Спектры. Закономерности в атомных спектрах. Закономерности в спектре излучения атома водорода

Опыт показывает, что спектры невзаимодействующих атомов, как это имеет место для разреженных газов, состоят из отдельных линий, сгруппированных в серии. На рис. 5.3 показаны линии серии спектра атома водорода, расположенные в видимой области. Длина волны, соответствующая линиям в этой серии, называемой серией Бальмера , выражается формулой

где, n = 3, 4, 5, ...; - постоянная Ридберга.

Линия, соответствующая n = 3, является наиболее яркой и называется головной , а значению n = ∞ соответствует линия, называемая границей серии .

В других областях спектра (ультрафиолетовой, инфракрасной) также были обнаружены серии линий. Все они могут быть представлены обобщенной формулой Бальмера - Ридберга

где m - целое число, постоянное для каждой серии.

При m = 1; n = 2,3,4, ... - серия Лаймана . Наблюдается в ультрафиолетовой области.
При m = 2; n = 3,4,5, ... - серия Бальмера - в видимой области.
При m = 3; n = 4,5,6, ... - серия Пашена - в инфракрасной (ИК) области.
При m = 4; n = 5,6,7, ... - серия Брэкета - тоже в ИК области и т. д.

Дискретность в структуре атомных спектров указывает на наличие дискретности в строении самих атомов. Для энергии квантов излучения атомов водорода можно записать следующую формулу

При записи этого выражения использованы формулы (5.1), (3.21) и (5.8). Формула (5.9) получена на основе анализа экспериментальных данных.

Постулаты Бора

Первая квантовая теория строения атома быда предложена в 1913 г. датским физиком Нильсом Бором. Она была основана на ядерной модели атома, согласно которой атом состоит из положительно заряженного ядра, вокруг которого вращаются отрицательно заряженные электроны.
Теория Бора основана на двух постулатах.

I постулат Бора - постулат стационарных состояний. В атоме существуют стационарные (не изменяющиеся со временем) состояния, в которых он не излучает энергию. Этим стационарным состояниям соответствуют стационарные орбиты, по которым движутся электроны. Движение электронов по стационарным орбитам не сопровождается излучением энергии.

II постулат Бора получил название "правило частот". При переходе электрона с одной стационарной орбиты на другую излучается (или поглощается) квант энергии, равный разности энергий стационарных состояний

где h - постоянная Планка; v - частота излучения (или поглощения) энергии;
hv - энергия кванта излучения (или поглощения);
E n и E m - энергии стационарных состояний атома до и после излучения (поглощения), соотвественно. При E m < E n происходит излучение кванта энергии, а при E m > E n - поглощение.



По теории Бора значение энергии электрона в атоме водорода равно

где m e - масса электрона, e - заряд электрона, ε e - электрическая постоянная
,

h - постоянная Планка,
n - целое число, n = 1,2,3,...

Таким образом, энергия электрона в атоме представляет собой дискретную величину, которая может изменяться только скачком.

Набор возможных дискретных частот квантовых переходов определяет линейчатый спектр атома

Вычисленные по этой формуле частоты спектральных линий для водородного атома оказались в прекрасном согласии с экспериментальными данными. Но теория не обясняла спектры других атомов (даже следующего за водородом гелия). Поэтому теория Бора была только переходным этапом на пути построения теории атомных явлений. Она указывала на неприменимость классической физики к внутриатомным явлениям и главенствующее значение квантовых законов в микромире.


1. Закономерности в атомных спектрах. Изолированные атомы в виде разреженного газа или паров металлов испускают спектр, состоящий из отдельных спектральных линий (линейчатый спектр). Изучение атомных спектров послужило ключом к познанию строения атомов. Линии в спектрах расположены не беспорядочно, а сериями. Расстояние между линиями в серии закономерно уменьшается по мере перехода от длинных волн к коротким.





Швейцарский физик Й. Бальмер в 1885 году установил, что длины волн серии в видимой части спектра водорода могут быть представлены формулой (формула Бальмера): 0 = const, n = 3, 4, 5,… R = 1,09·10 7 м -1 – постоянная Ридберга, n = 3, 4, 5,… В физике постоянной Ридберга называют и другую величину равную R = R ·с. R = 3,29·10 15 c -1 или










1895 г. - открытие Х-лучей Рентгеном 1896 г. - открытие радиоактивности Беккерелем 1897 г. - открытие электрона (Дж.Томсон определил величину отношения q/m) Вывод: Атом имеет сложное строение и состоит из положительных (протоны) и отрицательных (электроны) частиц








В 1903 году Дж. Дж. Томсон, предложил модель атома: сфера, равномерно заполненная положительным электричеством, внутри которой находятся электроны. Суммарный заряд сферы равен заряду электронов. Атом в целом нейтрален. Теория такого атома давала, что спектр должен быть сложным, но никоим образом не линейчатым, что противоречило экспериментам.




