Расчет схемы отопления дома. Расчет отопления частного дома: что учитывается при расчете, особенности вычетов при помощи онлайн-калькулятора. Как правильно выбрать трубы для радиаторов

Наличие эффективной системы отопления является главным условием создания комфортной атмосферы в жилище. При ее расчете учитывается множество факторов: тип полов, качество теплоизоляции, расположение оконных проемов, климатические особенности региона и т.д. Инженерные вычисления выглядят очень громоздко и не понятны рядовому потребителю. Для облегчения обустройства отопления был создан упрощенный расчет, с помощью которого можно самостоятельно сделать необходимые подсчеты.


Как рассчитать систему отопления для частного дома?

Поскольку система обогрева жилища состоит из нескольких элементов, каждый из которых должен справляться со своими задачами на 100%, то вычисления будут касаться всех составляющих по отдельности. Конечно, упрощенный расчет не даст максимальной точности, но погрешности будут не катастрофическими.

Для обустройства отопления нам необходимо узнать:

  • мощность генератора тепла - котла;
  • количество радиаторов (батарей);
  • производительность циркуляционного насоса.

Только правильно определив данные показатели, мы сможем добиться эффективного обогрева частного дома, обеспечив комфортную температуру в жилище даже в самый лютый мороз. Рассмотрим каждый этап расчетов по отдельности!

Как рассчитать котел для отопления частного дома?

Генераторы тепла имеют различные рабочие параметры, основным из которых считается тепловая характеристика - мощность. Именно на нее в первую очередь обращают внимание при выборе оборудования. Некоторые считают, что главное - приобрести устройство с производительностью не меньше необходимого параметра. Однако применение чересчур мощных агрегатов приведет к увеличению расходов на обогрев, быстрому износу оборудования, появлению конденсата на стенках дымохода и другим неприятным последствиям.

В идеале нужно правильно выполнить расчеты и к полученному значению добавить 20%. Они будут служить резервом в случае возникновения непредвиденных обстоятельств, например сильного снижения температуры воздуха на улице или уменьшения подачи используемого топлива. Вычисления будут одинаковыми для всех видов генераторов тепла, главное - учесть особенности помещения.

Как рассчитать газовый котел для отопления частного дома?

Если потолки в жилище не превышают 3-х метров, а сам дом построен по типовому проекту, то вычисления мощности теплового генератора не будут отличаться высокой сложностью. Но для проведения расчетов нам необходимо знать удельную мощность агрегата на 10 м² площади в зависимости от региона расположения:

  • теплые южные районы - 0,7-0,9 кВт;
  • средняя полоса с умеренно-континентальным климатом - 1,0-1,2 кВт;
  • Подмосковье - 1,2-1,5 кВт;
  • север - 1,5-2,0 кВт.

Предположим, что нам нужно выбрать отопительный котел для частного дома площадью 250 м², который расположен в северном регионе. Выполнить вычисления нам поможет формула:

М=П*МУД/10 , где

М - мощность котла;

П - площадь отапливаемого жилища;

МУД - удельная мощность котла, которая в нашем случае составляет 2 кВт.

Подставив числовые значения, мы получим: 250*2/10=50 кВт . Следовательно, мощность нашего генератора тепла должна составлять не менее 50 кВт. Если предполагается установка двухконтурного агрегата, который будет не только отапливать помещение, но греть воду для бытовых нужд, к полученному показателю нужно прибавить еще 25%.

Как рассчитать электрокотел для отопления частного дома?

Как мы уже упоминали, расчет мощности актуален для всех видов генераторов тепла. Однако бытует мнение, что с помощью электрических котлов можно обогревать только незначительные площади. Это не так, ведь современный рынок предлагает модели, работающие на электроэнергии, которые способны обогреть до 1000 м². Вопрос в том, выгодно ли их применение?

Зачастую электрокотлы в больших домах и коттеджах выступают в роли дополнительного источника тепла, что связано с высокой стоимостью электроэнергии и частыми проблемами с ее подачей. Можно с уверенностью сказать, что этот вид оборудования лучше использовать для отопления небольших жилищ, иначе суммы коммунальных услуг будут впечатляющими. Желательно выбирать многоступенчатые модели, мощность которых начинается от 6 кВт, поскольку с их помощью можно значительно снизить потребление электроэнергии.

Как рассчитать радиаторы отопления для частного дома?

С тонкостями выбора котлов мы разобрались, теперь можно перейти к следующему шагу - расчету количества отопительных батарей. Этот параметр рассчитывается для каждого помещения отдельно. Допустим, нужно вычислить, сколько секций радиатора нам потребуется для обогрева комнаты площадью 35 м². Для установки были выбраны чугунные отопительные приборы с мощностью одной секции 190 Вт, что указано в паспорте.

  • первый этап расчетов: 35*100= 3500 Вт , где 100 Вт - стандартная мощность, требуемая для обогрева 1 м²;
  • второй этап расчетов: 3500/190=18 секций.

Следовательно, система отопления нашей расчетной комнаты должна включать в себя 18 секций радиатора. Однако эти вычисления нельзя назвать точными, ведь существуют потери тепла, предусмотреть которые необходимо еще на стадии расчетов. Для этого используются корректирующие коэффициенты. Проще всего умножить полученное значение 1,1, если:

  • потолки в доме выше 3-х метров;
  • некоторые стены в помещении являются наружными;
  • в комнате больше одного окна;
  • теплоизоляция жилища оставляет желать лучшего.

Коэффициенты 1,1 вводятся в формулу при наличии каждого из перечисленных выше условий.

Как рассчитать батареи отопления для частного дома с коэффициентами?

Предположим, что высота нашей расчетной комнаты 3,3 метра, имеется два окна и одна наружная стена:

  • первый этап расчетов: 35*100*1,1*1,1*1,1= 4658,5 Вт ;
  • второй этап расчетов: 4658,5/190=25 секций.

Скорректированные вычисления показали, что нам потребуется 25 секций радиатора для отопления 35 м². Поскольку в помещении 2 окна, то количество ребер необходимо разделить между ними, чтобы снизить потери тепловой энергии.

Как рассчитать насос для отопления частного дома?

Как правило, в систему обогрева жилища вводится циркуляционный насос, который ускоряет движение теплоносителя по трубам и увеличивает эффективность отопления. Для определения необходимой производительности данного дополнительного оборудования необходимо знать значение верхней точки системы, площадь помещения и сопротивление теплосети.

Проще всего узнать сопротивление по типу используемых радиаторов:

  • чугунные - 1 м;
  • алюминиевые - 1,2 м;
  • биметаллические - 2 м.

