Тлеющий разряд применение. Тлеющий разряд. Общее описание тлеющего разряда

Этому виду разряда соответствует область между падающими участками ВАХ. Ток здесь на три-четыре порядка больше, чем ток темного разряда (миллиамперы вместо микроампер). Поэтому количество генерируемых разрядом фотонов соответственно увеличивается, что позволяет наблюдать свечение средней интенсивности, определившее название разряда. Вместе с электронными лавинами и -процессами в тлеющем разряде проявляется новый фактор: объемный заряд положительных ионов повышает потенциалы точек пространства между электродами (рис. 3.2). Заряд становится существенным в результате значительного увеличения тока.

Рис.3.2. Распределение потенциала в плоскопараллельном промежутке без пространственного заряда (1) и при действии положительного (ионного) пространственного заряда (2). Обозначения: х – расстояние от катода, d межэлектродное расстояние, d к - ширина области катодного падения потенциала

В электронных лавинах ионы и электроны образуются в одинаковом количестве (парами), однако пространственный заряд ионов значительно больше, чем электронов. Такое положение определяется тем, что скорость движения ионов к катоду много меньше, чем электронов к аноду. В результате ионы накапливаются в объеме в течение времени установления стационарного режима. В нем потоки ионов на катод и электронов на анод равны частоте ионизаций молекул в промежутке. Равенство потоков при малой скорости ионов обеспечивается тем, что после накопления в движении участвует больше ионов, чем электронов. Существенное превышение количества ионов в промежутке над количеством электронов определяет положительный знак суммарного пространственного заряда.

Потенциалы точек пространства под действием объемного заряда ионов возрастают, но не превышают потенциал анода (иначе электроны не смогли бы доходить до анода из-за тормозящего электрического поля). Как следствие, прикатодный участок графика распределения потенциала между электродами (рис. 3.2) идёт значительно круче, чем в случае малого пространственного заряда, а прианодный участок практически горизонтален. Почти все приложенное к промежутку напряжение сосредоточено в катодной области. Усиление объемного заряда с ростом тока проявляется в большем повышении потенциалов у катода и соответственно в уменьшении протяжённости области катодного падения потенциала (d к на рис. 3.2).

Перераспределение потенциала в промежутке с ростом тока (переход от прямой 1 к кривой 2) приводит к тому, что при x > d к развитие лавин прекращается, так как в этой области напряженность поля близка к нулю и ускорение электронов недостаточно для ионизации. Протяженность электронных лавин уменьшается (отd до d к ). В условиях правой ветви кривой Пашена это ведет к снижению напряжения, обеспечивающего самовоспроизводство носителей тока. В результате на ВАХ (рис. 3.1) появляется первый падающий участок, на котором с ростом тока необходимое для его поддержания напряжение уменьшается. Подобным образом объясняется и следующий далее возрастающий участок ВАХ: с увеличением тока значениеd к сокращается настолько, что произведениеp d к становится меньше величины, соответствующей минимуму кривой Пашена, и напряжение поддержания разряда растёт.

Между падающим и возрастающим участками ВАХ расположен сравнительно протяженный почти горизонтальный участок. Он соответствует «нормальному» тлеющему разряду и обусловлен интересной способностью разряда автоматически локализоваться на части поверхности катода. В начале участка площадь, занимаемая разрядом на катоде (далее –площадь свечения), мала, а с ростом тока она пропорционально увеличивается, так что плотность тока остается постоянной. В конце участка разряд занимает всю площадь катода. Постоянство плотности тока («закон Геля») определяет неизменность напряжения на участке.

Значение плотности тока разряд «выбирает» таким, чтобы величина произведения p d к соответствовала минимуму кривой Пашена (чтобы напряжение поддержания разряда было минимальным). В этом режиме на поддержание разряда затрачивается наименьшая мощность, что можно считать одной из причин локализации разряда.

Более детально последовательность процессов, определяющих «стягивание» разряда на части поверхности катода, можно представить следующим образом. В исходном состоянии при определенном значении тока разряд занимает всю поверхность катода, поэтому плотность тока и плотность пространственного заряда ионов сравнительно малы. Распределение потенциала близко к прямой 1 на рис. 3.2, а напряжение поддержания разряда велико и соответствует темному разряду. При неизменном токе случайно уменьшается площадь катода, занимаемая разрядом, что приводит к росту плотности пространственного заряда ионов и формированию области катодного падения потенциала с шириной d к , несколько меньшей межэлектродного расстоянияd. Сокращается протяженность электронных лавин и в соответствии с кривой Пашена уменьшается напряжение, необходимое для поддержания разряда.

В то же время напряжение между электродами сохраняется на исходном уровне, поскольку оно равно разности напряжения источника питания и падения напряжения на ограничительном резисторе, которое осталось прежним, поскольку прежним остался ток. В результате того, что напряжение на промежутке оказалось больше необходимого для поддержания разряда, коэффициент ионизационного нарастания становится больше единицы, ток увеличивается и падение напряжения на промежутке снижается, уменьшая коэффициентдо единицы. Это соответствует новому стационарному состоянию системы, но уже в условиях, когда площадь свечения меньше площади катода.

Далее процессы повторяются до того, когда произведение p d к по мере уменьшенияd к достигнет значения, соответствующего минимуму кривой Пашена. При этом площадь свечения будет такой, чтобы плотность пространственного заряда, определяющаяся плотностью тока, обеспечивала необходимую ширину области катодного падения потенциалаd к .

С ростом давления газа площадь свечения на катоде автоматически уменьшается, плотность тока возрастает, величина d к уменьшается, а произведениеp d к не изменяется. Как следствие, разряд по-прежнему расходует наименьшую мощность, а напряжение горения разряда (нормальное катодное падение потенциала) не зависит от давления газа. Оно определяется лишь родом газа и материалом катода:

где e = 2,7,А и В - константы, характеризующие ионизацию газа электронами. Значения нормального катодного падения потенциала для ряда случаев представлены на с. 44.

Плотность тока нормального тлеющего разряда (нормальная плотность тока ) определяется следующим соотношением:

где - подвижность ионов (см. с. 44), а- диэлектрическая проницаемость вакуума.

