Программа для производственной практики. Рабочая программа учебной и производственной практики. Технические средства обучения и контроля

Группа органических веществ, включающая жиры и жироподобные вещества (липоиды), называется липидами. Жиры содержатся во всех живых клетках, выполняют функции естественного барьера, ограничивая проницаемость клеток, входят в состав гормонов.

Строение

Липиды по химической природе - один из трёх типов жизненно важных органических веществ. Они практически не растворяются в воде, т.е. являются гидрофобными соединениями, но образуют с Н 2 О эмульсию. Липиды распадаются в органических растворителях - бензоле, ацетоне спиртах и т.д. По физическим свойствам жиры бесцветны, не имеют вкуса и запаха.

По строению липиды - соединения жирных кислот и спиртов. При присоединении дополнительных групп (фосфора, серы, азота) образуются сложные жиры. Жировая молекула обязательно включает атомы углерода, кислорода и водорода.

Жирные кислоты - алифатические, т.е. не содержащие циклических углеродных связей, карбоновые (группа -СООН) кислоты. Отличаются количеством группы -СН2-.
Выделяют кислоты:

  • ненасыщенные - включают одну или несколько двойных связей (-СН=СН-);
  • насыщенные - не содержат двойных связей между атомами углерода

Рис. 1. Строение жирных кислот.

В клетках запасаются в виде включений - капель, гранул, в многоклеточном организме - в форме жировой ткани, состоящей из адипоцитов - клеток, способных накапливать жиры.

Классификация

Липиды - сложные соединения, которые встречаются в различных модификациях и выполняют различные функции. Поэтому классификация липидов обширна и не ограничивается одним признаком. Наиболее полная классификация по строению приведена в таблице.

Описанные выше липиды относятся к омыляемым жирам - при их гидролизе образуется мыло. Отдельно в группу неомыляемых жиров, т.е. не взаимодействующих с водой, выделяют стероиды.
Они подразделяются на подгруппы в зависимости от строения:

  • стерины - стероидные спирты, входящие в состав животных и растительных тканей (холестерин, эргостерин);
  • желчные кислоты - производные холевой кислоты, содержащие одну группу -СООН, способствуют растворению холестерина и перевариванию липидов (холевая, дезоксихолевая, литохолевая кислоты);
  • стероидные гормоны - способствуют росту и развитию организма (кортизол, тестостерон, кальцитриол).

Рис. 2. Схема классификации липидов.

Отдельно выделяют липопротеины. Это сложные комплексы жиров и белков (аполипопротеинов). Липопротеины относят к сложным белкам, а не к жирам. В их состав входят разнообразные сложные жиры - холестерин, фосфолипиды, нейтральные жиры, жирные кислоты.
Выделяют две группы:

  • растворимые - входят в состав плазмы крови, молока, желтка;
  • нерастворимые - входят в состав плазмалеммы, оболочки нервных волокон, хлоропласты.

Рис. 3. Липопротеины.

Наиболее изучены липопротеины плазмы крови. Они различаются по плотности. Чем больше жиров, тем меньше плотность.

ТОП-4 статьи которые читают вместе с этой

Липиды по физической структуре классифицируются на твёрдые жиры и масла. По нахождению в организме выделяют резервные (непостоянные, зависят от питания) и структурные (генетически обусловленные) жиры. По происхождению жиры могут быть растительными и животными.

Значение

Липиды должны поступать в организм вместе с пищей и участвовать в метаболизме. В зависимости от типа жиры выполняют в организме разнообразные функции:

  • триглицериды сохраняют тепло организма;
  • подкожный жир защищает внутренние органы;
  • фосфолипиды входят в состав мембран любой клетки;
  • жировая ткань является резервом энергии - расщепление 1 г жира даёт 39 кДж энергии;
  • гликолипиды и ряд других жиров выполняют рецепторную функцию - связывают клетки, получая и проводя сигналы, полученные из внешней среды;
  • фосфолипиды участвуют в свёртываемости крови;
  • воски покрывают листья растений, одновременно предохраняя их от высыхания и промокания.

Избыток или недостаток жиров в организме приводит к изменению обмена веществ и нарушению функций организма в целом.

Что мы узнали?

Жиры имеют сложное строение, классифицируются по разным признакам и выполняют разнообразные функции в организме. Липиды состоят из жирных кислот и спиртов. При присоединении дополнительных групп образуются сложные жиры. Белки и жиры могут образовывать сложные комплексы - липопротеины. Жиры входят в состав плазмалеммы, крови, ткани растений и животных, выполняют теплоизолирующую и энергетическую функции.

