 часа. Другой изотоп радия – мезоторий-1, обладает мягким бета-излучением, интенсивность гамма-излучения его невелика.

Изотопы радия широко распространены в горных породах и рудах, но в чрезвычайно малых концентрациях. На 3 тонны урана приходится 1 г равновесного радия. Поскольку в различных горных породах радий встречается в неодинаковых концентрациях, то это его свойство используется для диагностики петрографических разностей по гамма-лучам. Добывается радий из урановых руд. Он широко применяется в медицине для лучевой терапии.

Радон (Rn ) . Химический элемент с порядковым номером 86. Это тяжелый инертный радиоактивный газ с плотностью 9,73 г/л. Он бесцветен и хорошо растворяется в воде. Имеет 4 изотопа: радон-222
(Т физ. =3,823 дня), радон-218 (Т физ. =1,9´10 -2 с), торон-220 (Т физ. =54,5 с) и актинон-219 (Т физ. = 3,92 с). Все они принадлежат к группе благородных газов, обладают альфа-активностью и других излучений не имеют. Радоновая эманация является источником активных осадков. Радон в смеси с бериллием используется в научных исследованиях и медицине как источник нейтронов.

Астат (At ) . Химический элемент из группы галогенов с порядковым номером 85. В переводе с греческого «астат» означает «нестабильный», т.к. это единственный галоген, не имеющий стабильных изотопов. Все четыре изотопа астата радиоактивны: астат-210 (Т физ. = 8,3 ч), астат-218 (Т физ. = 2 с), астат-215 (Т физ. = 1×10 -4 с) и астат-216 (Т физ. =
= 3×10 -4 с).

В незначительных количествах астат входит во все три естественные радиоактивные семейства. Его изотопы альфа-активны. Небольшая часть астата претерпевает бета-распад.

Полоний (Ро ) . Химический элементе с порядковым номером 84. Это мягкий серебристо-белый металл с плотностью 9,3 г/см 3 и температурой плавления 254° С. Полоний имеет 8 радиоактивных изотопов: полоний-209 (Т физ. = 103 года), полоний-210 (Т физ. = 140 сут.), радий А-218 (Т физ. = 3,05 мин), торий А-216 (Т физ. = 0,158 с), актиний Ас-215 (Т физ. = = 1,83 × 10 -3 с), радий-214 (Т физ. = 1,55 × 10 -4 с), торий (Т физ. = 3 × 10 -7 с), актиний (Т физ. = 5 × 10 -3 с).

Полоний является чистым альфа-излучателем, что позволяет широко использовать его в лабораторных исследованиях. В смеси с бериллием он представляет собой лучший источник нейтронов.

Свинец (Рв ) . Химический элемент с порядковым номером 82. Представляет собой синевато-серый мягкий ковкий металл с плотностью 11,34 г/см 3 и температурой плавления 327,4°С, химически стойкий. Свинец имеет 3 устойчивых изотопа: свинец-206 (радий G), свинец-207 (актиний D), свинец-208 (торий D), и 4 радиоактивных: свинец-210 (радий D, Т = 22 года), свинец-212 (торий В, Т = 10,6 часа), свинец-211 (актиний В, Т = 36,1 мин), свинец-214 (радий В, Т = 26,8 мин).

Устойчивые изотопы свинца с массовыми числами 206, 207 и 208 являются конечными продуктами распада трех естественных радиоактивных рядов. Эти изотопы нерадиоактивны, но всегда присутствуют в радиоактивных рудах. Отношение количества нерадиоактивного свинца к содержанию радиоактивных элементов (урана, тория) в горных породах и рудах позволяет определить абсолютный возраст геологических образований. Остальные четыре изотопа свинца радиоактивны. Все они распадаются путем бета-излучения. Продукты распада радия D кроме бета-лучей выделяют альфа-лучи, поэтому из свинца-210 получают стандартные источники бета- и альфа-излучения.

Свинец применяют в качестве экранов и фильтров для гамма-излучения. Применение его для экранирования альфа- и бета-излучения нецелесообразно, поскольку в свинце всегда содержится некоторое количество радиоактивных изотопов, особенно радия D. В природе встречаются и другие радиоактивные изотопы свинца (с массовыми числами 200, 201 и 203), но количество их ничтожно.

Естественные радиоизотопы, не входящие в радиоактивные семейства. Кроме естественных радиоактивных элементов, являющихся членами трех рассмотренных выше естественных рядов, в природе имеются изотопы, генетически не связанные между собой, но обладающие радиоактивностью. Количество таких радиоизотопов превышает 200, период полураспада их колеблется от долей секунды до миллиардов лет.

Интерес для эколога представляют изотопы с большим периодом полураспада: калий-40, рубидий-87, самарий-147, углерод-14, лютеций-176 и рений-187. Радиоактивный распад ядер этих элементов представляет собой изолированный акт, т.е. после распада образуется устойчивый дочерний изотоп. Как видно из таблицы 4, все перечисленные ядра подвержены бета-распаду, за исключением самария, который претерпевает альфа-распад.

Таблица 4 – Естественные радиоактивные изотопы, не входящие в семейства

Атомный номер

Массовое число

Период полураспада

Тип
распада

1,3×10 9 лет

Углерод-14

Рубидий-87

5,8×10 10 лет

Самарий-147

6,7×10 11 лет

Лютеций-176

2,4×10 10 лет

4×10 12 лет

Из шести приведенных естественных радионуклидов наибольший интерес представляет калий-40, ввиду его большой распространенности в земной коре. Природный калий содержит три изотопа: калий-39, калий-40 и калий-41, из которых только калий-40 радиоактивен. Количественное соотношение этих трех изотопов в природе выглядит так: 93,08; 0,012; 6,91%.