Поскольку подвижность обратно пропорциональна давлению газа, соотношение (3.2) можно представить в виде:

, (3.3)

где
- нормальная плотность тока при единичном давлении (см. с. 44), которая, как следует из соотношения (3.2), зависит от рода газа (коэффициентыА и В ) и материала катода (коэффициентγ ). Увеличение нормальной плотности тока с ростом давления перемещает правую границу горизонтального участка ВАХ вправо, поскольку в его конце разряд распространяется по всей поверхности катода, и ток равен произведению плотности тока на площадь катода (кривая 2 на рис. 3.1 правее первой).

Возрастающий участок ВАХ соответствует «аномальному» тлеющему разряду, при котором площадь свечения равна площади катода и с ростом тока увеличивается плотность тока. Напряжение, необходимое для поддержки разряда, повышается при увеличении тока в связи с тем, что растет плотность пространственного заряда, уменьшается ширина области катодного падения потенциала d к и произведениеp d к становится меньше величины, соответствующей минимуму кривой Пашена.

Приведённые выше упрощённые объяснения физических процессов базируются на том, что электродная система близка к плоскопараллельной (одномерной). Между тем в начале участка ВАХ, соответствующего нормальному тлеющему разряду, где площадь разряда на катоде мала, поперечный размер свечения может оказаться соизмеримым с шириной области катодного падения потенциала d к . В этом случае влияние пространственного заряда на распределение потенциала в промежутке определяется решением двумерной задачи. Потенциалы точек в разрядном канале оказываются ниже, чем в одномерном случае. Это можно интерпретировать как рост величиныd к , что сопровождается увеличением напряжения поддержания разряда с уменьшением тока. Такой разряд называется поднормальным тлеющим, поскольку он предшествует нормальному разряду.

ДУГОВОЙ РАЗРЯД

С увеличением тока аномального тлеющего разряда рост напряжения замедляется, и на ВАХ вновь появляется падающий участок (в амперном диапазоне). Напряжение снижается в результате того, что бомбардирующие катод ионы разогревают его до высокой температуры, достаточной для существенной термоэлектронной эмиссии. Формально можно считать, что за счет термоэмиссии растет число электронов, выходящих из катода, в расчете на один ион, поступающий на катод. Иными словами, можно считать, что увеличивается коэффициент вторичной ионно-электронной эмиссии . Как следствие, для поддержания тока требуется меньшее количество ионов, а значит – менее интенсивное развитие электронных лавин и менее высокое напряжение.

Температура катода при амперных значениях тока увеличивается значительно (до 3000 К и более), термоэмиссия становится основным механизмом выхода электронов из катода, а коэффициент приближается к единице (возрастает на 1 – 2 порядка). Поэтому напряжение поддержания разряда снижается очень сильно – от сотен вольт при аномальном тлеющем разряде до десятков вольт. Электронные лавины развиваются весьма слабо: на один электрон, выходящий из катода, приходится лишь несколько электронов, попадающих на анод, что приблизительно на порядок меньше, чем в тлеющем разряде. Соответственно уменьшается количество ионов, образующихся в каждой лавине. Однако количество лавин при большом токе велико и ионы обеспечивают разогрев катода до высокой температуры, несмотря на падение их энергии в результате уменьшения напряжения.

Напряжение поддержания разряда с ростом тока уменьшается приблизительно до потенциала ионизации газа. Более низкое напряжение невозможно, поскольку ионизация принципиально необходима для существования разряда. В ряде случаев напряжение становится ниже потенциала ионизации за счет ступенчатой ионизации молекул газа электронами или за счет ионизации атомов металла, испарившихся с поверхности катода.

Положение второго падающего участка ВАХ, соответствующего переходу тлеющего разряда в дуговой, существенным образом зависит от давления газа. С ростом давления начало участка сдвигается вправо по оси тока и вниз по оси напряжения. Иными словами, вправо и вниз сдвигается максимум ВАХ в области перехода тлеющего разряда в дуговой (кривая 2 на рис. 3.1 правее и ниже кривой 1). Эффект объясняется следующим образом. Для разогрева катода до определенной температуры требуется определенная мощность, выделяющаяся на катоде в результате ионной бомбардировки. Мощность пропорциональна количеству ионов (приблизительно – току разряда) и энергии ионов (приблизительно – анодному напряжению). С ростом давления газа ток перехода нормального тлеющего разряда в аномальный увеличивается. Следовательно, уровень мощности, достаточный для разогрева катода, достигается при меньшем напряжении, и начало участка спада на ВАХ перемещается вправо и вниз.

Такое перемещение при увеличении давления до некоторого значения, очевидно, приведет к тому, что напряжение перехода аномального тлеющего разряда в дуговой уменьшится до нормального катодного падения потенциала. Это означает, что нормальный тлеющий разряд перейдет в дуговой, минуя стадию аномального тлеющего разряда (без повышения напряжения). Дальнейшее увеличение давления приведет к тому, что в дуговой разряд сможет переходить нормальный разряд, занимающий лишь часть поверхности катода.

Положение участка ВАХ, соответствующего переходу нормального тлеющего разряда в аномальный, зависит от площади катода: с её увеличением участок сдвигается в сторону больших токов (кривая 3 рис. 3.1 правее кривой 2). В результате аномальный тлеющий разряд переходит в дуговой при меньшем напряжении. Можно предполагать и противоположное изменение напряжения перехода, поскольку для разогрева катода большей площади, очевидно, требуется большая мощность. На практике это не подтверждается, так как дуговой разряд обычно развивается с локализацией на части поверхности катода и до высокой температуры разогревается лишь небольшой участок катода (формируется «катодное пятно»).

Изложенный механизм существования дугового разряда действует только в случаях, когда катод выполнен из тугоплавкого материала (W, Mo, C, Nb, Ta). Если материал катода легкоплавкий (Hg, Al, Cu, Ni), то уровень термоэмиссии, необходимый для дугового разряда, достигается, как показывает расчет, лишь после плавления катода. Однако эксперимент показывает, что на легкоплавких катодах дуговой разряд может развиваться и без плавления катода (кроме ртути). Для него также характерны низкое, порядка потенциала ионизации, напряжение горения и большие, десятки и сотни ампер, величины токов.