В нашем примере площадь дома составляет 250 м², от насоса до верхнего отопительного прибора высота - 6 метров, батареи у нас чугунные. Проводим расчеты:

  • напор насоса: 6+1=7 метров ;
  • количество потребляемой электроэнергии: 250/10=25 кВт , поскольку по стандарту необходимое тепло на 10 м²=1 кВт. Переводим в другие единицы измерения: 25*0,86=24,08 ккал .
  • производительность насоса: 24,08/10=2,41 м³/час , где 10 - рекомендуемая разница температур в отопительной системе.

Согласно расчетам, для обогрева нашего дома в 250 м² потребуется циркуляционный насос производительностью 2,41 м³/час при напоре 7 метров. В идеале оборудование должно быть трехскоростным, а необходимые нам показатели - характеристиками второй скорости.

Зная, как правильно рассчитать отопление в частном доме, вы сможете без проблем вычислить оптимальные показатели каждого элемента системы. Конечно, расчет специалистов будет более точным, но в случае выполнения работ самостоятельно, приведенные нами выше формулы позволят вам добиться получения минимальных погрешностей. Помните, что от корректности вычислений будет полностью зависеть уровень комфорта в жилище!

Владельцу отопительной сети бывает трудно найти вразумительный ответ, как сделать расчет домашнего отопления. Это происходит одновременно из-за большой сложности самого расчета, как такового, и вследствие предельной простоты получения искомых результатов, о чем обычно специалисты не любят распространяться, считая, что и так все понятно.

По большому счету сам процесс расчета нас интересовать не должен. Нам важно как-то получить правильный ответ на имеющиеся вопросы о мощностях, диаметрах, количествах… Какое оборудование применить? Ошибки здесь быть не должно, иначе произойдет двойная или тройная переплата. Как же правильно рассчитать систему отопления частного дома?

Почему большая сложность

Расчет системы отопления с допустимыми погрешностями под силу разве что лицензированной организации. Ряд параметров в бытовых условиях просто не определимы.

  • Сколько энергии теряется из-за обдува ветром? — а когда подрастет дерево рядом?
  • Сколько солнце загоняет энергии в окна? — а сколько будет, если окна не помыть полгода?
  • Сколько тепла уходит с вентиляцией? — а после образования щели под дверью из-за отсутствия замены уплотнителя?
  • Какая реальная влажность пенопласта на чердаке? — а зачем она нужна, после того как его подъедят мыши….

Во всех вопросах показана существующая динамика изменения теплопотерь с течением времени у любого дома. Зачем же тогда точность на сегодня? Но даже на текущий момент, нельзя в бытовых условиях высчитать точно параметры системы отопления исходя из теплопотерь.
Гидравлический расчет тоже сложный.

Как определить теплопотери

Известна некая формула, согласно которой теплопотери напрямую зависят от отапливаемой площади. При высоте потолка до 2,6 метра в самый холодный месяц в «нормальном» доме теряем 1 кВт с 10 м кв. Мощность отопления должна это перекрыть.

Реальные теплопотери частных домов чаще находятся в пределах от 0,5 кВт/10 м кв. до 2,0 кВт/10 м кв. Этот показатель характеризует энергосберегающие качества дома в первую очередь. И меньше зависит от климата, хоть его влияние остается значительным.

Какие удельные теплопотери будут у дома, кВт/10 м кв.?

  • 0,5 – энергосберегающий дом
  • 0,8 – утепленный
  • 1,0 – утепленный «более-менее»
  • 1,3 – слабая теплоизоляция
  • 1,5 – без утепления
  • 2,0 – холодные тонкие материалы, имеются сквозняки.

Общие теплопотери для дома можно узнать умножив приведенное значение на отапливаемую площадь, м. Но это все нас интересует для определения мощности теплогенератора.

Расчет мощности котла

Недопустимо принимать мощность котла исходя из теплопотерь больше чем 100 Вт/м кв. Это значит отапливать (засорять) природу. Теплосберегающий дом (50 вт/м кв.) делается, как правило, по проекту, в котором расчет системы отопопления произведен. Для других домов принимается 1кВт/10 м кв., и не больше.

Если дом не соответствует названию «утепленный», особенно для умеренного и холодного климата, значит он должен быть приведен в такое состояние, после чего уже подбирается отопление по тому же расчету – 100 Вт на метр квадратный.

Расчет мощности котла выполняется по следующей формуле – теплопетери умножить на 1,2,
где 1,2 – резерв мощности, обычно используемый для нагрева бытовой воды.
Для дома 100 м кв. – 12 кВт или чуть больше.

Расчеты показывают, что для не автоматизированного котла резерв может быть и 2,0, тогда топить нужно аккуратно (без закипания), но можно быстрее разогревать дом при наличии и мощного циркуляционного насоса. А если в схеме имеется теплоаккумулятор то и 3,0 – допустимые реалии по теплогенерации. Но не окажутся ли они неподъемными по цене? Об окупаемости оборудования речь уже не идет, только об удобстве пользования…

Послушаем эксперта, он расскажет, как лучше подобрать котел на твердом топливе для дома, и какую мощность принять…

При выборе твердотопливного котла

  • Стоит рассматривать только твердотопливные котлы классической конструкции, как надежные, простые и дешевые и лишенные недостатков бочкообразных устройств под названием «длительного горения» …В обычном твердотопливном котле верхняя загрузочная камера всегда даст немного дыма в помещение. Более предпочтительны котлы с фронтальной камерой загрузки, особенно, если они установлены в жилом доме.
  • Чугунные котлы требуют защиту от холодной обратки, боятся залпового вброса холодной воды, например, при включении электричества. Качественную схему нужно предусмотреть заранее.
  • Защита от холодной обратки также желательна для любого вида котла, чтобы не образовывался агрессивный конденсат на теплообменнике, при его температуре ниже 60 град.
  • Твердотопливный котел желательно брать повышенной мощности, например, двухратной мощности от требуемой. Тогда не нужно будет постоянно стоять у маломощного котла и подбрасывать дрова, чтобы он развил нужную мощность. Процесс при не интенсивном горении будет на порядок комфортнее…
  • Желательно приобретать котел с подачей вторичного воздуха, для дожига СО при неинтенсивном горении. Повышаем КПД и комфортность топки.

Распределение мощности по дому

Генерируемая котлом мощность должна равномерно разойтись по всему дому, не оставить холодных зон. Равномерный прогрев здания будет обеспечен, если мощность установленных радиаторов в каждой комнате будет компенсировать ее теплопотери.

Суммарная мощность всех радиаторов должна быть немного большей чем у котла. В дальнейшем мы будем исходить из следующих расчетов.

Во внутренних комнатах радиаторы не устанавливаются, возможен лишь теплый пол.

Чем длиннее наружные стены комнаты и чем больше в них площадь остекления, тем больше она теряет тепловой энергии. В комнате с одним окном к обычной формуле расчета теплопотерь по площади применяется поправочный коэффициент (приблизительно) 1,2.
С двумя окнами – 1,4, угловая с двумя окнами – 1,6, угловая с двумя окнами и длинными наружными стенами – 1,7, например.