Калий-40 распадается двумя путями. Около 88% его атомов испытывают бета-излучение и превращаются в атомы кальция-40. На один акт распада калия-40 приходится в среднем 0,893 бета-частиц с энергией 1311 кэВ и 0,107 гамма-квантов с энергией 1461 кэВ. Остальные 12% атомов, испытывая К-захват, превращаются в атомы аргона-40. На этом свойстве калия-40 основан калий-аргоновый метод определения абсолютного возраста горных пород и минералов.

Рубидий. Природный рубидий состоит из двух изотопов: рубидия-85 и рубидия-87. Радиоактивным является второй изотоп, который испускает мягкие бета-лучи с максимальной энергией 0,275 МэВ и гамма-лучи с энергией 0,394 МэВ.

Таким образом, наибольшее значение имеет 87 Rb, второе место по количеству занимает радиоизотоп 40 К, но радиоактивность 40 К в земной коре превышает радиоактивность суммы всех других естественных радиоактивных элементов за счет того, что распад 40 К сопровождается жестким бета- и гамма-излучением, а 87 Rb характеризуется мягким бета-излучением и имеет длительный период полураспада.

Таблица 5 – Концентрация некоторых радионуклидов и мощности
поглощенных доз в почвах различных типов

Типы почв

Концентрация, пКи/г

Мощность
поглощенной
дозы, мкрад/ч

Серо-коричневая

Каштановая

Чернозем

Серая лесная

Дерново-подзолистая

Подзолистая

Торфянистая

Пределы колебаний

Самарий. Из семи известных изотопов этого элемента только самарий-147 является радиоактивным. Его доля в природном самарии составляет около 15%. Он испускает альфа-лучи с энергией 2,11 МэВ, пробег которых в воздухе составляет 11,6 мм.

Лютеций . Известно несколько его изотопов, но радиоактивен только лютеций-176. Подобно калию, он распадается двумя путями: бета-распадом и К-захватом. Максимальная энергия бета-лучей около 0,4 МэВ. Гамма-излучение обладает энергией 0,270 МэВ.

Рений . Радиоактивным является изотоп рений-187, доля которого в природном рении составляет 63%. Испускает бета-лучи с энергией 0,04 МэВ.

Особое место среди природных радиоизотопов занимает углерод. Природный углерод состоит из двух стабильных изотопов, среди которых преобладает углерод-12 (98,89%). Остальная часть почти целиком приходится на изотоп углерод-14 (1,11%).

Помимо стабильных изотопов углерода известны еще пять радиоактивных. Четыре из них (углерод-10, углерод-11, углерод-15 и углерод-16) характеризуются весьма малыми периодами полураспада (секунды и доли секунды). Пятый радиоизотоп, углерод-14, имеет период полураспада 5730 лет.

В природе концентрация углерода-14 крайне мала. Например, в современных растениях один атом этого изотопа приходится на 10 9 атомов углерода-12 и углерода-13. Однако с появлением атомного оружия и ядерной техники углерод-14 получается искусственно при взаимодействии медленных нейтронов с азотом атмосферы, поэтому количество его постоянно растет.

Наиболее весомыми из всех естественных источников радиации
является невидимый, не имеющий запаха и вкуса, тяжелый (в 7,5 раза тяжелее воздуха) газ радон, который вместе с другими дочерними продуктами распада ответственен за 75% годовой индивидуальной эффективной эквивалентной дозы, получаемой населением от земных источников радиации и за 50% дозы от всех естественных источников радиации. Радон в виде 222 Rn и 220 Rn выделяется из земной коры повсеместно, но основную дозу человек получает находясь в закрытом, непроветриваемом помещении (уровень радиации выше в 8 раз, чем в наружном воздухе) за счет следующих источников: поступление из почвы, фундамента, перекрытия; высвобождение из строительных материалов жилых помещений составляет 60 кБк/сут., из наружного воздуха проникает 10 кБк/сут., высвобождается из воды, используемой в бытовых целях – 4 кБк/сут., выделяется из природного газа при его сгорании – 3 кБк/сут.

Больших концентраций радон достигает в помещениях, если дом стоит на грунте с повышенным содержанием радионуклидов или если при его строительстве использованы материалы с повышенной радиоактивностью.

Таблица 6 – Средняя удельная радиоактивность строительных материалов

Примечание. В таблице представлены материалы НКДАР ООН, 1982 год.

По сведениям ученых Марийского государственного университета (Новоселов Г.Н., Леухин А.В., Ситников Г.А., 1997) наиболее высокой удельной активностью обладал каменноугольный шлак (А эфф. =
= 437 Бк/кг), гранит. Более низкая удельная радиоктивность была у мрамора, керамического кирпича (А эфф. = 335 Бк/кг), силикатного кирпича (А эфф. = 856 Бк/кг), песка строительного (А эфф. = 114 Бк/кг). Для бетона характерен достаточно большой диапазон вариации удельной радиоактивности.

В качестве других источников земной радиации следует назвать каменный уголь, фосфаты и фосфорные удобрения, водоемы и др.

В целом естественные источники ИИ ответственны примерно за 90% годовой эффективной эквивалентной дозы облучения, из этой дозы на долю земных источников приходится 5/6 частей (в основном за счет внутреннего облучения), на долю космических источников – 1/6 часть (в основном путем внешнего облучения).