Выход электронов из катода в таком разряде обеспечивается за счет автоэлектронной эмиссии. Необходимые высокие значения напряженности электрического поля при низком анодном напряжении достигаются в результате сильного уменьшения ширины области катодного падения потенциала d к (рис. 3.2). Сокращение этой области обусловлено стягиванием разряда на катоде в узкое пятно с резким увеличением плотностей тока и пространственного заряда ионов. В пятне интенсивно испаряется материал катода, что уменьшает длину свободного пробега электронов и облегчает ионизацию, поскольку потенциалы ионизации металлов в парообразном состоянии существенно (в 2 раза) меньше потенциалов ионизации газов. Пятно обычно хаотически перемещается по катоду.

Разряд в промежутке с катодом из тугоплавкого металла называют «термоэлектронная дуга», а в случае легкоплавкого катода – «автоэлектронная дуга» (по механизму выхода электронов из катода).

В зависимости от давления газа, конфигурации электродов и параметров внешней цепи существует четыре типа самостоятельных разрядов:

  • тлеющий разряд;
  • искровой разряд;
  • дуговой разряд;
  • коронный разряд.
  • 1. Тлеющий разряд возникает при низких давлениях. Его можно наблюдать в стеклянной трубке с впаянными у концов плоскими металлическими электродами (рис. 8.5). Вблизи катода располагается тонкий светящийся слой, называемый катодной светящейся пленкой 2.

    Между катодом и пленкой находится астоново темное пространство 1. Справа от светящейся пленки помещается слабо светящийся слой, называемый катодным темным пространством 3. Этот слой переходит в светящуюся область, которую называют тлеющим свечением 4, с тлеющим пространством граничит тёмный промежуток – фарадеево тёмное пространство 5. Все перечисленные слои образуют катодную часть тлеющего разряда. Вся остальная часть трубки заполнена святящимся газом. Эту часть называют положительным столбом 6.

    При понижении давления катодная часть разряда и фарадеево тёмное пространство увеличивается, а положительный столб укорачивается.

    Измерения показали, что почти все падения потенциала приходятся на первые три участка разряда (астоново темное пространство, катодная святящаяся плёнка и катодное тёмное пятно). Эту часть напряжения, приложенного к трубке, называют катодным падением потенциала .

    В области тлеющего свечения потенциал не изменяется – здесь напряженность поля равна нулю. Наконец, в фарадеевом тёмном пространстве и положительном столбе потенциал медленно растёт.

    Такое распределение потенциала вызвано образованием в катодном темном пространстве положительного пространственного заряда, обусловленного повышенной концентрацией положительных ионов.

    Положительные ионы, ускоренные катодным падением потенциала, бомбардируют катод и выбивают из него электроны. В астоновом темном пространстве эти электроны, пролетевшие без столкновений в область катодного тёмного пространства, имеют большую энергию, вследствие чего они чаще ионизируют молекулы, чем возбуждают. Т.е. интенсивность свечения газа уменьшается, но зато образуется много электронов и положительных ионов. Образовавшиеся ионы в начале имеют очень малую скорость и потому в катодном тёмном пространстве создаётся положительный пространственный заряд, что и приводит к перераспределению потенциала вдоль трубки и к возникновению катодного падения потенциала.

    Электроны, возникшие в катодном тёмном пространстве, проникают в область тлеющего свечения, которая характеризуется высокой концентрацией электронов и положительных ионов коленарным пространственным зарядом, близким к нулю (плазма). Поэтому напряженность поля здесь очень мала. В области тлеющего свечения идёт интенсивный процесс рекомбинации, сопровождающийся излучением выделяющейся при этом энергии. Таким образом, тлеющее свечение есть, в основном, свечение рекомбинации.

    Из области тлеющего свечения в фарадеево тёмное пространство электроны и ионы проникают за счёт диффузии. Вероятность рекомбинации здесь сильно падает, т.к. концентрация заряженных частиц невелика. Поэтому в фарадеевом тёмном пространстве имеется поле. Увлекаемые этим полем электроны накапливают энергию и часто в конце концов возникают условия, необходимые для существования плазмы. Положительный столб представляет собой газоразрядную плазму. Он выполняет роль проводника, соединяющего анод с катодными частями разряда. Свечение положительного столба вызвано, в основном, переходами возбужденных молекул в основное состояние.

    2. Искровой разряд возникает в газе обычно при давлениях порядка атмосферного. Он характеризуется прерывистой формой. По внешнему виду искровой разряд представляет собой пучок ярких зигзагообразных разветвляющихся тонких полос, мгновенно пронизывающих разрядный промежуток, быстро гаснущих и постоянно сменяющих друг друга (рис. 8.6). Эти полоски называют искровыми каналами .

    Т газа = 10 000 К

    ~ 40 см I = 100 кА t = 10 –4 c l ~ 10 км

    После того, как разрядный промежуток «пробит» искровым каналом, сопротивление его становится малым, через канал проходит кратковременный импульс тока большой силы, в течение которого на разрядный промежуток приходится лишь незначительное напряжение. Если мощность источника не очень велика, то после этого импульса тока разряд прекращается. Напряжение между электродами начинает повышаться до прежнего значения, и пробой газа повторяется с образованием нового искрового канала.

    В естественных природных условиях искровой разряд наблюдается в виде молнии. На рисунке 8.7 изображен пример искрового разряда – молния, продолжительностью 0,2 ÷ 0,3 с силой тока 10 4 – 10 5 А, длиной 20 км (рис. 8.7).

    3. Дуговой разряд . Если после получения искрового разряда от мощного источника постепенно уменьшать расстояние между электродами, то разряд из прерывистого становится непрерывным, возникает новая форма газового разряда, называемая дуговым разрядом (рис. 8.8).

    ~ 10 3 А
    Рис. 8.8

    При этом ток резко увеличивается, достигая десятков и сотен ампер, а напряжение на разрядном промежутке падает до нескольких десятков вольт. Согласно В.Ф. Литкевичу (1872 – 1951), дуговой разряд поддерживается, главным образом, за счет термоэлектронной эмиссии с поверхности катода. На практике – это сварка, мощные дуговые печи.

    4. Коронный разряд (рис. 8.9).возникает в сильном неоднородном электрическом поле при сравнительно высоких давлениях газа (порядка атмосферного). Такое поле можно получить между двумя электродами, поверхность одного из которых обладает большой кривизной (тонкая проволочка, острие).