Вычисление мощности и выбор параметров устанавливаемых радиаторов

Производители радиаторов указывают паспортную тепловую мощность своих изделий. Но мелко-неизвестные при этом завышают данные как хотят (чем мощнее – лучше купят), а крупные указывают значения для температуры теплоносителя 90 град и др., которые редко бывают в реальной отопительной сети.

Тогда обычный 10 секционный радиатор из магазина – принимается как 1,5 кВт. Угловая комната с двумя окнами площадью 20 м кв. должна терять энергии 3 кВт (2кВт умножить на коэффициент 1,5). Следовательно, под каждым окном в данной комнате нужно разместить
минимум по 10 секций радиатора – по 1,5 кВт.

Для полноценной системы отопления желательно не учитывать мощность теплого пола – радиаторы должны справиться сами. Но чаще удешевляют радиаторную сеть в 2 – 4 раза, — только лишь для доп. подогрева и создания тепловых завес.

В чем особенность гидравлического расчета

Если котел уже подобран исходя из площади, то почему бы не подобрать подобным методом насос и трубы, тем более, что шаг градации их параметров намного больше, чем мощности у котлов. Грубый подбор в магазине ближайшего большего параметра не требует точнейших расчетов, если сеть типична и компактна и применяются стандартизированное оборудование – циркуляционные насосы, радиаторы и трубы для отопления.

Так для дома площадью 100 м кв. предстоит выбрать насос 25/40, и трубы 16 мм (внутренний диаметр) для группы радиаторов до 5 шт. и 12 мм для подключения 1 — 2 шт. радиаторов. Как бы мы не старались усовершенствовать свой гидравлический расчет, ничего другого выбрать не придется…
Для дома площадью 200 м кв. – соответственно насос 25/60 и трубы от котла 20 мм (внутренний д.) и далее по разветвлениям как указано выше….

Для совершенно не типичных большой протяженности сетей (котельная находится на большом расстоянии от дома) действительно лучше рассчитать гидравлическое сопротивление трубопровода, исходя из обеспечения доставки необходимого количества теплоносителем по мощности и подобрать особенный насос и трубы согласно расчета…

Подбор параметров насоса для отопления дома

Конкретнее о выборе насоса для котла в доме на основе тепловых гидравлических расчетов. Для обычных 3-х скоростных циркуляционных насосов, выбираются следующие их типоразмеры:

  • для площади до 120 м кв. – 25-40,
  • от 120 до 160 – 25-50,
  • от 160 до 240 – 25-60,
  • до 300 – 25-80.

Но для насосов под электронным управлением Grundfos рекомендует чуть увеличивать типоразмер, так как эти изделия умеют вращаться слишком медленно поэтому не будут излишними на малых площадях. Для линейки Grundfos Alpha рекомендованы производителем следующие параметры выбора насоса.

Вычисление параметров труб

Существуют таблицы по подбору диаметра труб, в зависимости от подключенной тепловой мощности. В таблице приведены количество тепловой энергии в ваттах, (под ним количество теплоносителя кг/мин), при условии:
— на подаче +80 град, на обратке +60 град, воздух +20 град.

Понятно, что через металлопластиковую трубу диаметром 12 мм (наружный 16 мм) при рекомендуемой скорости в 0,5 м/сек пройдет примерно 4,5 кВт. Т.е. мы можем подключить этим диаметром до 3 радиаторов, во всяком случае отводы на один радиатор будем делать только этим диаметром.

20 мм (25 мм наружный) – почти 13 кВт – магистраль от котла для небольшого дома – или этаж до 150 м кв.

Следующий диаметр 26 мм (32 металлопластик наружный) – более 20 кВт применяется уже редко в главных магистралях. Устанавливают меньший диаметр, так как это участки трубопровода обычно короткие, скорость можно увеличивать, вплоть до возникновения шума в котельной, игнорируя небольшое повышение общего гидравлического сопротивления системы, как не значительное…

Выбор полипропиленовых труб

Полипропиленовые трубы для отопления более толстостенные. И стандартизация по ним идет по наружному диаметру. Минимальный наружный диаметр 20 мм. При этом внутренний у трубы PN25 (армированная стекловолокном, для отопления, макс. +90 град) будет приблизительно 13,2 мм.

В основном применяются диаметры наружные 20 и 25 мм, что грубо приравнивается по передаваемой мощности к металлопластику 16 и 20 мм (наружный) соответственно.

Полипропилен 32 м и 40 мм применяются реже на магистралях больших домов или в особых каких-то проектах (самотечное отопление, например).

  • Стандартные наружные диаметры полипропиленовых труб РN25 — 20, 25, 32, 40 мм.
  • Соответствующий внутренний диаметр — 13,2, 16,6, 21,2, 26,6 мм

Таким образом на основании теплотехнического и гидравлического расчетов мы выбрали диаметры трубопроводов, в данном случае из полипропилена. Ранее мы рассчитали мощность котла для конкретного дома, мощность каждого радиатора в каждой комнате, и подобрали необходимые характеристики насоса твердотопливного котла для всего этого хозяйства, — т.е. создали полный расчет системы отопления дома.

В процессе строительства любого дома, рано или поздно возникает вопрос - как правильно рассчитать систему отопления? Это актуальная проблема не исчерпает свой ресурс никогда, ведь если вы купите котел меньшей мощности, чем необходимо, вам придется затратить много сил для создания вторичного обогрева масляными и инфракрасными радиаторами, тепловыми пушками, электрокаминами.

Помимо этого, ежемесячное обслуживание, из-за дорогой электроэнергии, будет вставать вам в «копеечку». То же самое будет происходить, если вы купите котел повышенной мощности, который будет работать в пол силы, а топлива потреблять ничуть не меньше.

Наш калькулятор расчета отопления частного дома поможет вам не допустить типичных ошибок начинающих строителей. Вы получите максимально приближенное к реальности значение теплопотерь и необходимой теплопроизводительности котла по актуальным данным СНиПов и СП (сводов правил).

Главным преимуществом калькулятора на сайте сайт является достоверность расчетных данных и отсутствие ручных вычислений, весь процесс автоматизирован, исходные параметры максимально обобщены, их значения вы можете легко посмотреть в плане вашего дома или заполнить, опираясь на собственный опыт.

Расчет котла для отопления частного дома

С помощью нашего калькулятора расчета отопления для частного дома вы сможете с легкостью узнать необходимую мощность котла для обогрева вашего уютного "гнездышка".

Как вы помните, для того чтобы рассчитать показатель теплопотерь, необходимо знать несколько значений основных компонентов дома, на которые в сумме приходится более 90% от общих потерь. Для вашего удобства мы добавили в калькулятор только те поля, которые вы можете заполнить без специальных знаний :

  • остекление;
  • теплоизоляция;
  • соотношение площади окон и пола;
  • температура снаружи помещения;
  • число стен выходящих наружу;
  • какое помещение над рассчитываемым;
  • высота помещения;
  • площадь помещения.