Тест по теме

Оценка доклада

Средняя оценка: 3.9 . Всего получено оценок: 263.

Липиды – это органические вещества, которые плохо растворимыили нерастворимы в воде, но растворяются в органических растворителях; они являются настоящими или потенциальными эфирами жирных кислот.

Содержание липидов в организме человека составляет в среднем 10-20% от массы тела. Липиды можно условно разделить на два вида: протоплазматические и резервные. Протоплазматические (конституционные) входят в состав всех органов и тканей. Они составляют примерно 25% всех липидов организма и практически остаются на одном уровне в течение всех жизни. Резервные липиды запасаются в организме и количество их меняется в зависимости от различных условий.

Биологическое значение липидов в организме велико. Так, они обнаружены в составе всех органов и тканей. Наибольшее количество (до 90%) содержится в жировой ткани. В мозге липиды составляют половину массы органа.

Функции липидов в организме:

Ø Энергетическая – наряду с углеводами являются основным энергетическим топливом клетки. При сжигании 1 г липидов выделяется 38,9 кДж (или 9,3 ккал).

Ø Структурная – липиды (фосфолипиды, гликолипиды) вместе с белками входят в состав биологических мембран.

Ø Защитная – функция механической защиты, роль которой выполняет подкожная жировая клетчатка.

Ø Терморегуляторная – реализация этой функции осуществляется благодаря двум аспектам: а) жир плохо проводит тепло, поэтому является теплоизолятором; б) при охлаждении организма на генерирование тепла за счёт выделения энергии расходуются липиды.

Ø Регуляторная – ряд гормонов (половые, гормоны коры надпочечников) являются производными липидов.

Ø Липиды являются источником ненасыщенных высших жирных кислот – витамина F , одного из незаменимых факторов питания.

Ø Жир является источником эндогенной воды в организме. При окислении 100 г липидов образуется 107 г воды.

Ø Липиды выполняют функцию естественных растворителей. Они обеспечивают всасывание в кишечнике незаменимых жирных кислот и жирорастворимых витаминов.

Классификация липидов

Все липиды делятся на 2 группы: омыляемые и неомыляемые .


Различают два класса омыляемых липидов: простые и сложные липиды. Простые липиды получили свое название вследствие того, что состоят только из атомов С, Н и О. К ним относятся две группы соединений: нейтральные жиры и воски.

Простые липиды

К этой группе относятся вещества, представляющие собой сложные эфиры спиртов и высших жирных кислот. Из спиртов в составе липидов имеются: глицерин, олеиновый спирт и циклический спирт – холестерин.

Триацилглицерины (ТАГ) (триглицериды, нейтральные жиры). Являются сложными эфирами глицерина и трех молекул высших жирных кислот. ТАГ – основные компоненты аподоцитов жировой ткани, являющейся депо нейтральных жиров в организме человека и животных.

ТАГ имеют следующую структуру:

где R 1 , R 2, R 3 – остатки насыщенных и ненасыщенных жирных кислот.


Поскольку глицерин - это трехатом­ный спирт, жирные кислоты могут образовывать сложноэфир ные связи в трех местах. Соответственно в тканях организма встречаются моноацилглицериды, диацилглицериды и триацил глицериды.

Атомы углерода в молекуле глицерина пронумерованы в со­ответствии со стереохимической номенклатурой. Существует много различных типов триацилглицеридов, которые отлича­ются природой трех остатков жирных кислот, присоединенных к глицерину сложноэфирной связью. Если во всех трех поло­жениях находятся остатки одной и той же жирной кислоты, то такие триацилглицериды называются простыми . В этом слу­чае названия их определяются названием соответствующей жирной кислоты. Примерами простых триацилглицеридов мо­гут служить тристеароилглицерин (три остатка стеариновой кислоты в составе), трипальмитоилглицерин. Триацилглицери­ды, в составе которых содержатся остатки двух или трех раз­ных жирных кислот, называются смешанными.