    Наличие второго электрода необязательна, но его роль могут играть ближайшие, окружающие заземленные металлические предметы. Когда электрическое поле вблизи электрода с большой кривизной достигает примерно 3∙10 6 В/м, вокруг него возникает свечение, имеющее вид оболочки или короны, откуда и произошло название заряда.

Тлеющий разряд - самостоятельный электрический разряд в газе с холодными электродами при токах -5 -1 А, имеющий характерную структуру в виде чередующихся светящихся участков различного цвета и различной интенсивности свечения. Характерной чертой тлеющего разряда является большая величина падения потенциала вблизи катода, составляющая 100 В и выше, в то время как в дуговом разряде она имеет порядок величины потенциала ионизации газа (около 10 В). В зарубежной литературе эта форма разряда называется glow discharge.

Специфической особенностью тлеющего разряда, по сравнению с таунсендовским разрядом (разряд с холодными электродами и очень малой плотностью тока), является значительная роль электрического поля объемных зарядов. Это приводит к неравномерному распределению потенциала в разрядном промежутке и к существенному отличию напряжения зажигания от напряжения горения разряда.

Место тлеющего разряда среди других типов разряда можно представить с помощью рис. 1.

Рис. 1.

При токах 10 -5 -10 -4 А существует переход от темного таунсендовского к нормальному тлеющему разряду, характеризующемуся падающим участком вольтамперной характеристики. В диапазоне токов 10 -4 -10 -2 А имеет место нормальный тлеющий разряд, вольтамперная характеристика которого представляет прямую, параллельную оси тока.

Таким образом, в нормальном тлеющем разряде напряжение между электродами не зависит от силы тока. В нормальном тлеющем разряде только часть поверхности катода покрыта разрядом. С увеличением силы тока часть поверхности, занимаемая разрядом, возрастает так, что плотность тока остается постоянной. Природа сил, вызывающих расширение поверхности катода, принимающей участие в разряде, остается пока не выясненной. Постоянство напряжения горения нормального тлеющего разряда при изменении в широких пределах разрядного тока используется в газоразрядных стабилизаторах напряжения - приборах, поддерживающих постоянной величину входного напряжения при изменении потребляемого схемой тока.

При токах 10 -2 -1А возникает аномальный тлеющий разряд с возрастающей вольтамперной характеристикой. При еще больших токах наблюдается переход от тлеющего разряда к дуге с падающей вольтамперной характеристикой. Аномальный тлеющий разряд занимает всю поверхность катода, и поэтому при увеличении силы тока плотность тока также возрастает.

Рис. 2. :

1,3,5,7 - темные пространства: 1 - астоново, 3 - катодное, 5 - фарадеево, 7 - анод­ное; 2, 4, 6 - светящиеся зоны: 2 - катодный слой, 4 - отрицательное свечение, 6 - положительный столб, 8 - анодное свечение

Основные процессы, обеспечивающие самостоятельный разряд, осуществляются в катодных частях разряда и на самом катоде. Тлеющий разряд не может существовать без этих явлений. При изменении положения катода в пространстве катодные части перемещаются вместе с ним, не изменяя своей структуры. Положительный столб, напротив, не является существенной частью разряда. Если при существующем разряде приближать анод к катоду, то сокращается именно эта область разряда. Анодные части также не являются необходимыми для существования разряда, они представляют собой переходную область между положительным столбом и металлическим анодом.

В катодных частях разряда преобладающим является направленное движение заряженных частиц (электронов и положительных ионов), тогда как положительный столб представляет собой типичный пример газоразрядной неизотермической низкотемпературной плазмы, в которой доминирует хаотическое движение зарядов. В соответствии с этим роль стенок, ограничивающих ионизованный газ в катодных частях, незначительна, а в положительном столбе она является существенной.

Тлеющий разряд - это самостоятельный электрический разряд в газе с холодными электродами при токах 10 -5 -1 А. Он имеет характерную структуру в виде чередующихся светящихся участков различного цвета и различной интенсивности свечения. Характерной чертой тлеющего разряда является большая величина падения напряжения вблизи катода, составляющая более ста вольт. В зарубежной литературе эта форма разряда называется glow discharge.

Характерная структура нормального тлеющего разряда показана на рис. 2. К катоду примыкают катодные части разряда, затем следует положительный столб, вблизи анода расположена сравнительно короткая анодная область.

Основные процессы, обеспечивающие самостоятельный разряд, происходят в катодных частях разряда и на самом катоде. Тлеющий разряд не может существовать без этих процессов. При изменении положения катода в пространстве катодные части перемещаются вместе с ним, не изменяя своей структуры. Положительный столб, напротив, не является существенной частью разряда. Если при существующем разряде приближать анод к катоду, то сокращается именно эта область разряда. Анодные части также не являются необходимыми для существования разряда, они представляют собой переходную область между положительным столбом и металлическим анодом.

В катодных частях разряда преобладающим является направленное движение заряженных частиц (электронов и положительных ионов), тогда как положительный столб представляет собой типичный пример газоразрядной плазмы, в которой доминирует хаотическое движение зарядов. В соответствии с этим роль стенок, ограничивающих ионизованный газ в катодных частях, незначительна, а в положительном столбе она является существенной.

Прежде чем переходить к описанию явлений, происходящих в различных областях тлеющего разряда, остановимся коротко на общей характеристике процессов, обеспечивающих существование самостоятельного разряда.

Из катода эмитируются электроны вследствие бомбардировки его поверхности ионами, ускоренными сильным полем вблизи катода, и быстрыми атомами, а также вследствие фотоэффекта, возникающего благодаря рекомбинационному излучению компонентов плазмы. Эти электроны, ускоряясь в направлении анода, приобретают энергию, достаточную для ионизации атомов. Новые электроны, возникшие при ионизации газа, снова ускоряются полем, а положительные ионы летят к катоду и, бомбардируя его поверхность, вызывают эмиссию новых электронов.