После того, как вы получите значение теплопотерь дома, для вычисления необходимой мощности котла берется поправочный коэффициент запаса равный 1.2.

Порядок работы на калькуляторе

Помните, что чем толще остекление и качественнее теплоизоляция, тем меньшей мощности отопление потребуется.

Для получения результатов необходимо ответить себе на следующие вопросы:

  1. Выберите один из предложенных типов остекления (тройной или двойной стеклопакет, обычное двухкамерное стекло).
  2. Как утеплены ваши стены? Добротное толстое утепление из пары слоев минеральной ваты, пенопласта, ЭППС для севера и Сибири. Может быть, живете в Центральной России и вам хватит одного слоя утеплителя. Или вы из тех, кто строит дом в южных регионах и ему подойдет двойной пустотелый кирпич.
  3. Какое у вас соотношение площади окон к полам, в %. Если вы не знаете это значение, то оно рассчитывается очень просто: делите площадь полов на площадь окон и умножайте на 100%.
  4. Укажите минимальную температуру в зимний период за пару сезонов и округляйте в большую сторону. Не нужно использовать среднюю температуру по зимам, иначе вы рискуете получить котел меньшей мощности, и дом будет недостаточно отапливаться.
  5. Рассчитываем для всего дома или только для одной стены?
  6. Что находится над нашим помещением. Если у вас одноэтажный дом, выберите тип чердака (холодный или теплый), если второй этаж, то обогреваемое помещение.
  7. Высота потолков и площадь помещения, необходимы для расчета объема квартиры, который в свою очередь, является основой для всех вычислений.

Пример расчетов:

  • одноэтажный дом в Калининградской области;
  • длина стен 15 и 10 м, утеплены одним слоем минеральной ваты;
  • высота потолка 3 м;
  • 6 окон по 5 м2 из двухкамерного стеклопакета;
  • минимальная температура за последние 10 лет - 26 градусов;
  • рассчитываем для всех 4 стен;
  • сверху теплый отапливаемый чердак;

Площадь нашего дома равна 150 м2, а площадь окон 30 м2. 30/150*100=20% соотношение между окнами и полом.

Все остальное нам известно, выбираем соответствующие поля в калькуляторе и получаем, что наш дом будет терять 26.79 кВт тепла.

26,79*1.2=32.15 кВт - необходимая теплопроизводительность котла.

Система отопления своими руками

Выполнить расчёт контура отопления частного дома без оценки теплопотерь окружающих конструкций невозможно.

В России, как правило, долгие холодные зимы, здания теряют тепло из-за перепадов температур внутри и снаружи помещений. Чем больше площадь дома, ограждающих и сквозных конструкций (кровля, окна, двери), тем большее значение теплопотерь выходит. Существенное влияние оказывает материал и толщина стен, наличие или отсутствие теплоизоляции.

Например, стены из дерева и газобетона обладают намного меньшим показателем теплопроводности, чем кирпич. Материалы с максимальными показателями теплового сопротивления используются в качестве изоляции (минеральная вата, пенополистерол).

Перед созданием отопительной системы дома, нужно тщательно продумать все организационные и технические моменты, чтобы сразу после постройки «коробки», приступить к финальной фазе строительства, а не откладывать на долгие месяцы долгожданное заселение.

Отопление в частном доме базируется на «трех слонах»:

  • нагревательный элемент (котел);
  • система труб;
  • радиаторы.

Какой котел лучше выбрать для дома?

Котлы отопления являются главным компонентом всей системы. Именно они будут обеспечивать тепло вашего дома, поэтому к их выбору нужно относиться особенно внимательно. По типу питания их подразделяют на:

  • электрические;
  • твердотопливные;
  • жидкотопливные;
  • газовые.

Каждый из них имеет ряд существенных преимуществ и недостатков.

  1. Электрические котлы не завоевали большой популярности, в первую очередь из-за достаточно большой стоимости и дороговизне в обслуживании. Тарифы на электроэнергию оставляют желать лучшего, есть вероятность разрыва линий электропередач, в результате которого ваш дом может остаться без отопления.
  2. Твердотопливные котлы часто используются в глухих деревнях и поселках, где нет централизованных коммуникационных сетей. Они нагревают воду за счет дров, брикетов и угля. Важным недостатком является необходимость постоянного контроля горючего, в случае, если топливо прогорит, и вы не успеете пополнить запасы, дом перестанет отапливаться. В современных моделях эта проблема решена, за счет автоматического податчика, но цена таких устройств неимоверно высокая.
  3. Жидкотопливные котлы , в подавляющем большинстве случаев, работают на дизельном топливе. Они обладают отличной производительностью из-за высокого КПД горючего, но большая цена на сырье и потребность резервуаров с дизелем, ограничивает многих покупателей.
  4. Самым оптимальным решением для загородного дома являются газовые котлы . Из-за небольшого размера, низкой цены на газ и высокой теплоотдачи они завоевали доверие большей части населения.

Как выбрать трубы для отопления?

Магистрали отопления снабжают все обогревательные устройства в доме. В зависимости от материала изготовления, они подразделяются на:

  • металлические;
  • металлопластиковые;
  • пластиковые.

Трубы из металла наиболее сложные в монтаже (из-за необходимости сварки швов), подвержены коррозии, обладают большим весом и дорого стоят. Преимуществами является высокая прочность, устойчивость к перепадам температур и способность выдерживать большие давления. Они используются в многоквартирных домах, в частном строительстве применять их нецелесообразно.

Полимерные трубы из металлопластика и полипропилена очень схожи по своим параметрам. Легкость материала, пластичность, отсутствие коррозии, подавление шумов и, конечно же, низкая цена. Единственным отличием первых, является наличие алюминиевой прослойки между двумя слоями пластика, из-за которого увеличивается показатель теплопроводности. Поэтому трубы из металлопластика применяются для отопления, а пластиковые для водоснабжения.

Выбираем радиаторы для дома

Последний элемент классической системы отопления - радиаторы. Они также разделяются по материалу на следующие группы:

  • чугунные;
  • стальные;
  • алюминиевые.

Чугунные батареи знакомы всем с детства, потому что устанавливались почти во всех многоквартирных домах. Они обладают высокими показателями теплоемкости (долго остывают), устойчивы к перепадам температур и давлений в системе. Минусом является большая цена, хрупкость и сложность монтажа.

На смену им пришли стальные радиаторы. Большое разнообразие форм и размеров, небольшая стоимость и простота установки повлияли на повсеместное распространение. Тем не менее, у них тоже есть свои недостатки. Из-за низкой теплоемкости батареи быстро остывают, а тонкий корпус не позволяет использовать их в сетях с высоким давлением.