Температура плавления нейтральных жиров (ТАГ) зависит от жир­но-кислотного состава. Она повышается с увеличением числа и длины жирно-кислотных компонентов. К примеру, при 20°С тристеарин и трипальмитин являются твердыми веществами, а триолеин и трилинолеин - жидкостью. Надо отметить, что три­ацилглицериды полностью нерастворимы в воде, так как в их составе отсутствуют полярные группы. Что касается диацил- и моноацилглицеридов, то они обладают полярностью вследствие наличия свободных гидроксильных групп. Поэтому они частич­но взаимодействуют с водой. Триацилглицериды растворимы в диэтиловом эфире, бензоле, хлороформе. Большинство нейтраль­ных жиров в организме животных содержит в своем составе преимущественно остатки пальмитиновой, стеариновой, олеи­новой и линолевой жирных кислот. При этом состав нейтраль­ного жира из различных тканей одного и того же организма может существенно различаться. Так, подкожный жир человека более богат насыщенными жирными кислотами, чем жир пе­чени, содержащий больше ненасыщенных жирных кислот.

Жиры масла и молока содержат наибольшее количество короткоцепочечных жирных кислот.

Жирные кислоты – это алифатические карбоновые кислоты. Они служат своеобразными строительными блоками для большинства липидов. В настоящее время из живых организмов выделено свыше 70 жирных кислот. Их можно разделить на две группы: 1) насыщенные жирные кислоты и 2) ненасыщенные жирные кислоты.

Из насыщенных жирных кислот в организме чаще встречаются пальмитиновая, стеариновая и реже – лигноцериновая, имеют в своем составе 24 углеродных атомов. Жирные кислоты, содержащие 10 и меньше атомов угле­рода редко встречаются в составе липидов живот­ных. Из ненасыщенных жирных кислот наиболее широко представлены в организме кислоты, состоящие из 18 углеродных атомов. К ним относятся олеиновая (имеет одну двойную связь), линолевая (две двойных связи), линоленовая (три двойных связи) и арахидоновая (имеет четыре двойных связи) кислоты. Линолевая и линоленовая в организме не синтезируются , и поэтому относятся к незаменимым факторам питания и должны регулярно поступать с пищей – растительными маслами, где они составляют до 95%.

В жирах человека преобладают пальмитиновая, миристиновая и в меньшем количестве стеариновая кислота, а из ненасыщенных – олеиновая, линолевая и линоленовая.

Физико-химические свойства липидов определяются свойствами входящих в их состав жирных кислот. Так, насыщенные жирные кислоты имеют высокую температуру плавления и соответственно животные жиры, состоящие в основном из этих кислот, плавятся при более высокой температуре. Жиры, в которых преобладают ненасыщенные кислоты (растительные масла), имеют более низкую температуру плавления. Ненасыщенность жирных кислот существенно влияет на их свойства. С увеличением числа двойных связей снижается тем­пература плавления жирных кислот, возрастает их раство­римость в неполярных растворителях и они более легко вступают в реакции, чем насыщенные. Так, ненасыщенные кислоты могут присоединять различные атомы по месту двойных связей. В организме олеиновая кислота, имеющая двойную связь, присоединяет два атома водорода и превращается в стеариновую. Все ненасыщенные жир­ные кислоты, встречающиеся в природе, при комнатной тем­пературе - жидкости.

Простагландиды – это производные жирных кислот с 20 углеродными атомами, имеющие в своем составе циклопентановое кольцо. Простагландины встречаются во всех тканях млекопитающих и обладают разнообразным биологическим действием. В настоящее время известно несколько групп простагландинов: A, B, E, F, I, D, H, G. Среди них преобладают простагландины F 2 и F 2α , предшественником которых является арахидоновая кислота. У человека все клетки и ткани, за исключением эритроцитов, синтезируют простагландины.

Механизм действия простагландинов на клетки до конца не выяснен. Биологическое действие простагландинов в организме заключается в следующем:

  • Влияние на сердечно-сосудистую систему – увеличение кровотока путем общего расширения сосудов с уменьшением периферического сопротивления. Кроме того, простагландины регулируют агрегацию тромбоцитов (простагландины группы F – ускоряют, а группы I – ингибируют).

  • Влияние на водно-электролитный обмен. Все простагландины усиливают ионный поток через мембраны эпителиальных клеток.

  • Влияние на нервную систему. Простагландины оказывают седативное и транквилизирующее действие, являются антагонистами противосудорожных препаратов.

  • Влияние на желудочно-кишечный тракт. Простагландины тормозят секрецию желудка и поджелудочной железы, усиливают моторику кишечника.

  • Влияние на репродуктивную систему.