Если условия ионизации газа в катодных частях и инжекции электронов из катода таковы, что каждый эмитируемый катодом электрон производит столько актов ионизации и возбуждения атомов, что в результате фотоэффекта и бомбардировки катода ионами и атомами возникает новый электрон у катода, то имеет место динамическое равновесие вновь возникающих зарядов и уходящих на катод или в положительный столб. Таким образом происходит самоподдержание процесса, разряд не зависит от посторонних источников ионизации, т. е. является самостоятельным. Роль положительного столба заключается в том, чтобы обеспечить замкнутую цепь тока в разряде. Если анод придвинут к катоду так близко, что остаются только катодные части, то замкнутая цепь тока обеспечена без положительного столба, условия регенерации заряженных частиц выполнены, и тлеющий разряд может существовать. При дальнейшем приближении анода разряд либо прекращается (гаснет), так как условия восстановления зарядов не выполнены, либо требует для своего существования более высокого анодного напряжения, при котором идут более интенсивно процессы, необходимые для самоподдержания разряда (затрудненный разряд).

Как видно из рис. 2, в тлеющем разряде можно выделить несколько характерных областей. Непосредственно к катоду примыкает темное астоново пространство. Электроны, эмитируемые катодом, имеют малые скорости (порядка электрон-вольта), которые недостаточны для возбуждения атомов газа, и поэтому вблизи катода во всех газах имеется область, где свечение газа отсутствует. В сильном электрическом поле электроны ускоряются и, пройдя астоново темное пространство, приобретают энергию, достаточную для возбуждения атомов. Светящаяся область за астоновым темным пространством соответствует энергиям электронов, близким к максимуму функции возбуждения атомов данного газа. Ионизации газа в этой области еще нет, так как вероятность ионизации при этих энергиях еще мала. Эту область называют первым катодным слоем или катодной светящейся пленкой. Излучение имеет линейчатый спектр. За катодной светящейся пленкой следует катодное темное пространство, называемое также гитторфовым или круксовым темным пространством.

Иногда катодным темным пространством называют всю область от катода до границы следующей части - отрицательного тлеющего свечения. На эту область приходится значительная доля напряжения, называемая катодным падением потенциала; напряженность поля здесь значительно выше, чем в других частях разряда. В этой области свечение газа слабее, так как энергия электронов значительно выше энергии максимума функции возбуждения. Этой энергии достаточно, чтобы вызвать ионизацию газа.

Возникающие при ионизации атомов электроны ускоряются полем и движутся в стороны анода к границе отрицательного тлеющего свечения. Положительные ионы так же ускоряются полем и движутся к катоду. Поток ионов, направляющихся к катоду, можно наблюдать по вызываемому ими свечению газа за катодом, если в катоде сделать отверстие. В этом случае ионы пролетают в закатодное пространство, образуя закатодные или каналовые лучи. Если на их пути поставить цилиндр Фарадея и подавать на него положительный потенциал, тормозящий ионы, то получают данные об энергии ионов. Аналогичным образом, изучая поток электронов через отверстие в аноде, придвинутом к катодной границе катодных частей разряда, можно получить сведения о распределении электронов по энергиям.

При низких давлениях и высоких анодных напряжениях (аномальный разряд) поток электронов, движущихся к границе отрицательного свечения, почти моноэнергетический с энергией, равной еоик. Скорость движения ионов значительно меньше скорости движения электронов, благодаря чему в области катодного темного пространства возникает избыточный объемный заряд, образуемый положительными ионами. Этот заряд сильно искажает электрическое поле в этой области. Вопрос о распределении поля в тлеющем разряде, представляющего суперпозицию внешнего поля и поля объемного заряда, является важным вопросом для теории этого типа разряда.

В нормальном тлеющем разряде величина катодного падения потенциала ик зависит от степени чистоты газа и материала катода. Кроме катодного падения потенциала, нормальный тлеющий разряд характеризуется также нормальной плотностью тока i и шириной темного катодного пространства.

За областью катодного темного пространства следует отрицательное тлеющее свечение. Эта часть разряда имеет резкую границу со стороны катода и размытую со стороны анода. В ней электрическое поле мало. Ионизованный газ представляет собою почти квазинейтральную плазму, которая пронизывается потоком быстрых электронов из катодного темного пространства. На роль быстрых электронов в этой области указывает прямая связь между энергией электронов и длиной отрицательного тлеющего свечения. Кроме быстрых электронов, в отрицательном тлеющем свечении имеется значительное число медленных электронов, испытавших в катодном темном пространстве неупругие столкновения и потерявших при этом большую часть своей энергии. Эти электроны обладают энергиями, близкими к максимуму функции возбуждения, и вызывают свечение газа с линейчатым спектром, определяемым природой атомов. Кроме того, излучение отрицательного свечения может быть вызвано рекомбинацией зарядов, вероятность которой велика у медленных электронов.

В сторону анода напряженность поля несколько возрастает, и интенсивность свечения этой области разряда постепенно падает вследствие уменьшения вероятности рекомбинации. Роль ионов, возникающих в отрицательном свечении и диффундирующих в катодное темное пространство, по-видимому, невелика для поддержания нормального разряда. Их значение возрастает в аномальных разрядах с большой плотностью тока.

Следующее за отрицательным тлеющим свечением фарадеево темное пространство является переходной областью от катодных частей к положительному столбу. Здесь электроны приобретают энергию в слабом электрическом поле, но эта энергия проявляется в их хаотическом движении. В начале положительного столба она возрастает настолько, что имеет место заметное возбуждение и ионизация атомов газа электронами. Существенное отличие фарадеева темного пространства от катодного темного пространства состоит в том, что в первом энергия электронов слишком мала для возникновения свечения газа, а в последнем слишком велика.

Положительный столб тлеющего разряда представляет собой плазму с малой (относительно катодного темного пространства) напряженностью поля. При стационарном токе величина напряженности поля устанавливается такой, чтобы компенсировать потери заряженных частиц. Эти потери обусловлены либо диффузией электронов и ионов на стенки трубки (если длина положительного столба значительно больше его диаметра) или на анод и в катодные области (в случае короткого положительного столба), либо рекомбинацией носителей зарядов в объеме. При очень низких давлениях газа, когда длина свободного пробега ионов больше радиуса трубки, частицы движутся к стенкам в режиме «свободного падения» и рекомбинируют на поверхности трубки. Таким образом, положительный столб можно рассматривать как самостоятельную область разряда, существующую в известной степени независимо от катодных частей.