В последнее время набирают популярность обогреватели из алюминия . Их главным преимуществом является высокая теплоотдача, это позволяет прогревать комнату до приемлемой температуры за 10-15 минут. Однако они требовательны к теплоносителю, если внутри системы в больших количествах содержится щелочи или кислоты, то срок службы радиатора значительно сокращается.

Используйте предложенные инструменты для расчета отопления частного дома и проектируйте систему отопления, которая будет эффективно, надежно и долго обогревать ваш дом, даже в самые суровые зимы.

Как рассчитать отопление? С помощью калькулятора отопления! На этой странице вы самостоятельно сможете расчитать стоимость отопления, а также узнать, какое оборудование понадобится для комплектации системы отопления вашего дома.

Расчет системы отопления - мероприятие, которому следует уделить повышенное внимание. Следует предусмотреть все сопряженные с этим нюансы: наличие дымохода, количества этажей вашего дома, тип отопительного котла, систему разводки отопления и др. Помните, от корректности расчета будет завесить не только итоговая стоимость работ, но комфорт и уют вашего дома.

Для вашего удобства на данной странице предусмотрен удобный пользовательский интерфейс, благодаря которому вы без труда сумеете предусмотреть все необходимые элементы отопления и рассчитать конечную стоимость работ по монтажу.

Как расчитать отопление в доме?

С помощью онлайн калькулятора, вы сможете узнать ориентировочную стоимость монтажных работ исходя из следующих характерных параметров:

  • длина и ширина частного дома по периметру;
  • количество этажей;
  • наличие/отсутствие дымоходного канала;
  • количество и размеры оконных проемов;
  • система разводки отопления (лучевая или двухтрубная);
  • степень утепления стен.

Калькулятор расчета системы отопления, на сайте выполнен в виде дома в разрезе, где с помощью полей ввода и выпадающих списков предлагается задать параметры отапливаемого помещения. После того, как вы осуществили выбор параметров, достаточно лишь нажать кнопку “Рассчитать”. Она расположена в самом низу под наглядным планом дома.

Результаты расчета отопления

Результат не заставит вас долго ждать. Спустя секунды, вам представится подробная смета работ, включающая:

  • Стоимость необходимых конструктивных элементов для теплого пола (шаровые краны, коллекторы, фитинги, подложки и трубы и др.);
  • Стоимость необходимых конструктивных элементов для отопления (крепления, углы, трубы, радиаторы отопления, комплекты для радиатора, котел отопления и т.д.).

В самом низу страницы будет приведена полная стоимость оборудования для монтажа.

Для индивидуального и более точного расчета свяжитесь с нами

Помните, что программа для расчета системы отопления предоставляет лишь ориентировочную цену и не является основанием для взыскания с вас денежных средств. Если у вас возникли какие-то сомнения относительно расчета, звоните нам и наши специалисты дадут квалифицированный ответ. В нашу компетенцию входят все аспекты относительно расчета системы отопления в частном доме, принимаются в учет количество оконных проемов, степень утепления стен, этажность и планировка комнат. Для детального обследования и уточнения стоимости работ, возможен выезд на ваш объект.

Создавать систему отопления в собственном доме или даже в городской квартире – чрезвычайно ответственное занятие. Будет совершенно неразумным при этом приобретать котельное оборудование, как говорится, «на глазок», то есть без учета всех особенностей жилья. В этом вполне не исключено попадание в две крайности: или мощности котла будет недостаточно – оборудование станет работать «на полную катушку», без пауз, но так и не давать ожидаемого результата, либо, наоборот, будет приобретен излишне дорогой прибор, возможности которого останутся совершенно невостребованными.

Но и это еще не все. Мало правильно приобрести необходимый котел отопления – очень важно оптимально подобрать и грамотно расположить по помещениям приборы теплообмена – радиаторы, конвекторы или «теплые полы». И опять, полагаться только лишь на свою интуицию или «добрые советы» соседей – не самый разумный вариант. Одним словом, без определенных расчетов – не обойтись.

Конечно, в идеале, подобные теплотехнические вычисления должны проводить соответствующие специалисты, но это часто стоит немалых денег. А неужели неинтересно попытаться выполнить это самостоятельно? В настоящей публикации будет подробно показано, как выполняется расчет отопления по площади помещения, с учетом многих важных нюансов. По аналогии можно будет выполнить , встроенный в эту страницу, поможет выполнить необходимые вычисления. Методику нельзя назвать совершенно «безгрешной», однако, она все же позволяет получить результат с вполне приемлемой степенью точности.

Простейшие приемы расчета

Для того чтобы система отопления создавала в холодное время года комфортные условия проживания, она должна справляться с двумя основными задачами. Эти функции тесно связаны между собой, и разделение их – весьма условно.

  • Первое – это поддержание оптимального уровня температуры воздуха во всем объеме отапливаемого помещения. Безусловно, по высоте уровень температуры может несколько изменяться, но этот перепад не должен быть значительным. Вполне комфортными условиями считается усредненный показатель в +20 °С – именно такая температура, как правило, принимается за исходную в теплотехнических расчетах.

Иными словами, система отопления должна быть способной прогреть определенный объем воздуха.

Если уж подходить с полной точностью, то для отдельных помещений в жилых домах установлены стандарты необходимого микроклимата – они определены ГОСТ 30494-96. Выдержка из этого документа – в размещенной ниже таблице:

Предназначение помещения Температура воздуха, °С Относительная влажность, % Скорость движения воздуха, м/с
оптимальная допустимая оптимальная допустимая, max оптимальная, max допустимая, max
Для холодного времени года
Жилая комната 20÷22 18÷24 (20÷24) 45÷30 60 0.15 0.2
То же, но для жилых комнат в регионах с минимальными температурами от - 31 °С и ниже 21÷23 20÷24 (22÷24) 45÷30 60 0.15 0.2
Кухня 19÷21 18÷26 Н/Н Н/Н 0.15 0.2
Туалет 19÷21 18÷26 Н/Н Н/Н 0.15 0.2
Ванная, совмещенный санузел 24÷26 18÷26 Н/Н Н/Н 0.15 0.2
Помещения для отдыха и учебных занятий 20÷22 18÷24 45÷30 60 0.15 0.2
Межквартирный коридор 18÷20 16÷22 45÷30 60 Н/Н Н/Н
Вестибюль, лестничная клетка 16÷18 14÷20 Н/Н Н/Н Н/Н Н/Н
Кладовые 16÷18 12÷22 Н/Н Н/Н Н/Н Н/Н
Для теплого времени года (Норматив только для жилых помещений. Для остальных – не нормируется)
Жилая комната 22÷25 20÷28 60÷30 65 0.2 0.3
  • Второе – компенсирование потерь тепла через элементы конструкции здания.