Простагландины участвуют в воспалительном процессе, усиливая его в очаге воспаления. Ингибиторами образования простагландинов является ацетилсалициловая кислота и другие салицилаты. Аспирин инактивирует фермент, катализирующий превращение арахидоновой кислоты в простагландины. Этим объясняется противовоспалительное действие аспирина.

Воски – это сложные эфиры жирных кислот и высших одноатомных или двухатомных спиртов. Число углеродных атомов у таких спиртов составляет от 16 до 22. Это твердые вещества, выполняют в основном защитные функции. К воскам относятся так называемые природные воски , т.е. те, которые синтезируются живыми организмами (пчелиный воск; ланолин – воск, входящий в состав жира, покрывающий шерсть; воск, покрывающий листья растений).

Сложные липиды

В класс сложные липиды входят три группы соединений: фосфолипиды, гликолипиды и сульфолипиды.

Фосфолипиды – сложные липиды, содержащие фосфор. Кроме фосфорной кислоты в их молекулах присутствуют спирты, жирные кислоты, азотистые основания и некоторые другие соединения. Фосфолипиды имеют важное значение для организма: составляют основу биологических мембран, содержатся в большом количестве в нервной ткани (ткань мозга на 60-70% состоит из фосфолипидов), их много в печени и сердце.

В зависимости от входящего в их состав спирта они подразделяются на глицерофосфолипиды и сфингофосфолипиды.

Глицерофосфолипиды . Об­щая структурная формула глицерофосфолипидов включает в себя остаток спирта - глицерина, гидроксильные группы которого у первого и второго углеродных атомов образуют сложные эфир­ные связи с жирными кислотами. Гидроксильная группа у тре­ тьего углеродного атома образует сложноэфирную связь с остат­ ками фосфорной кислоты. Обычно к остатку фосфорной кисло­ ты присоединено какое-то азотсодержащее вещество (холина, серина, этаноламина). Общая фор­ мула глицерофосфолипидов выглядит следующим образом:

где R 1 – насыщенная жирная кислота, R 2 – ненасыщенная жирная кислота, R 3 – азотистое основание, которое дает название отдельным представителям глицерофосфатидов: так, холин дал название – фосфатидилхолину (лецитин); серин – фосфатидилсерину; этаноламин – фосфатидилэтаноламину (кефалин).


Простейшим глицерофосфолипидом является фосфатидная кислота . В тканях организма она содержится в незначительных коли­чествах, однако является важным промежуточным соединени­ем в синтезе триацилглицеридов и фосфолипидов. Наиболее широко представлены в клетках различных тканей фосфатидилхолин (лецитин) и фосфатидилэтаноламин (кефалин). У них к остатку фосфорной кислоты присоединены аминоспирты - холин и этаноламин. Эти два глицерофосфолипида метаболи­чески тесно связаны друг с другом. Они являются главными липидными компонентами большинства биологичес­ких мембран. В тканях находятся и другие глицерофосфолипиды. В фосфатидилсерине фосфорная кислота этерифицирована гидроксильной группой серина, а в фосфатидилинозите - шестиатомным спиртом - инозитом.

Производное фосфатидилинозита - фосфатидилинозит-4,5-бисфосфат является важным компонентом биологических мем­бран. При стимуляции соответствующим гормоном он расщеп­ляется. Продукты его расщепления (диацилглицерид и ипозитолтрифосфат) служат в качестве внутриклеточных мессснджеровдействия гормонов.

С глицерофосфолипидами метаболически очень тесно свя­заны лизофосфолипиды. Вих составе содержится только один остаток жирной кислоты. Примером может служить лизофосфатидилхолин, который играет важную роль в метаболизме фосфолипидов.

Сфингофосфолипиды . Они содержат в своем составе двухатомный ненасыщенный спирт сфингозин.

Представителем этой группы соединений, широко распространенным в организме является сфингомиелин. В его состав входят сфингозин, остаток жирной кислоты, остаток фосфорной кислоты и холин. Сфингомиелин обнаружен в мембранах растительных и животных клеток. Особенно богата сфингофосфолипидами нервная ткань, в частности мозг.

Роль фосфолипидов:

  • Участвуют в образовании мембран.

  • Влияют на функции мембран – избирательную проницаемость, реализацию внешних воздействий на клетку.

  • Формируют гидрофильную оболочку липопротеинов, способствую транспорту гидрофобных липидов.