Положительный столб бывает не только в тлеющем разряде, но и в дуге низкого давления с накаленным катодом. Плазма высокочастотного разряда также во многом напоминает положительный столб. Свойства положительного столба в различных видах разряда низкого давления в значительной степени идентичны. Во многих случаях (по мнению некоторых исследователей) положительный столб имеет слоистую структуру в виде неподвижных или движущихся вдоль оси трубки слоев, называемых стратами.

Вблизи анода имеется узкое темное пространство и анодное свечение. Появление этих частей связано с граничными условиями на аноде. Электроны притягиваются анодом, положительные ионы отталкиваются. Перед анодом образуется отрицательный объемный заряд, вызывающий изменение потенциала порядка потенциала ионизации газа. Если приблизить анод к катоду настолько, что он попадает в фарадеево темное пространство, то анодное падение потенциала исчезает.

Цвет различных частей разряда зависит от газа, в котором он происходит. Чаще всего разряд происходит с металлическими электродами. Но он может существовать также с покрытыми стеклом металлическими электродами или с неметаллическими электродами. Электропроводность неметаллических электродов или стекла связана с их нагреванием в разряде. Физические процессы на поверхности таких электродов недостаточно изучены.

Исследование тлеющего разряда

Цель работы:

    Ознакомиться с основными формами тлеющего разряда.

    Исследование работы стабилизаторов тлеющего разряда.

    Исследование работы цифро- знаковых индикаторов тлеющего разряда.

Введение.

Тлеющий разряд является самостоятельным разрядом с холодным катодом. Возникновению тлеющего разряда с холодными электродами обычно предшествует несамостоятельный разряд, поскольку в объеме газа всегда присутствует некоторое количество свободных заряженных частиц, обязанных своим происхождением какому- либо внешнему источнику ионизации. (космическое излучение, фон радиации Земли).

В установившемся режиме разряда пространство между катодом и анодом можно разбить на три основные области (рис. 1).

Протяженность катодного слоя (1) определяется давлением или, точнее, плотностью газа: она равна приблизительно трем длинам свободного пробега электрона; на этом участке, дви­гающиеся к катоду ионы приобретают за счет высо­кого градиента поля энер­гию, необходимую для вы­бивания из катода электронов. Вылетающие из ка­тода электроны также приобретают на этом учас­тке энергию и при столк­новениях с нейтральными атомами и молекулами газа совершают акты ионизации и возбуждения.

Длина области положительного столба (2) зависит от геомет­рии разрядной трубки. Падение напряжения на нем невелико. Поло­жительный столб не является обязательной составной частью раз­ряда.

Протяженность области анодного падения (3) зависит от дав­ления газа и приблизительно равна одной длине свободного пробега элек­трона. Величина и знак прианодного падения напряжения зависит от геометрии анода.

Особый интерес представляет область катодного падения напряжения. На этом отрезке разряда имеет место наиболь­ший градиент потенциала. Катодное падение напряжения составляет 100 - 180 вольт для катодов из чистых металлов и 40 - 100 волы для катодов, активированных пленками из электроположительных металлов. Катодное падение напряжения определяется в основном энергией ионов, необходимой для выбивания электронов из материа­лов катода: чем меньше работа выхода электронов из материала ка­тода, тем меньше величина катодного падения напряжения.

Величина катодного падения напряжения зависит также от ро­да газа, причем в довольно широких пределах (так как от рода газа зависит масса иона) и практически не зависит от давления газа.

Если сила ток через прибор не превышает некоторого значения, а именно: значения, при котором еще не вся поверхность катода участвует в электронной эмиссии (не вся покрыта свечением), то катодное падение напряжения не зависит от тока и остается постоянной (Закон Геля). Постоянство катодного падения напряжения объясняется наличием оптимальных условий обмена энергией между ионами, бомбардирующими катод, и электронами материала катода.

Катодное падение напряжения, соответствующее оптимальным условиям эмиссии с катода, принято называть нормальным катодным падением, а тлеющий разряд, с нормальным катодным падением - нор­мальным тлеющим разрядом.

Тлеющий разряд – слаботочный, при токе порядка 300 mA появляется тенденция к переходу в дуговой разряд. Поэтому приборы тлеющего разряда имеют максимальные токи в пределах до 100 mA.

Постоянство катодного падения напряжения в тлеющем разряде используется при конструировании газоразрядных стабилизаторов напряжения (стабилитронов).

Если в разряде участвует вся поверхность катода, то о уве­личением тока увеличивается и катодное падение напряжения, так как в этом случае обеспечивается большая эмиссия с единицы по­верхности катода. Такой разряд называют аномальным тлеющим.

При аномальном тлеющем разряде с увеличением тока возрастает яркость свечения на катоде и резко возрастает распыление материала катода.

Начальный участок аномально тлеющего разряда используется в цифро- знаковых индикаторах (ИН), широко применяемых в измерительной технике для отображения информации.

Расчет стабилизатора напряжения с лампой тлеющего разряда.

Д
ля расчета схемы включения, изображенной на рис. 2, рассмотрим работу стабилизатора напряжения. Для этого придется воспользоваться ВАХ стабилитрона, т.к. это нелинейный элемент схемы (рис. 3).

Допустим, что величина входного напряжения дана - , в этом случае прямая, проведенная через значение на оси ординат к оси абсцисс под углом (линия сопротивления) при пересечении с ВАХ дает точку устойчивого горения разряда в данном режиме. При этом будет и на нагрузке, т.к. она подключена параллельно стабилитрону, а - значение напряжения на балластном сопротивлении , создаваемое . При изменении величины входного напряжения например, в сторону увеличения, до значения линия сопротивления переместится параллельно себе самой и дает новую точку пересечения с ВАХ стабилитрона. При этом будет незначительно отличаться от , а падение напряжения на балластном сопротивлении изменится за счет увеличения . Таким образом, при работе стабилизатора напряжения рабочая точка будет перемещаться по ВАХ. Ограничив ее движение в пределах пологой части характеристики, достаточной для качественной стабилизации напряжения, получаем значение и , в пределах которых и будет работать стабилитрон.