2.2.2.1. Радиоактивность оболочек Земли

Первые наблюдения радиоактивности почв и горных пород были проведены в самом начале XX века. Последующие исследования показали, что все объекты географической оболочки обладают определенной радиоактивностью. Общее представление о порядке наиболее часто наблюдаемых величин естественной радиоактивности почв, растений, земной коры и гидросферы можно видеть в таблице 7.

Таблица 7 – Среднее содержание естественных радионуклидов в разных объектах географической оболочки Земли (по А.П. Виноградову, Л.А. Перцову)

2.2.2.2. Радиоактивность горных пород

О распределении радиоактивных элементов в толще земной коры и литосферы в целом, на глубинах недоступных непосредственному наблюдению, можно судить только на основании косвенных фактов и общих представлений о строении Земли. В настоящее время наибольшим признанием пользуется концепция, согласно которой радиоактивность пород падает с глубиной, но все же остается измеримой до весьма значительных глубин. Резко выраженное накопление радиоактивных элементов в гранитном слое континентальной коры, установленное Стреттом еще в 1906 году, подтвердилось последующими исследованиями.

Средние значения концентраций радиоактивных элементов в горных породах приведены в таблице 8, а в таблице 9 дана удельная активность горных пород в отношении естественных радионуклидов по данным ВНИИФТРИ (1996). Из этих данных видна основная геохимическая закономерность уменьшения содержания радиоизотопов с увеличением основности магматических пород. Наибольшее содержание естественных радионуклидов наблюдается в изверженных породах кислого и щелочного состава, богатых калием. Основными носителями радиоактивных элементов в этих породах являются акцессорные минералы: циркон, монацит, ксенотим, ортит, апатит и сфен. Что касается главных породообразующих минералов, то установлено, что салические минералы (в первую очередь полевые шпаты) обладают в среднем в 3 раза большей радиоактивностью, чем фемические. Поэтому на практике существует эмпирическое правило: магматические породы светлых оттенков более радиоактивны, чем темные.

Таблица 8 – Распространеность радиоактивных элементов в горных породах,
мас. % (по А.П. Виноградову)


Таблица 9 – Удельная активность естественных радионуклидов в горных породах

Горные породы

Удельная активность, Бк/кг

Магматические:

Основные

Ультраосновные

Осадочные:

Известняки

Песчаники

Сланцы глинистые

Наиболее высокой радиоактивностью среди осадочных пород обладают глинистые сланцы и глины. Содержание радионуклидов в них приближается к таковому в кислых изверженных породах – гранитах. На основании анализа многочисленных диаграмм гамма-каротажа глубоких скважин и результатов лабораторного радиометрического изучения большого количества образцов осадочных горных пород было выявлено, что среди них наименьшей радиоактивностью обладают чистые химические и органические осадки (каменная соль, гипс, известняки, доломиты, кварцевые пески, кремнистые сланцы, яшмы). Морские осадки в целом более радиоактивны, чем континентальные.

2.2.2.3. Радиоактивность почв

Главным источником радиоактивных элементов в почвах следует считать почвообразующие породы. Поэтому почвы, развитые на кислых магматических породах, относительно обогащены радиоактивными элементами (ураном, радием, торием, калием), а почвы, образованные на основных и ультраосновных породах, бедны ими. Глинистые почвы почти везде богаче радиоизотопами, чем песчанистые.

Почвы, как рыхлые образования, по вещественному составу близки к осадочным породам, поэтому они во многом подчиняются закономерностям распределения естественных радионуклидов в отложениях этого генезиса. Тонкая коллоидная фракция почв, с которой связаны обменно-сорбционные процессы, обогащена радиоактивными элементами по сравнению с более крупными частицами. То же самое касается и органической составляющей почв. Однако прямой зависимости между радиоактивностью почв и количеством органического вещества в них не наблюдается. В таблице 10 приведена удельная активность основных типов почв по данным ВНИИФТРИ (1996). По данным А.П. Виноградова содержание радия в верхнем горизонте почв колеблется от 2,8 до 9,5×10 -10 %. Причем в большинстве почв наблюдается резкое смещение радиоактивного равновесия между ураном и радием в сторону последнего, что связано с выщелачиванием урана грунтовыми водами.

Таблица 10 – Удельная активность естественных радионуклидов в почвах

Основные типы почв

Удельная активность, Бк/кг

Сероземы

Серо-коричневые

Каштановые

Черноземы

Серые лесные

Дерново-подзолистые

Подзолистые

Торфяниcтые

Таким образом, радиоактивность почв в основном обусловлена природными радиоизотопами 40 K и 87 Rb. Радиоизтоп калий-40 накапливается в пищевых продуктах растительного и животного происхождения в разной степени (табл. 11).

Таблица 11 – Содержание 40 К в пищевых продуктах

Хлеб ржаной

Мясо говяжье

Макароны

Сало свиное

Крупа гречневая

Фрукты сушеные

Картофель

Мука пшеничная

Молоко парное

Масло сливочное

Под влиянием испытаний ядерного оружия и техногенных факторов почвы повсеместно загрязнены искусственными радионуклидами. Например, средняя плотность загрязнения верхних слоев почв северного полушария радиоактивным цезием составляет 0,12 Ки/км 2 .

2.2.2.4. Радиоактивность природных вод

Радиоактивность речных и озерных вод зависит от источника их питания. Дождевые, снеговые и ледниковые воды содержат небольшое количество солей, поэтому водоемы горных районов высоких широт, имеющие этот источник питания, практически стерильны в отношении естественных радионуклидов.