В 1899 г. открыл альфа - и бета-лучи. Вместе с Ф. Содди в 1903 г. разработал теорию радиоактивного распада и установил закон радиоактивных превращений. В 1903 году доказал, что альфа-лучи состоят из положительно заряженных частиц. В 1908 г. ему была присуждена Нобелевская премия. Резерфорд Эрнест (1871–1937) английский физик, основоположник ядерной физики. Исследования посвящены атомной и ядерной физике, радиоактивности.


2. Ядерная модель атома (модель Резерфорда). Скорость – частиц = 10 7 м/с = 10 4 км/сек. – частица имеет положительный заряд равный +2 е. Схема опыта Резерфорда Рассеянные частицы ударялись об экран из сернистого цинка, вызывая сцинтилляции – вспышки света.


Большинство α-частиц рассеивалось на углы порядка 3° Отдельные α-частицы отклонялись на большие углы, до 150º (одна из нескольких тысяч) Такое отклонение возможно лишь при взаимодействии практически точечного положительного заряда – ядра атома – с близко пролетающей α-частицей.


Малая вероятность отклонения на большие углы свидетельствует о малых размерах ядра: 99,95% массы атома сосредоточено в ядре м м






М Радиус ядра R (10 14 ÷)м и зависит от числа нуклонов в ядре.




F F


Однако, планетарная модель была в явном противоречии с классической электродинамикой: электрон, двигаясь по окружности, т.е. с нормальным ускорением, должен был излучать энергию, следовательно, замедлять скорость и упасть на ядро. Модель Резерфорда не могла объяснить, почему атом устойчив Планетарная модель атома


БОР Нильс Хендрик Давид (1885–1962) датский физик-теоретик, один из создателей современной физики. Сформулировал идею о дискретности энергетических состояний атомов, построил атомную модель, открыв условия устойчивости атомов. Создал первую квантовую модель атома, основанную на двух постулатах, которые прямо противоречили классическим представлениям и законам. 3. Элементарная теория Бора


1. Атом следует описывать как «пирамиду» стационарных энергетических состояний. Пребывая в одном из стационарных состояний, атом не излучает энергию. 2. При переходах между стационарными состояниями атом поглощает или излучает квант энергии. При поглощении энергии атом переходит в более энергетическое состояние.


ЕnЕnЕnЕn E m > E n Поглощение энергии E n Поглощение энергии"> E n Поглощение энергии"> E n Поглощение энергии" title="ЕnЕnЕnЕn E m > E n Поглощение энергии"> title="ЕnЕnЕnЕn E m > E n Поглощение энергии">


ЕnЕnЕnЕn E m > E n Излучение энергии E n Излучение энергии"> E n Излучение энергии"> E n Излучение энергии" title="ЕnЕnЕnЕn E m > E n Излучение энергии"> title="ЕnЕnЕnЕn E m > E n Излучение энергии">


Постулаты Бора 1. Электроны движутся только по определенным (стационарным) орбитам. При этом не происходит излучения энергии. Условие для стационарных орбит: из всех орбит электрона возможны только те, для которых момент импульса электрона, равен целому кратному постоянной Планка: n = 1, 2, 3,… главное квантовое число. m e v r = nħ


2. Излучение или поглощение энергии в виде кванта энергии h происходит лишь при переходе электрона из одного стационарного состояния в другое. Энергия светового кванта равна разности энергий тех стационарных состояний, между которыми совершается квантовый скачок электрона: hv = E m – E n - Правило частот Бора m, n – номера состояний. ЕnЕn EmEm Поглощение энергии ЕnЕn EmEm Излучение энергии


Уравнение движения электрона =>=> Радиус стационарных орбит: m e υr = nħ => Радиус стационарных орбит: m e υr = nħ"> => Радиус стационарных орбит: m e υr = nħ"> => Радиус стационарных орбит: m e υr = nħ" title="Уравнение движения электрона =>=> Радиус стационарных орбит: m e υr = nħ"> title="Уравнение движения электрона =>=> Радиус стационарных орбит: m e υr = nħ">












N , нм




Бор теоретически вычислил отношение массы протона к массе электрона m p /m e = 1847, это находится в соответствии с экспериментом. Все это было важным подтверждением основных идей, содержащихся в теории Бора. Теория Бора сыграла огромную роль в создании атомной физики. В период ее развития (1913 – 1925 г.г.) были сделаны важные открытия, навсегда вошедшие в сокровищницу мировой науки.