Рассматривая схему рис. 2, можно записать:

; , отсюда

учитывая, что , можно записать:

Корректная величина выбирается в зависимости от того, как изменяется входное напряжение . Если изменение одинаково как в сторону увеличения, так и в сторону уменьшения, то расчетная точка берется посередине рабочего участка ВАХ, и тогда , если же изменение входного напряжения несимметричны, то рабочая точка для расчета выбирается исходя из закона пропорциональности.

На рис. 2 приведена схема включения стабилитрона в качестве стабилизатора напряжения, где:

Номинальное значение входного напряжения;

Номинальное значение выходного стабилизированного

напряжения;

Сопротивление нагрузки;

Балластное сопротивление;

Ток в общей цепи при номинальном значении входного

напряжения;

Номинальный ток нагрузки;

Ток через стабилизатор при нормальном значении входного

напряжения.

В предлагаемой работе схема лабораторного стенда (рис. 4) позволяет проводить исследование стабилизаторов тлеющего разряда типа СГ2С, СГ3С, СГ4С, СГ2П, СГ15П, СГ16П. Балластное сопротивление и сопротивление нагрузки выполнены так, что можно установить требуемое значение тока нагрузки и необходимую по расчету величину балластного сопротивления.

Цепь нагрузки точками 3 – 7 заводится на соответствующие гнезда ламповой панели стабилитрона. В цоколе стабилитронов штырьки 3 – 7 закорочены между собой перемычками. Это делается для того, чтобы в момент замены лампы, когда она вынимается из панели, нестабилизированное напряжение источника питания не могло воздействовать на нагрузку.

ЗНАКОВЫЕ ИНДИКАТОРЫ

ОБЩИЕ СВЕДЕНИЯ

Цифровые и буквенные индикаторные неоновые лампы тлеющего разряда (серии ИН) нашли широкое применение в аппаратуре отоб­ражения информации, в счетно-решающих устройствах, вычислитель­ной технике: и измерительных приборах.

Отличительная особенность знаковых индикаторов тлеющего разряда состоят в том, что в одном баллоне помещается несколько катодов, а анод выполнен в виде тонкой сетки.

Форма катодов и их размеры выбираются так, чтобы создать лишь минимальное перекрытие цифр (букв), расположенных сзади. Этим же определяется порядок расположения цифр, букв, знаков, а также конструкция сетчатого анода. Свечение горящего катода имеет достаточную ширину (до 2 мм), поэтому остальные электро­да экранируют не более 20% светового потока, не ухудшая четкости индикации горящего светового знака.

Индикаторы отличаются высокой яркостью и контрастностью изображения, малой потребляемой мощностью, простотой и надежностью в работе.

Выпускаемые в настоящее вреди газоразрядные индикаторы тле­ющего разряда заполняются неоном и имеют оранжево- красный цвет свечения. В процессе эксплуатации рабочий ток не должен выхо­дить за пределы, указанные в справочных данных. При больших значениях тока возможен переход в область аномального тлеющего разряда, возрастает распыление материала катода и сокращается долговечность прибора. Снижение рабочего тока также недопусти­мо, так как в процессе работы поверхности катодов загрязняются, и для хорошего свечения всей поверхности катодов требуется несколько большее напряжение горения. Поэтому рабочий ток должен превышать значение тока индикации, (ток индикации - ток через прибор, при котором разрядное свечение полностью покрывает катоды- цифры, символы, буквы, знаки, т.е. создает надежную визу­альную индикацию).

В ряде случаев питание анода производится импульсным на­пряжением. В таком режиме длительность импульса напряжения должна быть не менее 100 мкс, при среднем токе 1 - 2 мА. С умень­шением длительности импульса резко возрастает ток индикации, что требует увеличения амплитудного значения рабочего тока. При частоте следования импульсов 20 - 50 Гц ток в импульсе может быть достаточно большим, кажущаяся яркость свечения повышается бла­годаря инерции зрения, хотя среднее значение тока оказывается ниже нормального. Благодаря этому поддерживается высокая яр­кость свечения и надежная индикация цифр (букв) катодов, в то же время долговечность индикатора не снижается.

Для нормальной работы индикатора тлеющего разряда необхо­димо создать начальную ионизацию, снижающую время запаздывания зажигания разряда. Эта ионизация обычно создается внешним осве­щением. В темноте время запаздывания увеличивается до 1 с.

По виду отображаемой информации индикаторы ИН условно можно разделить на несколько групп.

Цифровые индикаторы типа ИН-1, ИН-2, ИН-4, ИН-8, ИН-8-2, ИН-12А, ИН-12Б, ИН-14, ИН-16, ИН-17, ИН-18 имеют катоды в фор­ме арабских цифр от 0 до 9. Индикаторы с торцевой индикацией, где минимальное расстояние между осями расположенных рядом при­боров велико по отношению к размерам цифровых электродов, целе­сообразно применять в аппаратуре с небольшим количеством цифровых разрядов, а также в многоразрядных индикационных системах. В малогабаритной настольной аппаратуре можно использовать миниатюрный индикатор типа ИН-2.

Прямоугольный баллон индикаторов типа ИН-11, ИН-12А, ИН-12Б, ИН-15А, ИН-15Б позволяет более удобно производить компоновку многоразрядных систем, а сочетание цифр и букв в индикаторе позволяет уменьшить расстояние между соседними цифровыми и буквен­ными разрядами и соответственно улучшить удобочитаемость резуль­татов информации. Группа приборов с "боковой индикацией" ИН-8, ИН-8-2, ИН-14, ИН-16, ИН-18 широко применяется в многоразрядной аппаратуре, например в настольных счетно-клавишных машинах.

Знако - буквенные индикаторы типа ИН-5А, ИН-5Б, ИН-7, ИН-7А, ИН-7Б, ИН-11, ИН-15А, ИН-15Б, ИН-19А, ИН-19Б, ИН-19В значитель­но расширили диапазон применения газоразрядных индикаторов. В сочетании с цифровыми буквенные и знаковые индикаторы позволяют отобразить практически всю необходимую информацию. В индика­торах типа ИН-8-2, ИН-12Б, ИН-14 наличие дополнительного элект­рода - запятой - упрощает индикационный блок, отпадает необходимость в использовании отдельных элементов для индикации за­пятой.