Природные радионуклиды поступают в открытые водоемы суши в основном с подземными водами. Грунтовые и межпластовые воды, питая озера и реки, определяют уровни природной радиоактивности воды этих водоемов. Поэтому радиоактивность воды рек и озер подвержена значительным колебаниям. Она напрямую зависит от химического и минерального состава дренируемых ими горных пород, в которых располагаются чаши озер или водосборы рек. К другому важному фактору, влияющему на степень радиоактивности воды открытых водоемов, относится климат, от которого зависит степень химического выветривания горных пород, являющихся основным поставщиком природных радионуклидов.

Наконец, концентрация радиоизотопов в озерах зависит от степени водного обмена. Бессточные озера в районах с засушливым климатом могут быть значительно обогащены радиоактивными элементами за счет сильного испарения застойной воды.

Если исключить реки, дренирующие урановые рудные районы, то можно считать, что речные воды отличаются пониженным относительно морских вод содержанием урана, радия, тория, калия и радона, хотя есть и исключения из этого правила (например, Сыр-Дарья). В таблице приведено содержание урана в некоторых реках, по данным Д.С. Николаева.

Таблица 12 – Содержание урана в воде некоторых рек

В период паводка радиоактивность речной воды снижается, а в межень – повышается. Зимой, когда реки покрываются льдом, наблюдается повышенное содержание в воде радиоактивных газов – радона и торона.

Подземные воды бывают значительно обогащены ураном, радием, торием и радоном по сравнению с поверхностными. Количество радиоактивных элементов в них зависит от вещественного состава вмещающих пород и химизма самих вод. В гидрогеологии принято выделять радоновые, радиевые и урановые воды, в зависимости от преобладания в их составе того или иного радиоактивного элемента. Существуют и смешанные воды: радоно-радиевые, урано-радиевые, радиево-мезоториевые. Концентрация радия в подземных водах может достигать 2,5´10 -11 %, а урана – 3´10 -5 %.

Еще в тридцатые годы XX столетия В.Г. Хлопиным была замечена повышенная концентрация радия в воде нефтяных месторождений. В настоящее время, в результате интенсивной эксплуатации месторождений углеводородного сырья это приводит к накоплению природных радионуклидов на технологическом оборудовании и трубопроводах нефтяных и газовых месторождений. На отдельных месторождениях мощность экспозиционной дозы от оборудования достигает 6 мР/ч, а удельная активность природных радионуклидов в шламе превышает 10 5 Бк/кг. Следствием этого является неконтролируемое облучение персонала и населения.

2.2.2.5. Радиоактивность атмосферного воздуха

Атмосфера Земли всегда содержит газообразные радиоактивные вещества в виде инертных газов – радона, торона и актинона, источником которых являются эманирующие горные породы. Радиоактивные эманации, попадая из почвы в атмосферный воздух, затем разносятся горизонтальными и вертикальными воздушными потоками. В свою очередь радиоактивные газы, претерпевая распад, превращаются в твердые радиоизотопы, которые выпадают на поверхность Земли в виде активных осадков.

Актинон и торон не являются долгоживущими. Период полураспада первой эманации равняется всего лишь 3,92 с, а второй – 54,5 с, поэтому они встречаются в небольших количествах лишь в самых нижних слоях атмосферы вблизи земной поверхности. Период полураспада радона более значителен (3,82 сут.), вследствие чего сама эманация и продукты ее распада транспортируются ветром на большие расстояния от места выделения.

Наблюдения показывают, что нижние слои атмосферы над континентами содержат 1-2 атома радона на 1 см 3 воздуха. Концентрация торона обычно в 10000 раз меньше. Атмосферный воздух над океаном содержит радона в 100 раз меньше, чем над сушей. Концентрация радона быстро убывает с высотой. Уже на высоте 1 км его количество в 2 раза, а на высоте 4 км – в 14 раз меньше, чем у земной поверхности.

Закономерность распределения продуктов распада радиоактивных эманаций совершенно иная. Многие из твердых радиоизотопов, следующих в естественных радиоактивных рядах за эманациями, почти равномерно распределены в нижних слоях атмосферы. К примеру, концентрация Ra D на уровне земной поверхности и на высоте 10 км почти одинакова.

Твердые радиоактивные частицы, содержащиеся в воздухе, захватываются конденсирующимися каплями воды и выпадают на поверхность Земли с атмосферными осадками. После обильных дождей и снегопада радиоактивность воздуха уменьшается.

Кроме радиоактивных эманации и твердых продуктов их распада в атмосфере присутствуют радиоизотопы, образующиеся под действием космических лучей. К таким радионуклидам относится в первую очередь углерод-14, количество которого в воздухе ничтожно мало.

Вклад отдельных естественных источников в образовании эффективных эквивалентных доз человека представлен в таблице 13.

Таблица 13 – Эффективные эквивалентные дозы человека от природных источников

Источники радиации

Среднемировые данные

Космическое излучение

Гамма-излучение Земли

Внутреннее облучение

Излучение стройматериалов (радон)

Предыдущая

Радиация, радиоактивность и радиоизлучение - понятия, которые даже звучат достаточно опасно. В этой статье вы узнаете, почему некоторые вещества радиоактивные, и что это значит. Почему все так боятся радиации и насколько она опасна? Где мы можем встретить радиоактивные вещества и чем нам это грозит?