Самый главный «противник» системы отопления — это теплопотери через строительные конструкции

Увы, теплопотери – это самый серьезный «соперник» любой системы отопления. Их можно свести к определенному минимуму, но даже при самой качественной термоизоляции полностью избавиться от них пока не получается. Утечки тепловой энергии идут по всем направлениям – примерное распределение их показано в таблице:

Элемент конструкции здания Примерное значение теплопотерь
Фундамент, полы по грунту или над неотапливаемыми подвальными (цокольными) помещениями от 5 до 10%
«Мостики холода» через плохо изолированные стыки строительных конструкций от 5 до 10%
Места ввода инженерных коммуникаций (канализация, водопровод, газовые трубы, электрокабели и т.п.) до 5%
Внешние стены, в зависимости от степени утепленности от 20 до 30%
Некачественные окна и внешние двери порядка 20÷25%, из них около 10% - через негерметизированные стыки между коробками и стеной, и за счет проветривания
Крыша до 20%
Вентиляция и дымоход до 25 ÷30%

Естественно, чтобы справиться с такими задачами, система отопления должна обладать определенной тепловой мощностью, причем этот потенциал не только должен соответствовать общим потребностям здания (квартиры), но и быть правильно распределенным по помещениям, в соответствии с их площадью и целым рядом других важных факторов.

Обычно расчет и ведется в направлении «от малого к большому». Проще говоря, просчитывается потребное количество тепловой энергии для каждого отапливаемого помещения, полученные значения суммируются, добавляется примерно 10% запаса (чтобы оборудование не работало на пределе своих возможностей) – и результат покажет, какой мощности необходим котел отопления. А значения по каждой комнате станут отправной точкой для подсчета необходимого количества радиаторов.

Самый упрощённый и наиболее часто применяемый в непрофессиональной среде метод – принять норму 100 Вт тепловой энергии на каждый квадратный метр площади:

Самый примитивный способ подсчета — соотношение 100 Вт/м²

Q = S × 100

Q – необходимая тепловая мощность для помещения;

S – площадь помещения (м²);

100 — удельная мощность на единицу площади (Вт/м²).

Например, комната 3.2 × 5,5 м

S = 3,2 × 5,5 = 17,6 м²

Q = 17,6 × 100 = 1760 Вт ≈ 1,8 кВт

Способ, очевидно, очень простой, но весьма несовершенный. Стоит сразу оговориться, что он условно применим только при стандартной высоте потолков – примерно 2.7 м (допустимо – в диапазоне от 2.5 до 3.0 м). С этой точки зрения, более точным станет расчет не от площади, а от объема помещения.

Понятно, что в этом случае значение удельной мощности рассчитано на кубический метр. Его принимают равным 41 Вт/м³ для железобетонного панельного дома, или 34 Вт/м³ — в кирпичном или выполненном из других материалов.

Q = S × h × 41 (или 34)

h – высота потолков (м);

41 или 34 – удельная мощность на единицу объема (Вт/м³).

Например, та же комната, в панельном доме, с высотой потолков в 3.2 м:

Q = 17,6 × 3,2 × 41 = 2309 Вт ≈ 2,3 кВт

Результат получается более точным, так как уже учитывает не только все линейные размеры помещения, но даже, в определенной степени, и особенности стен.

Но все же до настоящей точности он еще далек – многие нюансы оказываются «за скобками». Как выполнить более приближенные к реальным условиям расчеты – в следующем разделе публикации.

Возможно, вас заинтересует информация о том, что собой представляют

Проведение расчетов необходимой тепловой мощности с учетом особенностей помещений

Рассмотренные выше алгоритмы расчетов бывают полезны для первоначальной «прикидки», но вот полагаться на них полностью все же следует с очень большой осторожностью. Даже человеку, который ничего не понимает в строительной теплотехнике, наверняка могут показаться сомнительными указанные усредненные значения – не могут же они быть равными, скажем, для Краснодарского края и для Архангельской области. Кроме того, комната - комнате рознь: одна расположена на углу дома, то есть имеет две внешних стенки, а другая с трех сторон защищена от теплопотерь другими помещениями. Кроме того, в комнате может быть одно или несколько окон, как маленьких, так и весьма габаритных, порой – даже панорамного типа. Да и сами окна могут отличаться материалом изготовления и другими особенностями конструкции. И это далеко не полный перечень – просто такие особенности видны даже «невооруженным глазом».

Одним словом, нюансов, влияющих на теплопотери каждого конкретного помещения – достаточно много, и лучше не полениться, а провести более тщательный расчет. Поверьте, по предлагаемой в статье методике это будет сделать не так сложно.

Общие принципы и формула расчета

В основу расчетов будет положено все то же соотношение: 100 Вт на 1 квадратный метр. Но вот только сама формула «обрастает» немалым количеством разнообразных поправочных коэффициентов.

Q = (S × 100) × a × b× c × d × e × f × g × h × i × j × k × l × m

Латинские буквы, обозначающие коэффициенты, взяты совершенно произвольно, в алфавитном порядке, и не имеют отношения к каким-либо стандартно принятым в физике величинам. О значении каждого коэффициента будет рассказано отдельно.

  • «а» - коэффициент, учитывающий количество внешних стен в конкретной комнате.

Очевидно, что чем больше в помещении внешних стен, тем больше площадь, через которую происходит тепловые потери. Кроме того, наличие двух и более внешних стен означает еще и углы – чрезвычайно уязвимые места с точки зрения образования «мостиков холода». Коэффициент «а» внесет поправку на эту специфическую особенность комнаты.

Коэффициент принимают равным:

— внешних стен нет (внутреннее помещение): а = 0,8 ;

— внешняя стена одна : а = 1,0 ;

— внешних стен две : а = 1,2 ;

— внешних стен три: а = 1,4 .

  • «b» - коэффициент, учитывающий расположение внешних стен помещения относительно сторон света.

Возможно, вас заинтересует информация о том, какие бывают

Даже в самые холодные зимние дни солнечная энергия все же оказывает влияние на температурный баланс в здании. Вполне естественно, что та сторона дома, которая обращена на юг, получает определенный нагрев от солнечных лучей, и теплопотери через нее ниже.

А вот стены и окна, обращённые на север, Солнца «не видят» никогда. Восточная часть дома, хотя и «прихватывает» утренние солнечные лучи, какого-либо действенного нагрева от них все же не получает.

Исходя из этого, вводим коэффициент «b»:

— внешние стены комнаты смотрят на Север или Восток : b = 1,1 ;

— внешние стены помещения ориентированы на Юг или Запад : b = 1,0 .

  • «с» - коэффициент, учитывающий расположение помещения относительно зимней «розы ветров»

Возможно, эта поправка не столь обязательна для домов, расположенных на защищенных от ветров участках. Но иногда преобладающие зимние ветры способны внести свои «жесткие коррективы» в тепловой баланс здания. Естественно, что наветренная сторона, то есть «подставленная» ветру, будет терять значительно больше тела, по сравнению с подветренной, противоположной.