В приборе типа ИН-14 имеется два знака запятая, одна из которых может быть использована для уменьшения времени запаз­дывания зажигания разряда (ток подготовки около 1мкА). Для уст­ройств, работающих в условиях повышенных климатических и меха­нических нагрузок, можно рекомендовать приборы типа ИН-1, ИН-8, ИН-8-2, ИН-12А, ИН-12Б.

Сигнальные газоразрядные приборы типа ИН-3, ИН-6, ИНС-1, ИН-ЗА, ИФ-1, ТНУ-2 предназначены для использования в качестве датчиков световых сигналов в самых разнообразных электротехни­ческих и радиотехнических устройствах широкого применения. Их характеризуют: высокая яркость свечения (десятки и сотни нит), относительно малая инерционность, простора конструкции, эконо­мичность (потребляемая мощность - доли ватт).

Линейные счетно-индикаторные приборы тлеющего разряда ти­па ИН-9, ИН-13, ИН-20 являются принципиально новыми разработками и предназначены для построения индикационных табло в систе­мах статистического анализа, в измерительных блоках, в различ­ных выходных устройствах индикации, в счетчиках импульсов с большой емкостью, для контроля сети переменного тока. Особен­ностью индикаторов типа ИН-9, ИН-13 является то, что длина светящегося столба изменяется пропорционально приложенному на­пряжению, а в индикаторе ИН-20 изменяется светящийся столб или светящаяся точка. Учитывая эти особенности, индикаторами ИН-9, ИН-13, ИН-20 можно заменить стрелочные электроизмерительные при­боры и другие электромеханические устройства (с классом точнос­ти 2,5 - 4) в любых системах промышленной автоматики.

К достоинствам приборов ИН-9, ИН-13, ИН-20 следует отнести: удобство формы индикации (светящиеся столб и точка), высокую частоту обновления информации и счета импульсов, малую инерцион­ность, большую долговечность, высокую яркость свечения и малую массу.

. Исследование работы стабилитронов напряжения коронного разряда . Введение Коронный разряд является самостоятельным разрядом в... и азота. Эти стабилитроны относительно стабилитронов тлеющего разряда имеют более пологие вольт-амперные...
  • Экспериментальное исследование параметров плазы емкостного высокочастотного разряда (ЕВЧР)

    Дипломная работа >> Физика

    ... ; Объектом исследования является ЕВЧР в воздухе, аргоне. Предметом исследования являются параметры плазмы тлеющего разряда . Данная... ионизирована, неравновесна и подобна плазме тлеющего разряда . Интерес к исследованию ЕВЧР возрос в течение последних 20 ...

  • Линейные молнии, методы её исследования

    Реферат >> Физика

    Пальца. Одновременно с Франклином, исследованием электрической природы молнии занимались... начинается ионизация воздуха, возникает тлеющий разряд и появляются красноватые языки свечения... в коллекторы на земле для исследований и использования", - сообщил...

  • Современное состояние исследований в области функциональных конденсационных покрытий высокой проводимости

    Дипломная работа >> Физика

    Материалы. – 1981. – №6. – С. 3-6. Кабанченко М.П. Исследование износоустойчивости контактных площадок переменных непроволочных... и адгезионной активности поверхности оксида, модифицированной в тлеющем разряде / О.Н. Соловьева, А.И. Костржицкий // Физика и...

  • ТЛЕЮЩИЙ РАЗРЯД

    На рис. 3-26, а показан внешний вид тлеющего разряда, характеризующийся чередованием темных и светящихся слоев газа, носящих наззания:

    1) первая катодная темная область;
    2) первое катодное свечение;
    3) вторая катодная темная область;
    4) второе катодное свечение (катодное тлеющее свечение);
    5) фарадеева темная область;
    6) столб разряда;
    7) анодная темная область;
    8) анодное свечение.
    Катодное падение потенциала
    при нормальном тлеющем разряде (свечением покрыта только часть поверхности катода) зависит от материала катода и рода газа и не зависит от давления газа и тока (табл. 3-16).
    Ширина области нормального катодного падения потенциала зависит от материала катода и рода газа. Зависимость от давления газа определяется соотношением
    .
    Для нормального тлеющего разряда характерна пропорциональность между площадью катода, покрытой свечением, и током, т. е. постоянная (нормальная) плотность тока на катоде
    (табл. 3-17).
    При изменении давления газа р0 нормальная плотность тока изменяется по закону

    где - нормальная плотность тока на катоде при ; - постояннная, зависящая от геометрии электродов и рода газа. При плоских электродах обычно (для Ne=1,5).
    Когда при увеличении анодного тока вся поверхность катода покрывается свечением, катодное падение потенциала начинает возрастать с увеличением плотности тока. Такое катодное падение называется
    аномальным катодным падением потенциала , а сам разряд называется аномальным тлеющим разрядом .
    При аномальном тлеющем разряде увеличение плотности тока сопровождается уменьшением ширины участка катодного падения потенциала.

    На рис. 3-27 приведены рассчитанные теоретически универсальные кривые зависимости аномального катодного падения потенциала и ширины участка катодного падения потенциала от плотности тока . Их совпадение с экспериментальными данными удовлетворительно для инженерных расчетов.
    Прикатодные области разряда 1-4 (рис. 3-26), в которых сосредоточено катодное падение потенциала, являются жизненно необходимыми для существования тлеющего разряда. Участки 5 (фарадеева темная область) и 6 (столб разряда) являются пассивными участками разряда с хорошей электропроводностью, связывающими анод с катодными областями разряда.
    В столбе разряда газ находится в сильно ионизированном состоянии, причем концентрации электронов и ионов примерно равны, т. е. объемный заряд компенсирован. Газ, находящийся в таком состоянии, называется плазмой .
    Особенности и характеристики плазмы см. раздел .
    При сближении анода с катодом сокращается, а затем исчезает столб разряда.
    Дальнейшее сближение электродов на некоторое критическое расстояние
    приводит к исчезновению анодных участков разряда. При этом падение напряжения на разряде уменьшается на величину анодного падения потенциала, примерно равную ионизационному потенциалу газа.
    Дальнейшее сближение электродов приводит к исчезновению фарадеевой темной области. Затем начинает исчезать тлеющее свечение. При этом падение напряжения на приборе резко возрастает (затрудненный разряд).