Понятие радиоактивности

Радиоактивностью называю «умение» атомов некоторых изотопов расщепляться и создавать этим излучения. Термин «радиоактивность» появился не сразу. Изначально такое излучение называли лучами Беккереля, в честь ученого, открывшего его в работе с изотопом урана. Уже теперь мы называем этот процесс термином «радиоактивное излучение».

В этом достаточно сложном процессе изначальный атом превращается в атом совсем другого химического элемента. За счет выбрасывания альфа- или бета-частиц, массовое число атома изменяется и, соответственно, это перемещает его по таблице Д. И. Менделеева. Стоит заметить, что массовое число изменяется, но сама масса остается практически такой же.

Опираясь на данную информацию, можем немного перефразировать определение понятия. Итак, радиоактивность - это также способность неустойчивых ядер атомов самостоятельно превращаться в другие, более стабильные и устойчивые ядра.

Вещества - что это такое?

Перед тем как говорить о том, что такое вещества радиоактивные, давайте вообще определим, что называется веществом. Итак, в первую очередь, это разновидность материи. Логичным есть и тот факт, что эта материя состоит из частиц, и в нашем случае это чаще всего электроны, протоны и нейтроны. Здесь уже можно говорить об атомах, которые состоят из протонов и нейтронов. Ну а из атомов получаются молекулы, ионы, кристаллы и так далее.

Понятие химического вещества основывается на этих же принципах. Если в материи невозможно выделить ядро, то ее нельзя причислить к химическим веществам.

О радиоактивных веществах

Как уже говорилось выше, чтобы проявлять радиоактивность, атом должен самопроизвольно распадаться и превращаться в атом совсем другого химического элемента. Если все атомы вещества нестабильны до такой степени, чтобы распасться таким образом, значит перед вами радиоактивное вещество. Более техническим языком определение прозвучало бы так: вещества радиоактивные, если они содержат радионуклиды, причем в высокой концентрации.

Где в таблице Д. И. Менделеева находятся радиоактивные вещества?

Довольно простой и легкий способ узнать, относиться ли вещество к радиоактивным, это посмотреть в таблицу Д. И. Менделеева. Все, что находится после элемента свинец - это радиоактивные элементы, а также еще прометий и технеций. Важно помнить, какие вещества радиоактивные, ведь это может спасти вам жизнь.

Существует также ряд элементов, которые имеют хотя бы один радиоактивный изотоп в своих природных смесях. Вот их неполный список, где указаны одни из самых распространенных элементов:

  • Калий.
  • Кальций.
  • Ванадий.
  • Германий.
  • Селен.
  • Рубидий.
  • Цирконий.
  • Молибден.
  • Кадмий.
  • Индий.

К радиоактивным веществам относятся те, которые содержат любые радиоактивные изотопы.

Виды радиоактивного излучения

Радиоактивное излучение бывает нескольких типов, о которых сейчас и пойдет речь. Уже упоминалось альфа- и бета-излучение, но это не весь список.

Альфа-излучение - это самое слабое излучение, которое представляет опасность в том случае, если частицы попадают непосредственно в тело человека. Такое излучение реализуется тяжелыми частицами, и именно поэтому легко останавливается даже листом бумаги. По этой же причини альфа-лучи не пролетают больше 5 см.

Бета-излучение более сильное, чем предыдущее. Это излучение электронами, которые намного легче альфа-частиц, поэтому могут проникать на несколько сантиметров в кожу человека.

Гамма-излучение реализуется фотонами, которые достаточно легко проникают еще дальше к внутренним органам человека.

Самое мощное по проникновению излучение - это нейтронное. От него спрятаться достаточно сложно, но в природе его, по сути, и не существует, разве что в непосредственной близости к ядерным реакторам.

Воздействие радиации на человека

Радиоактивно опасные вещества часто могут быть смертельными для человека. К тому же радиационное облучение имеет необратимый эффект. Если вы подверглись облучению, значит, вы обречены. В зависимости от масштабов повреждения, человек погибает в течение нескольких часов или на протяжении многих месяцев.

Вместе с этим нужно сказать, что люди непрерывно подвергаются радиоактивному излучению. Слава Богу, оно достаточно слабое, чтобы иметь летальный исход. Например, посмотрев футбольный матч по телевиденью, вы получаете 1 микрорад радиации. До 0,2 рад в год - это вообще естественный радиационный фон нашей планеты. 3 дар - ваша порция радиации при рентгене зубов. Ну а облучение свыше 100 рад уже является потенциально опасным.

Вредные радиоактивные вещества, примеры и предостережения

Самое опасное радиоактивное вещество - это Полоний-210. Из-за излучения вокруг него даже видно своеобразную светящуюся «ауру» голубого цвета. Стоит сказать о том, что существует стереотип, будто все радиоактивные вещества светятся. Это совсем не так, хотя и встречаются такие варианты, как Полоний-210. Большинство радиоактивных веществ внешне совсем не подозрительные.

Самым радиоактивным металлом на данный момент считают ливерморий. Его изотопу Ливерморию-293 достаточно 61 миллисекунды, чтобы распасться. Это выяснили еще в 2000 году. Немного уступает ему унунпентий. Время распада Унунпентия-289 составляет 87 миллисекунды.

Также интересный факт состоит в том, что одно и то же вещество может быть как безвредным (если его изотоп стабильный), так и радиоактивным (если ядра его изотопа вот-вот разрушатся).

Ученные, которые изучали радиоактивность

Вещества радиоактивные долгое время не считались опасными, и потому из свободно изучали. К сожалению, печальные смерти научили нас тому, что с такими веществами нужна осторожность и повышенный уровень безопасности.