Характерной особенностью фосфолипидов является их дифильность, т. е. способность растворяться как в водной среде, так и в нейтральных липидах. Это обусловлено наличием у фосфолипидов выраженных полярных свойств. При рН 7,0 их фосфатная группа всегда несет отрицательный заряд.

Остаток серина в молекуле фосфатидилсерина содержит альфа-амино- и карбоксильную группы. Следовательно, при рН 7,0 молекула фосфатидилсерина имеет две отрицательно и одну положительно заряженных группы и несет суммарный отри­цательный заряд. В то же время радикалы жирных кислот в со­ставе фосфолипидов не имеют электрического заряда в вод­ной среде и таким образом являются гидрофобной частью мо­лекулы фосфолипида. Наличие полярности за счет заряда по­лярных групп обусловливает гидрофильность. Поэтому на по­верхности раздела масло - вода фосфолипиды располага­ются таким образом, чтобы полярные группы находились в вод­ной фазе, а неполярные группы - в масляной. За счет этого в водной среде они образуют бимолекулярный слой, а при дости­жении некоторой критической концентрации - мицеллы.

На этом основано участие фосфолипидов в построении биологических мембран. Обработка находящегося в водной среде дифильного липида ультразвуком приводит к образова­нию липосом. Липосома - замкнутый липидный бислой, внутри которого оказывается часть водной среды. Липосомы находят применение в клинике, косметологии в качестве своеобразных контейнеров для переноса лекарств, питательных веществ к оп­ределенным органам и для комбинированного дей­ствия на кожу.

Гликолипиды – это сфинголипиды, содержащие углеводы.

Гликолипиды широко представлены в тканях. Особенно богаты ими миелиновые оболочки нервов. В состав гликолипидов входит спирт – сфингозин. Гликолипиды не содержат фосфорной кислоты. Молекулы их имеют полярные, гидрофильные углеводные группы (чаще всего D-галактозу).

Различают две группы гликолипидов: цереброзиды и ганглиозиды.

Цереброзиды : в состав молекулы входит спирт сфингозин, связанный сложноэфирной связью с остатком жирной кислоты (нервоновая, цереброновая, лигноцериновая) – этот комплекс называется церамид . Углеводная часть цереброзида представлена D-галактозой, которая присоединена к сфингозину. Обнаруженные в цереброзидах жирные кислоты необычны в том отношении, что они содержат 24 атома углерода. Чаще встречаются нервоновая, цереброновая и лигноцериновая кислоты. В состав цереброзидов других тканей (кроме, нервной ткани) вместо галактозы может входить глюкоза.

Ганглиозиды имеют сложное строение. В состав молекулы помимо сфингозина, входит олигосахарид, содержащий остатки глюкозы и галактозы, а также одна или несколько молекул сиаловых кислот (производные аминосахаров).

Сиаловые кислоты - это производные аминосахаров. Доми­нирующими в составе ганглиозидов являются N-ацетилглюкозамин и N-ацетилнейраминовая кислота.

Ганглиозиды обнаруживаются обычно на внешней поверхности клеточных мембран, особенно нервной.

Отмечено распределение цереброзидов и ганглиозидов в ткани мозга. Если в составе белого вещества преобладают цереброзиды, то в составе серого вещества – ганглиозиды.

Сульфолипиды – это гликолипиды, содержащие остаток серной кислоты.

Сульфолипиды (сульфатиды) имеют структуру, аналогичную цереброзидам, с той лишь разницей, что у 3-го углеродного атома галактозы вместо гидроксильной группы присоединен остаток серной кислоты.

Липопротеиды – комплексы липидов с белками. По строению это небольшого размера сферические частицы, наружная оболочка которых образована белками (что позволяет им передвигаться по крови), а внутренняя часть – липидами и их производными. Основная функция липопротеидов – транспорт по крови липидов. В зависимости от количества белка и липидов липопротеиды подразделяются на хиломикроны, липопротеиды очень низкой плотности (ЛПОНП) – пре-β-липопротеины, липопротеиды низкой плотности (ЛПНП) - β-липопротеины и липопротеиды высокой плотности (ЛПВП) –α-липопротеины.

Неомыляемые липиды

Неомыляемые липиды не гидролизуются щелочью с освобождением жирных кислот. Известны два основных типа неомыляемых липидов – высшие спирты и высшие углеводороды.

Высшие спирты

К высшим спиртам относятся холестерин и жирорастворимые витамины – А, D, E.