По результатам многолетних метеонаблюдений в любом регионе составляется так называемая «роза ветров» - графическая схема, показывающая преобладающие направления ветра в зимнее и летнее время года. Эту информацию можно получить в местной гидрометеослужбе. Впрочем, многие жители и сами, без метеорологов, прекрасно знают, откуда преимущественно дуют ветра зимой, и с какой стороны дома обычно наметает наиболее глубокие сугробы.

Если есть желание провести расчеты с более высокой точностью, то можно включить в формулу и поправочный коэффициент «с», приняв его равным:

— наветренная сторона дома: с = 1,2 ;

— подветренные стены дома: с = 1,0 ;

— стена, расположенные параллельно направлению ветра: с = 1,1 .

Естественно, количество теплопотерь через все строительные конструкции здания будет очень сильно зависеть от уровня зимних температур. Вполне понятно, что в течение зимы показатели термометра «пляшут» в определенном диапазоне, но для каждого региона имеется усредненный показатель самых низких температур, свойственных наиболее холодной пятидневке года (обычно это свойственно январю). Для примера – ниже размещена карта-схема территории России, на которой цветами показаны примерные значения.

Обычно это значение несложно уточнить в региональной метеослужбе, но можно, в принципе, ориентироваться и на свои собственные наблюдения.

Итак, коэффициент «d», учитывающий особенности климата региона, для наших расчетом в принимаем равным:

— от – 35 °С и ниже: d = 1,5 ;

— от – 30 °С до – 34 °С: d = 1,3 ;

— от – 25 °С до – 29 °С: d = 1,2 ;

— от – 20 °С до – 24 °С: d = 1,1 ;

— от – 15 °С до – 19 °С: d = 1,0 ;

— от – 10 °С до – 14 °С: d = 0,9 ;

— не холоднее – 10 °С: d = 0,7 .

  • «е» - коэффициент, учитывающий степень утепленности внешних стен.

Суммарное значение тепловых потерь здания напрямую связано со степенью утепленности всех строительных конструкций. Одним из «лидеров» по теплопотерям являются стены. Стало быть, значение тепловой мощности, необходимое для поддержания комфортных условий проживания в помещении, находится в зависимости от качества их термоизоляции.

Значение коэффициента для наших расчетов можно принять следующее:

— внешние стены не имеют утепления: е = 1,27 ;

— средняя степень утепления – стены в два кирпича или предусмотрена их поверхностная термоизоляция другими утеплителями: е = 1,0 ;

— утепление проведено качественно, на основании проведенных теплотехнических расчетов: е = 0,85 .

Ниже по ходу настоящей публикации будут даны рекомендации о том, как можно определить степень утепленности стен и иных конструкций здания.

  • коэффициент «f» - поправка на высоту потолков

Потолки, особенно в частных домах, могут иметь различную высоту. Стало быть, и тепловая мощность на прогрев того или иного помещения одинаковой площади будет различаться еще и по этому параметру.

Не будет большой ошибкой принять следующие значения поправочного коэффициента «f»:

— высота потолков до 2.7 м: f = 1,0 ;

— высота потоков от 2,8 до 3,0 м: f = 1,05 ;

— высота потолков от 3,1 до 3,5 м: f = 1,1 ;

— высота потолков от 3,6 до 4,0 м: f = 1,15 ;

— высота потолков более 4,1 м: f = 1,2 .

  • « g» - коэффициент, учитывающий тип пола или помещение, расположенное под перекрытием.

Как было показано выше, пол является одним из существенных источников теплопотерь. Значит, необходимо внести некоторые корректировки в расчет и на эту особенность конкретного помещения. Поправочный коэффициент «g» можно принять равным:

— холодный пол по грунту или над неотапливаемым помещением (например, подвальным или цокольным): g = 1,4 ;

— утепленный пол по грунту или над неотапливаемым помещением: g = 1,2 ;

— снизу расположено отапливаемое помещение: g = 1,0 .

  • « h» - коэффициент, учитывающий тип помещения, расположенного сверху.

Нагретый системой отопления воздух всегда поднимается вверх, и если потолок в помещении холодный, то неизбежны повышенные теплопотери, которые потребуют увеличения необходимой тепловой мощности. Введём коэффициент «h», учитывающий и эту особенность рассчитываемого помещения:

— сверху расположен «холодный» чердак: h = 1,0 ;

— сверху расположен утепленный чердак или иное утепленное помещение: h = 0,9 ;

— сверху расположено любое отапливаемое помещение: h = 0,8 .

  • « i» - коэффициент, учитывающий особенности конструкции окон

Окна – один из «магистральных маршрутов» течек тепла. Естественно, многое в этом вопросе зависит от качества самой оконной конструкции. Старые деревянные рамы, которые раньше повсеместно устанавливались во всех домах, по степени своей термоизоляции существенно уступают современным многокамерным системам со стеклопакетами.

Без слов понятно, что термоизоляционные качества этих окон — существенно различаются

Но и между ПВЗХ-окнами нет полного единообразия. Например, двухкамерный стеклопакет (с тремя стеклами) будет намного более «теплым» чем однокамерный.

Значит, необходимо ввести определенный коэффициент «i», учитывающий тип установленных в комнате окон:

— стандартные деревянные окна с обычным двойным остеклением: i = 1,27 ;

— современные оконные системы с однокамерным стеклопакетом: i = 1,0 ;

— современные оконные системы с двухкамерным или трехкамерным стеклопакетом, в том числе и с аргоновым заполнением: i = 0,85 .

  • « j» - поправочный коэффициент на общую площадь остекления помещения

Какими бы качественными окна ни были, полностью избежать теплопотерь через них все равно не удастся. Но вполне понятно, что никак нельзя сравнивать маленькое окошко с панорамным остеклением чуть ли ни на всю стену.

Потребуется для начала найти соотношение площадей всех окон в комнате и самого помещения:

х = ∑ S ок / S п

S ок – суммарная площадь окон в помещении;

S п – площадь помещения.

В зависимости от полученного значения и определяется поправочный коэффициент «j»:

— х = 0 ÷ 0,1 → j = 0,8 ;

— х = 0,11 ÷ 0,2 → j = 0,9 ;

— х = 0,21 ÷ 0,3 → j = 1,0 ;

— х = 0,31 ÷ 0,4 → j = 1,1 ;

— х = 0,41 ÷ 0,5 → j = 1,2 ;

  • « k» - коэффициент, дающий поправку на наличие входной двери

Дверь на улицу или на неотапливаемый балкон — это всегда дополнительная «лазейка» для холода

Дверь на улицу или на открытый балкон способна внести свои коррективы в тепловой баланс помещения – каждое ее открытие сопровождается проникновением в помещение немалого объема холодного воздуха. Поэтому имеет смысл учесть и ее наличие – для этого введем коэффициент «k», который примем равным:

— двери нет: k = 1,0 ;

— одна дверь на улицу или на балкон: k = 1,3 ;

— две двери на улицу или на балкон: k = 1,7 .