Одним их первых, как уже упоминалось, был Антуан Беккерель. Это великий французский физик, которому и принадлежит слава первооткрывателя радиоактивности. За свои заслуги он удостоился членства в Лондонском королевском обществе. Из-за своего вклада и эту сферу он скончался достаточно молодым, в возрасте 55 лет. Но его труд помнят по сей день. В его честь были названа сама единица радиоактивности, а также кратеры на Луне и Марсе.

Не менее великим человеком была Мария Склодовская-Кюри, которая работала с радиоактивными веществами вместе со своим мужем Пьером Кюри. Мария также была француженкой, хоть и с польскими корнями. Кроме физики она занималась преподаванием и даже активной общественной деятельностью. Мария Кюри - первая женщина лауреат Нобелевской премии сразу в двух дисциплинах: физика и химия. Открытие таких радиоактивных элементов, как Радий и Полоний, - это заслуга Марии и Пьера Кюри.

Заключение

Как мы видим, радиоактивность - достаточно сложный процесс, который не всегда остается подконтрольным человеку. Это один из тех случаев, когда люди могут оказаться абсолютно бессильными перед лицом опасности. Именно поэтому важно помнить, что действительно опасные вещи могут быть внешне очень обманчивыми.

Узнать вещество радиоактивное или нет, чаще всего можно уже попав под его воздействие. Поэтому будьте осторожны и внимательны. Радиоактивные реакции во многом нам помогают, но также не стоит забывать, что это практически не подконтрольная нам сила.

К тому же стоит помнить вклад великих ученных в изучение радиоактивности. Они передали нам невероятно много полезных знаний, которые теперь спасают жизни, обеспечивают целые страны энергией и помогаю лечить страшные заболевания. Радиоактивные химические вещества - это опасность и благословение для человечества.

Цезий-137, Cs-137
  Цезий-137, известен также как радиоцезий - один из главных компонентов радиоактивного загрязнения биосферы. Содержится в радиоактивных выпадениях, радиоактивных отходах, сбросах заводов, перерабатывающих отходы атомных электростанций. Интенсивно сорбируется почвой и донными отложениями; в воде находится преимущественно в виде ионов. Содержится в растениях и организме животных и человека.
  В организме животных 137Cs накапливается главным образом в мышцах и печени
  Выброс цезия-137 в окружающую среду происходит в основном в результате ядерных испытаний и аварий на предприятиях атомной энергетики
  Известны случаи загрязнения внешней среды в результате небрежного хранения источников цезия-137 для медицинских и технологических целей.
  Биологическое действие
  Внутрь живых организмов цезий-137 в основном проникает через органы дыхания и пищеварения. Хорошей защитной функцией обладает кожа

Поглощённая доза излучения измеряется энергией ионизирующего излучения, переданного массе облучаемого вещества.
  Единица поглощённой дозы – грей (Гр), равный 1 джоулю, поглощённому 1 кг вещества
  1 Гр = 1Дж/кг = 100 рад.


  Развитие радиационных поражений у человека можно ожидать при поглощении дозы примерно в 2 Гр и более. Симптомы во многом схожи с острой лучевой болезнью при гамма-облучении: угнетённое состояние и слабость, диарея, снижение массы тела, внутренние кровоизлияния
  Радионуклиды Cs-137, проникая в организм человека, инкорпорируются жизненно важными органами. При этом, в клетках происходят дистрофические и некробиотические изменения, связанные в первую очередь с нарушением энергетических механизмов и приводящие к нарушениям жизненно-важных функций организма. Тяжесть поражения находится в прямой зависимости от количества Cs-137 инкорпорированного организмом и отдельными органами. Эти поражения могут представлять опасность, прежде всего, как индукторы мутаций в генетическом аппарате половых и соматических клеток.

Способность Cs-137 вызывать мутации в половых клетках, будет являться в будущих поколениях основой для возникновения внутриутробной гибели зародыша, врожденных пороков развития, патологии плода и новорожденного, заболеваний взрослого организма, связанных с недостаточной генной активностью.

Это внутреннее облучение организма также чрезвычайно опасно и тем, что оно сочетается со способностью радионуклидов Cs-137 и продуктов их распада в виде бария, воздействовать на биологические структуры, взаимодействовать с рецепторным аппаратом клеточных мембран, изменять состояние регуляторных процессов.

Выявлена зависимость между частотой нарушений сердечной деятельности у детей и содержанием радионуклидов в их организме. Следует обратить особое внимание на то, что присутствие даже относительно небольших количеств Cs-137 в организме детей 10-30 Бк/кг (при этом, в ткани сердца концентрация данного радионуклида значительно большая) приводит к увеличению в два раза числа детей с электрокардиографическими нарушениями.
  В этой связи, факторы внешней среды, подавляющие функцию систем, регулирующих (стимулирующих) активность генетического аппарата клеток, будут являться индукторами (провокаторами) возникновения многих заболеваний. Cs-137 способен в относительно небольших количествах, подавлять активность регуляторных систем организма, и прежде всего, иммунной системы.
  Период полураспада цезия-137 составляет 30 лет.

Радий, Ra-226
  радиоактивный изотоп химического элемента радия с атомным номером 88 и массовым числом 226. Принадлежит к радиоактивному семейству урана-238
  Наиболее устойчивым изотопом является радий-226 (226Ra), образующийся при распаде урана. Период полураспада радия-226 составляет 1600 лет, в процессе распада образуется радиоактивный газ радон.
  Радий-226 является источником альфа-излучения и считается потенциально опасным для костной ткани человека.
  В ничтожных концентрациях присутствует в природных водах.
  Применение
  Соли радия используются в медицине как источник радона (см. РАДОН) для приготовления радоновых ванн.