Стерины – это группа высокомолекулярных циклических спиртов, образующих с жирными кислотами сложные эфиры – стериды. Представителем стеринов является холестерин (одноатомных циклический спирт), впервые выделенный из желчных камней Э. Конради в 17 веке.

Холестерин является производным циклопентанпергидрофенантрена, содержащего три конденсированных циклогексановых колец, с которыми соединено циклопентановое кольцо.


Холестерин является кристаллическим нерастворимым в воде веществом, способным растворяться в органических растворителях.

Холестерин находится во всех клетках организма. Холестерин – один из главных компонентов плазматической мембраны и липопротеинов плазы крови, часто находится в организме в этерифированной форме (в виде эфиров жирных кислот) и служит исходным соединением для синтеза всех стероидов, функционирующих в организме (гормоны коры надпочечников, половые гормоны, витамин D 3). В растениях холестерин не обнаружен .

В организме холестерин выполняет важные функции:

  • Является предшественником многих биологически важных соединений: желчных кислот, стероидных гормонов, витамина Д, глюкокортикоидов и минералокортикоидов;

  • Входит в состав клеточных мембран;

  • Повышает устойчивость эритроцитов к гемолизу;

  • Служит своеобразным изолятором для нервных клеток, обеспечивая проведение нервных импульсов.

Высшие углеводороды

Высшие углеводороды – производные изопрена. К числу липидных компонентов, которые встречаются в клетках ив сравнительно небольшом количестве, относятся терпены . Их молекулы построены путем объединения нескольких молекул пятиуглеродного углеводорода – изопрена. Терпены, содержащие в своем составе две изопреновые группировки, называются монотерпенами, а содержащие три – секвитерпенами.

В растениях обнаружено большое количество моно- и секвитерпенов. Многие из них придают растениям свойственный им аромат и служат главными компонентами душистых масел, получаемых из таких растений. К группе высших терпенов принадлежат каротиноиды (предшественники витамина А). Природный каучук является политерпеном.

▰▰▰▰▰▰▰▰▰▰▰▰▰▰▰▰▰▰▰▰▰▰▰▰▰▰▰▰▰▰

Привет! Многие читатели, интересуясь своим здоровьем, часто в литературе встречают такие термины, как липиды или липидный обмен. А значение этих слов не знают, так давайте познакомимся с ними!

И так, начнем!

Липиды (жиры) — это вещества, содержащиеся практически во всех живущих клетках.

Химический состав липидов представлен соединениями спиртов и эфирами некоторых жирных кислот.

Характеристика липидов

Липиды не растворяются в воде. Однако, благодаря своим составляющим компонентам, растворимы спиртами и эфирами. Так, разорвать липоидные соединения способны, например, бензин или формалин.

Можно выделить такие виды липидов, как сложные и простые.

Простые липиды — жиры группы С-Н-О, то есть, соединения, состоящие из углерода, водорода и кислорода.

Это жирные спирты, кислоты, альдегиды, воски.

Примером продукта, содержащего простые жиры, является обыкновенное мыло. Мыльные соединения получаются путем взаимодействия липидных солей и щелочи.

Сложные липиды — это соединения простых жиров с дополнительными веществами, такими как азот, фосфор (фосфолипиды) и другие.

Сложные жиры, в свою очередь, делятся на полярные и нейтральные.

Среди полярных:

  • гликолипиды,
  • те же фосфолипиды,
  • аминоспирты алифатические.

Примеры липидов нейтральных — моно-, ди-, триглицериды, церамиды, стеариновые эфиры и другие.

Вещества, относящиеся к липидам,обнаружены в:

Кроме того, выделяют липиды твердые и жидкие. Они содержатся во многих пищевых продуктах — жиры животные и растительные.

Интересно, что в молоке содержатся именно твердые жиры, а в растительных маслах — жидкие.

Как правило, многие жиры животного происхождения твердые, при нагревании, переходят в жидкое состояние.

По структуре и составу, молекулы сложных и простых жиров имеют некоторые различия:

  • Простые липиды включают молекулы спиртов и эфиров, а в
  • сложных — к этим молекулам добавляются еще и другие вещества, зависимо от биологического синтеза данных жиров.