  • « l» - возможные поправки на схему подключения радиаторов отопления

Возможно, кому-то это покажется несущественной мелочью, но все же – почему бы сразу не учесть планируемую схему подключения радиаторов отопления. Дело в том, что их теплоотдача, а значит, и участие в поддержании определенного температурного баланса в помещении, достаточно заметно меняется при разных типах врезки труб подачи и «обратки».

Иллюстрация Тип врезки радиатора Значение коэффициента «l»
Подключение по диагонали: подача сверху, «обратка» снизу l = 1.0
Подключение с одной стороны: подача сверху, «обратка» снизу l = 1.03
Двухстороннее подключение: и подача, и «обратка» снизу l = 1.13
Подключение по диагонали: подача снизу, «обратка» сверху l = 1.25
Подключение с одной стороны: подача снизу, «обратка» сверху l = 1.28
Одностороннее подключение, и подача, и «обратка» снизу l = 1.28
  • « m» - поправочный коэффициент на особенности места установки радиаторов отопления

И, наконец, последний коэффициент, который также связан с особенностями подключения радиаторов отопления. Наверное, понятно, что если батарея установлена открыто, ничем не загораживается сверху и с фасадной части, то она будет давать максимальную теплоотдачу. Однако, такая установка возможна далеко не всегда – чаще радиаторы частично скрываются подоконниками. Возможны и другие варианты. Кроме того, некоторые хозяева, стараясь вписать приоры отопления в создаваемый интерьерный ансамбль, скрывают их полностью или частично декоративными экранами – это тоже существенно отражается на тепловой отдаче.

Если есть определенные «наметки», как и где будут монтироваться радиаторы, это также можно учесть при проведении расчетов, введя специальный коэффициент «m»:

Иллюстрация Особенности установки радиаторов Значение коэффициента "m"
Радиатор расположен на стене открыто или не перекрывается сверху подоконником m = 0,9
Радиатор сверху перекрыт подоконником или полкой m = 1,0
Радиатор сверху перекрыт выступающей стеновой нишей m = 1,07
Радиатор сверху прикрыт подоконником (нишей), а с лицевой части - декоративным экраном m = 1,12
Радиатор полностью заключен в декоративный кожух m = 1,2

Итак, с формулой расчета ясность есть. Наверняка, кто-то из читателей сразу возьмется за голову – мол, слишком сложно и громоздко. Однако, если к делу подойти системно, упорядочено, то никакой сложности нет и в помине.

У любого хорошего хозяина жилья обязательно есть подробный графический план своих «владений» с проставленными размерами, и обычно – сориентированный по сторонам света. Климатические особенности региона уточнить несложно. Останется лишь пройтись по всем помещениям с рулеткой, уточнить некоторые нюансы по каждой комнате. Особенности жилья - «соседство по вертикали» сверху и снизу, расположение входных дверей, предполагаемую или уже имеющуюся схему установки радиаторов отопления – никто, кроме хозяев, лучше не знает.

Рекомендуется сразу составить рабочую таблицу, куда занести все необходимые данные по каждому помещению. В нее же будет заноситься и результат вычислений. Ну а сами вычисления поможет провести встроенный калькулятор, в котором уже «заложены» все упомянутые выше коэффициенты и соотношения.

Если какие-то данные получить не удалось, то можно их, конечно, в расчет не принимать, но в этом случае калькулятор «по умолчанию» подсчитает результат с учетом наименее благоприятных условий.

Можно рассмотреть на примере. Имеем план дома (взят совершенно произвольный).

Регион с уровнем минимальных температур в пределах -20 ÷ 25 °С. Преобладание зимних ветров = северо-восточные. Дом одноэтажный, с утепленным чердаком. Утепленные полы по грунту. Выбрана оптимальное диагональное подключение радиаторов, которые будут устанавливаться под подоконниками.

Составляем таблицу примерно такого типа:

Помещение, его площадь, высота потолка. Утепленность пола и "соседство" сверху и снизу Количество внешних стен и их основное расположение относительно сторон света и "розы ветров". Степень утепления стен Количество, тип и размер окон Наличие входных дверей (на улицу или на балкон) Требуемая тепловая мощность (с учетом 10% резерва)
Площадь 78,5 м² 10,87 кВт ≈ 11 кВт
1. Прихожая. 3,18 м². Потолок 2.8 м. Утеленный пол по грунту. Сверху - утепленный чердак. Одна, Юг, средняя степень утепления. Подветренная сторона Нет Одна 0,52 кВт
2. Холл. 6,2 м². Потолок 2.9 м. Утепленный пол по грунту. Сверху - утепленный чердак Нет Нет Нет 0,62 кВт
3. Кухня-столовая. 14,9 м². Потолок 2.9 м. Хорошо утепленный пол по грунту. Свеху - утепленный чердак Две. Юг-Запад. Средняя степень утепления. Подветренная сторона Два, однокамерный стеклопакет, 1200 × 900 мм Нет 2.22 кВт
4. Детская комната. 18,3 м². Потолок 2.8 м. Хорошо утепленный пол по грунту. Сверху - утепленный чердак Две, Север - Запад. Высокая степень утепления. Наветренная Два, двухкамерный стеклопакет, 1400 × 1000 мм Нет 2,6 кВт
5. Спальная. 13,8 м². Потолок 2.8 м. Хорошо утепленный пол по грунту. Сверху - утепленный чердак Две, Север, Восток. Высокая степень утепления. Наветренная сторона Одно, двухкамерный стеклопакет, 1400 × 1000 мм Нет 1,73 кВт
6. Гостиная. 18,0 м². Потолок 2.8 м. Хорошо утепленный пол. Сверху -утепленный чердак Две, Восток, юг. Высокая степень утепления. Параллельно направлению ветра Четыре, двухкамерный стеклопакет, 1500 × 1200 мм Нет 2,59 кВт
7. Санузел совмещенный. 4,12 м². Потолок 2.8 м. Хорошо утепленный пол. Сверху -утепленный чердак. Одна, Север. Высокая степень утепления. Наветренная сторона Одно. Деревянная рама с двойным остеклением. 400 × 500 мм Нет 0,59 кВт
ИТОГО:

Затем, пользуясь размешенным ниже калькулятором производим расчет для каждого помещения (уже с учетом 10% резерва). С использованием рекомендуемого приложения это не займет много времени. После этого останется просуммировать полученные значения по каждой комнате – это и будет необходимая суммарная мощность системы отопления.

Результат по каждой комнате, кстати, поможет правильно выбрать требуемое количество радиаторов отопления – останется только разделить на удельную тепловую мощность одной секции и округлить в большую сторону.