Развиваются опухоли костной ткани и органов, заключённых в костной капсуле (кроветворная ткань, гипофиз) или топографически близких к ней (слизистая ротовой полости, гайморова полость).

Кобальт-60, Co-60
  Кобальт-60, радиокобальт - радиоактивный нуклид химического элемента кобальта с атомным номером 27 и массовым числом 60. В природе практически не встречается из-за малого периода полураспада. Открыт в конце 1930-х годов

Активность одного грамма этого нуклида составляет приблизительно 41,8 ТБк. Период полураспада кобальта-60 составляет 5,2 года
  Применение Кобальт-60 используется в производстве источников гамма-излучения с энергией около 1,3 МэВ, которые применяются для:
  - стерилизации пищевых продуктов, медицинских инструментов и материалов;
  - активации посевного материала (для стимуляции роста и урожайности зерновых и овощных культур);
  - обеззараживания и очистки промышленных стоков, твёрдых и жидких отходов различных видов производств;
  - радиационной модификации свойств полимеров и изделий из них;
  - радиохирургии различных патологий (см. «кобальтовая пушка», гамма-нож);
  - гамма-дефектоскопии.
  Также Кобальт-60 используется в системах контроля уровня металла в кристализаторе при непрерывной разливке стали. Является одним из изотопов, применяющихся в радиоизотопных источниках энергии.
  Его лучи обладают высокой проникающей способностью. По мощности излучения 17 граммов радиоактивного кобальта эквивалентны 1 килограмму радия - самого мощного природного источника радиации. Вот почему при получении, хранении и транспортировке этого изотопа, как, впрочем, и других, тщательно соблюдают строжайшие правила техники безопасности, принимают все необходимые меры, чтобы надежно оградить людей от смертоносных лучей.

У радиоактивного кобальта много «профессий». Все более широкое применение в промышленности находит, например, гамма-дефектоскопия, т.е. контроль качества продукции путем просвечивания ее гамма-лучами, источником которых служит изотоп кобальт-60. Такой метод контроля позволяет с помощью сравнительно недорогой и компактной аппаратуры легко выявлять трещины, поры, свищи и другие внутренние дефекты массивных отливок, сварных швов, узлов и деталей, находящихся в труднодоступных местах. В связи с тем, что гамма-лучи распространяются источником равномерно во все стороны, метод дает возможность контролировать одновременно большое число объектов, а цилиндрические изделия проверять сразу по всему периметру.

Радиоактивный кобальт используют для контроля и регулирования уровня расплавленного металла в плавильных печах, уровня шихтовых материалов в домнах и бункерах, для поддержания уровня жидкой стали в кристаллизаторе установок непрерывной разливки.

Прибор, называемый гамма-толщиномером, быстро и с большой степенью точности определяет толщину обшивки судовых корпусов, стенок труб, паровых котлов и других изделий, когда к их внутренней поверхности невозможно подобраться и поэтому обычные приборы оказываются бессильны.

Находит кобальт применение и в медицине. Крупицы изотопа кобальт-60, помещенные в медицинские «пушки», не причиняя вреда организму человека, бомбардируют гамма-лучами внутренние злокачественные опухоли, губительно влияя на быстро размножающиеся больные клетки, приостанавливая их деятельность и тем самым ликвидируя очаги страшной болезни.
  В аппарате для облучения глубокозалегающих злокачественных опухолей, «кобальтовой пушке» ГУТ-400 (гамма-установка терапевтическая), количество кобальта-60 соответствует по своей активности 400 г радия. Это очень большая величина, такого количества радия нет ни в одной лаборатории. Но именно высокая активность позволяет предпринимать попытки лечения опухолей, расположенных в глубине организма больного.
  Однако, несмотря на свою столь обширную плезность радиация есть радиация и бесконтрольное облучение приводит к описанным выше печальным последствиям.

Торий-232, Th-232
  Торий-232 - природный радиоактивный нуклид химического элемента тория с атомным номером 90 и массовым числом 232.
  Является наиболее долгоживущим изотопом тория, альфа-радиоактивен с периодом полураспада 1,405·10 10 (14 млрд.) лет.
  Торий-232 является альфа – излучателем
  Активность одного грамма этого нуклида составляет 4 070 Бк.
  В виде препарата торотраста суспензия диоксида тория использовалась в качестве контрастного вещества при ранней рентгенодиагностике. В настоящее время препараты тория-232 классифицируются как канцерогенные
  Поступление тория в желудочно-кишечный тракт (тяжелый металл, к тому же радиоактивный!) не вызывает отравления. Объясняется это тем, что в желудке – кислая среда, и в этих условиях соединения тория гидролизуются. Конечный продукт – нерастворимая гидроокись тория, которая выводится из организма. Острое отравление способна вызвать лишь нереальная доза в 100 г тория...
  Однако чрезвычайно опасно попадание тория в кровь. Следствием этого могут быть заболевания кроветворной системы, образование специфических опухолей.