Чтобы получить более широкое представление об этих важных для человеческого организма соединениях, определим, какие вещества относятся к липидам . Это:

1) Жиры нейтральные:

  • рыбий жир,
  • растительное масло и другие;

2) Терпены:

  • филлохинон (витамин К),
  • углеводороды,
  • смолы,
  • скипидар;

3) Стероиды:

  • витамин Д,
  • половые гормоны,
  • желчи,
  • холестерин и т. д.;

4) Липопротеины:

  • растительный,
  • пчелиный,
  • шерстяной и другие.

Липиды в организме человека,в первую очередь, представляют источник энергии, поэтому первой выделим энергетическую функцию жиров.

Накапливаясь в тканях животных организмов, липиды образуют жировые запасы, которые далее служат источником питания для органов и клеток.

Липиды в человеческом организме больше всего сосредоточены в подкожном жиру (клетчатке).

Функция теплосбережения. Все мы обращаем внимание на то, как «круглеют» домашние животные в зиму. Это происходит потому, что под кожей накапливаются защитные липиды. Кроме питательных способностей, они сохраняют в организме тепло. Не только животные, но и некоторые люди к зиме имеют способность поправляться.

Защитная и структурная функции . Жиры являются структурным элементом многих органических соединений и основой биологического слоя мембран клеток, образуя, как бы, строительный материал для тканей. Кроме того, имеющаяся жировая прослойка служит дополнительной защитой для внутренних органов при механическом воздействии.

Регулирующая функция. Липиды играют очень важную регулирующую роль. Они принимают участие во множестве функций организма:

  • связанных с работой половой системы (половые гормоны надпочечников),
  • предупреждением организма о наступлении воспалительных процессов (температура, болевые ощущения),
  • протеканием аллергии,
  • регуляцией давления и другими функциями.

Нарушение обмена липидов может повлечь за собой значительные сбои в работе человеческих органов и тканей.

Избыток липидов называется ожирением, что является довольно серьезной болезнью с многими осложнениями.

Также, один из представителей липидов — холестерин, способен создать на стенках сосудов спайки и вызвать их закупорку. Это чревато возникновением , повышением АД, спазмами сосудов и т. д.

Предпосылками нарушений жирового обмена могут стать:

  • генетическая предрасположенность,
  • алкоголизм,
  • нарушения работы почек,
  • гормональные дисфункции и другие.

При недостатке липидов в организме может наступить его истощение, преждевременное старение, потеря сна, нервные расстройства и т. д.

Таким образом, следует поддерживать липидный баланс в организме, не допуская колебаний как в одну, так и в противоположную стороны.

Поэтому, желаем вам сбалансированного липидного обмена и крепкого здоровья!

Липиды — жироподобные органические соединения, нерастворимые в воде, но хорошо растворимые в неполярных растворителях (эфире, бензине, бензоле, хлороформе и др.). Липиды принадлежат к простейшим биологическим молекулам.

В химическом отношении большинство липидов представляет собой сложные эфиры высших карбоновых кислот и ряда спиртов. Наиболее известны среди них жиры . Каждая молекула жира образована молекулой трехатомного спирта глицерола и присоединенными к ней эфирными связями трех молекул высших карбоновых кислот. Согласно принятой номенклатуре жиры называют триацилглицеролами .

Когда жиры гидролизуются (т.е. расщепляются из-за внедрения H + и OH — в эфирные связи), они распадаются на глицерол и свободные высшие карбоновые кислоты, каждая из которых содержит четное число атомов углерода.

Атомы углерода в молекулах высших карбоновых кислот могут быть соединены друг с другом как простыми, так и двойными связями. Среди предельных (насыщенных) высших карбоновых кислот наиболее часто в состав жиров входят:

  • пальмитиновая СН 3 — (СН 2) 14 — СООН или С 15 Н 31 СООН;
  • стеариновая СН 3 — (СН 2) 16 — СООН или С 17 Н 35 СООН;
  • арахиновая СН 3 — (СН 2) 18 — СООН или С 19 Н 39 СООН;

среди непредельных:

  • олеиновая СН 3 — (СН 2) 7 — СН = СН — (СН 2) 7 — СООН или С 17 Н 33 СООН;
  • линолевая СН 3 — (СН 2) 4 — СН = СН — СН 2 — СН — (СН 2) 7 — СООН или С 17 Н 31 СООН;
  • линоленовая СН 3 — СН 2 — СН = СН — СН 2 — СН = СН — СН 2 — СН = СН — (СН 2) 7 — СООН или С 17 Н 29 СООН.

Степень ненасыщенности и длина цепей высших карбоновых кислот (т.е. число атомов углерода) определяет физические свойства того или иного жира.

Жиры с короткими и непредельными кислотными цепями имеют низкую температуру плавления. При комнатной температуре это жидкости (масла) либо мазеподобные вещества. И наоборот, жиры с длинными и насыщенными цепями высших карбоновых кислот при комнатной температуре представляют собой твердые вещества. Вот почему при гидрировании (насыщении кислотных цепей атомами водорода по двойным связям) жидкое арахисовое масло, например, превращается в однородное мазеобразное арахисовое масло, а подсолнечное масло — в маргарин. В организме животных, живущих в холодном климате, например у рыб арктических морей, обычно содержится больше ненасыщенных триацилглицеролов, чем у обитателей южных широт. По этой причине тело их остается гибким и при низких температурах.

Различают:

Фосфолипиды - амфифильные соединения, т. е. имеют полярные головки и неполярные хвосты. Группы, образующие полярную головку, гидрофильны (растворимы в воде), а неполярные хвостовые группы гидрофобны (нерастворимы в воде).

Двойственная природа этих липидов обусловливает их ключевую роль в организации биологических мембран.

Воска - сложные эфиры адноатомных (с одной гидроксильной группой) высокомолекулярных (имеющих длинный углеродный скелет) спиртов и высших карбоновых кислот.

Еще одну группу липидов составляют стероиды . Эти вещества построены на основе спирта холестерола. Стероиды очень плохо растворимы в воде и не содержат высших карбоновых кислот.

К ним относятся желчные кислоты, холестерол, половые гормоны, витамин D и др.

К стероидам близки терпены (ростовые вещества растений - гиббереллины; фитол, входящий в состав хлорофилла каротиноиды - фотосинтетичские пигменты; эфирные масла растений - ментол, камфора и др.).

Липиды могут образовывать комплексы с другими биологическими молекулами.

Липопротеины - сложные образования, содержащие триацилглицеролы, холестерол и белки, причем последние не имеют ковалентных связей с липидами.

Гликолипиды - это группа липидов, построенных на основе спирта сфингозина и содержащих кроме остатка высших карбоновых кислот одну или несколько молекул сахаров (чаще всего глюкозу или галактозу).

Функции липидов

Структурная . Фосфолипиды вместе с белками образуют биологические мембраны. В состав мембран входят также стеролы.

Энергетическая . При окислении 1 г жиров высвобождается 38,9 кДж энергии, которая идет на образование АТФ. В форме липидов хранится значительная часть энергетических запасов организма, которые расходуются при недостатке питательных веществ. Животные, впадающие в спячку, и растения накапливают жиры и масла и расходуют их на поддержание процессов жизнедеятельности. Высокое содержание липидов в семенах обеспечивает энергией развитие зародыша и проростка, пока он не перейдет к самостоятельному питанию. Семена многих растений (кокосовая пальма, клещевина, подсолнечник, соя, рапс и др.) служат сырьем для получения масла промышленным способом.

Защитная и теплоизоляционная . Накапливаясь в подкожной жировой клетчатке и вокруг некоторых органов (почки, кишечник), жировой слой защищает организм от механических повреждений. Кроме того, благодаря низкой теплопроводности слой подкожного жира помогает сохранить тепло, что позволяет, например, многим животным обитать в условиях холодного климата. У китов, кроме того, он играет еще и другую роль - способствует плавучести.

Смазывающая и водоотталкивающая . Воска покрывают кожу, шерсть, перья, делают их более эластичными и предохраняют от влаги. Восковым налетом покрыты листья и плоды растений; воск используется пчелами в строительстве сот.

Регуляторная . Многие гормоны являются производными холестерола, например половые (тестостерон у мужчин и прогестерон у женщин) и кортикостероиды (альдостерон).

Метаболическая . Производные холестерола, витамин D играют ключевую роль в обмене кальция и фосфора. Желчные кислоты участвуют в процессах пищеварения (эмульгирование жиров) и всасывания высших карбоновых кислот.

Липиды являются источником метаболической воды. При окислении жира образуется примерно 105 г воды. Эта вода очень важна для некоторых обитателей пустынь, в частности для верблюдов, способных обходиться без воды в течение 10-12 суток: жир, запасенный в горбе, используется именно на эти цели. Необходимую для жизнедеятельности воду медведи, сурки и другие животные в спячке получают в результате окисления жира.