Плутоний-239, Pu-239
  Плутоний-239 (англ. plutonium-239) - радиоактивный нуклид химического элемента плутония с атомным номером 94 и массовым числом 239.
  В природе встречается в чрезвычайно малых количествах в урановых рудах.
  Активность одного грамма этого нуклида составляет приблизительно 2,3 ГБк.
  Плутоний-239 имеет период полураспада 24 100 лет.
  Плутоний-239 используют:
  - в качестве ядерного топлива в ядерных реакторах на тепловых и особенно на быстрых нейтронах;
  - при изготовлении ядерного оружия;
  - в качестве исходного вещества для получения трансплутониевых элементов.
  Плутоний был открыт в конце 1940 г.
  Хотя плутоний, по-видимому, химически токсичен, как и любой тяжелый металл, этот эффект выражается слабо по сравнению с его радиотоксичностью. Токсические свойства плутония появляются как следствие альфа-радиоактивности. Альфа частицы представляют серьезную опасность только в том случае, если их источник находится в теле (т.е. плутоний должен быть принят внутрь). Хотя плутоний излучает еще и гамма-лучи и нейтроны, которые могут проникать в тело снаружи, уровень их слишком мал, чтобы причинить сильный вред.

Альфа-частицы повреждают только ткани, содержащие плутоний или находящиеся в непосредственном контакте с ним. Значимы два типа действия: острое и хроническое отравления. Если уровень облучения достаточно высок, ткани могут страдать острым отравлением, токсическое действие проявляется быстро. Если уровень низок, создается накопляющийся канцерогенный эффект.

Плутоний очень плохо всасывается желудочно-кишечным трактом, даже когда попадает в виде растворимой соли, впоследствии она все равно связывается содержимым желудка и кишечника. Загрязненная вода, из-за предрасположенности плутония к осаждению из водных растворов и к формированию нерастворимых комплексов с остальными веществами, имеет тенденцию к самоочищению.

Человек всегда стремился отыскать материалы, которые не оставляют никаких шансов своим конкурентам. Издревле учёные искали самые твердые материалы в мире , самые лёгкие и самые тяжелые. Жажда открытий привела к открытию идеального газа и идеально чёрного тела. Представляем вам самые удивительные вещества в мире.

1. Самое черное вещество

Самое чёрное вещество в мире называется Vantablack и состоит из совокупности углеродных нанотрубок (см. углерод и его аллотропные модификации). Проще говоря, материал состоит из бесчисленного множества «волосков», попав в которые, свет отскакивает от одной трубки к другой. Таким образом поглощается около 99,965% светового потока и лишь ничтожная часть отражается обратно наружу.
Открытие Vantablack открывает широкие перспективы применения этого материала в астрономии, электронике и оптике.

2. Самое горючее вещество

Трифторид хлора является самым горючим веществом из когда-либо известных человечеству. Является сильнейшим окислителем и реагирует практически со всеми химическими элементами. Трифторид хлора способен прожечь бетон и легко воспламеняет стекло! Применение трифторида хлора практически невозможно из-за его феноменальной воспламеняемости и невозможности обеспечить безопасность использования.

3. Самое ядовитое вещество

Самый сильный яд — это ботулотоксин. Мы знаем его под названием ботокс, именно так он называется в косметологии, где нашел свое основное применение. Ботулотоксин — это химическое вещество, которое выделяют бактерии Clostridium botulinum. Помимо того, что ботулотоксин — самое ядовитое вещество, так он ещё и обладает самой большой молекулярной массой среди белков. О феноменальной ядовитости вещества говорит тот факт, что достаточно всего 0,00002 мг мин/л ботулотоксина, чтобы на полдня сделать зону поражения смертельно опасной для человека.

4. Самое горячее вещество

Это, так называемый, кварк-глюонная плазма. Вещество было создано с помощью столкновением атомов золота при почти световой скорости. Кварк-глюонная плазма имеет температуру 4 триллиона градусов Цельсия. Для сравнения, этот показатель выше температуры Солнца в 250 000 раз! К сожалению, время жизни вещества ограничено триллионной одной триллионной секунды.

5. Самая едкая кислота

В этой номинации чемпионом становится фторидно-сурьмяная кислота H. Фторидно-сурьмяная кислота в 2×10 16 (двести квинтиллионов) раз более едкая, чем серная кислота. Это очень активное вещество, которое может взорваться при добавлении небольшого количества воды. Испарения этой кислоты смертельно ядовиты.

6. Самое взрывоопасное вещество

Самое взрывоопасное вещество — гептанитрокубан. Он очень дорогой и применяется лишь для научных исследований. А вот чуть менее взрывоопасный октоген успешно применяется в военном деле и в геологии при бурении скважин.

7. Самое радиоактивное вещество

«Полоний-210» — изотоп полония, который не существует в природе, а изготавливается человеком. Используется для создания миниатюрных, но в тоже время, очень мощных источников энергии. Имеет очень короткий период полураспада и поэтому способен вызывать тяжелейшую лучевую болезнь.

8. Самое тяжёлое вещество

Это, конечно же, фуллерит. Его твердость почти в 2 раза выше, чем у натуральных алмазов. Подробнее о фуллерите можно прочитать в нашей статье Самые твердые материалы в мире .

9. Самый сильный магнит

Самый сильный магнит в мире состоит из железа и азота . В настоящее время, широкой общественности недоступны детали об этом веществе, однако уже сейчас известно, что новый супер-магнит на 18% мощнее самых сильных магнитов применяющихся сейчас — неодимовых. Неодимовые магниты изготавливаются из неодима, железа и бора.

10. Самое текучее вещество

Сверхтекучий Гелий II почти не имеет вязкости при температурах близких к абсолютному нулю. Этим свойством обусловлено его уникальное свойство просачиваться и выливаться из сосуда, изготовленного из любого твёрдого материала. Гелий II имеет перспективы использования в качестве идеального термопроводника, в котором не рассеивается тепло.