Однако наряду с успехами в теории Бора с самого начала обнаружились существенные недостатки. Внутренняя противоречивость теории: механическое соединение классической физики с квантовыми постулатами. Теория не могла объяснить вопрос об интенсивностях спектральных линий. Серьезной неудачей являлась абсолютная невозможность применить теорию для объяснения спектров гелия (He) (два электрона на орбите, и уже теория Бора не справляется).


Стало ясно, что теория Бора является лишь переходным этапом на пути создания более общей и правильной теории. Такой теорией и являлась квантовая (волновая) механика. Дальнейшее развитие квантовой механики привело к отказу от механической картины движения электрона в поле ядра.


4. Опыт Франка и Герца Существование дискретных энергетических уровней атома и доказательство правильности теории Бора подтверждается опытом Франка и Герца. Немецкие ученые Джеймс Франк и Густав Герц, за экспериментальные исследования дискретности энергетического уровня получили Нобелевскую премию в 1925 г.






Такой ход кривой объясняется тем, что вследствие дискретности энергетических уровней атомы ртути могут воспринимать энергию бомбардирующих электронов только порциями: либо Е 1, Е 2, Е 3 … - энергии 1-го, 2-го и т.д. стационарных состояний. при увеличении U вплоть до 4,86В ток I возрастает монотонно, при U = 4,86В ток максимален, затем резко уменьшается и возрастает вновь. дальнейшие максимумы тока наблюдаются при U = 2·4.86 B, 3·4.86 B...


При U


Атомы ртути, получившие при соударении с электронами энергию ΔЕ 1 и перешедшие в возбужденное состояние, спустя время ~ с должны вернуться в основное состояние, излучая, согласно второму постулату Бора фотон с частотой (правило частот): При этом длина волны светового кванта: - что соответствует ультрафиолетовому излучению. Опыт действительно обнаруживает ультрафиолетовую линию с



К концу 19 века уже в течение 150 лет в Европейских физических лабораториях проводились опыты по исследованию светового излучения различных нагретых газов. С помощью различных оптических приборов было экспериментально установлено, что излучение невзаимодействующих друг с другом атомов состоит из отдельных спектральных линий. Линии в атомных спектрах расположены не беспорядочно, а объединяются в группы, называемые спектральными сериями. Линейчатые спектры атомов имеют индивидуальную структуру, однако были выявлены общие закономерности.

В 1885 г. швейцарский школьный учитель математики Йохан Бальмер обнаружил, что длины волн серии линий атома водорода, лежащей в области видимого спектра связаны соотношением

n = R (1/n 2 – 1/m 2), R=3.29 10 15 Гц – постоянная Ридберга, n и m – целые числа. Исходя из полученной формулы, Бальмер предсказал существования спектральных серий водорода в ультрафиолетовой и инфракрасной области, которые были обнаружены спустя 20 лет.

Частоты линий других атомов могут быть представлены в виде разность двух термов, имеющих более сложный вид, чем для атомов водорода.

Открытие радиоактивности

В первые годы ХХ века были обнаружены новые типы излучений - радиоактивные , названные a, b, и g-излучением. Явление радиоактивности занимались Антуан Беккерель (1852-1908) и супруги Пьер (1859-1906) и Мари 1867-1934) Кюри.

Опыты Резерфорда

В 1907 г. профессор физики Манчестерского университета Эрнст Резерфорд (1871-1937), изучавший проблемы радиоактивности, и его сотрудники исследовали прохождение a-частиц через тонкую металлическую фольгу. a-частицы испускались некоторым радиоактивным веществом, имели скорость порядка 10 9 см/с и положительный заряд, равный удвоенному электронному. При прохождении через фольги большинство a-частицы отклонялись от первоначального направления на некоторые незначительные углы. Оказалось однако, что некоторое количество a-частиц отклоняется на углы порядка 180 0 , что согласно классической теории рассеяния, возможно только в том случае, если внутри атома имеется чрезвычайно сильное ЭМ поле, сконцентрированное в малом объеме и создаваемое зарядом большой массы.

Пример. Противоречие с моделью атома Томсона.

Атом – положительно заряженный шар, внутри которого находится электрон.

При отклонении электрона от положения равновесия возникает квазиупругая сила, под действием которой электрон будет совершать колебания и испускать упругие эл.магн. волны.

Основываясь на экспериментальных данных Резерфорд в 1911 г. предложил ядерную модель атома:

ü в центре атома расположено тяжелое положительно заряженное ядро с зарядом Ze и размерами, не превышающими 10 -12 м;

ü вокруг ядра расположено Z электронов, распределенных по всему объему, занимаемому атомом, размеры атома порядка

В опытах Резерфорда отклонения a-частиц обусловлено действием на них атомных ядер.

Вопрос о том, как конкретно электроны распределены вокруг ядра, оставался открытым. Резерфорд рассматривал возможность планетарной модели атома, согласно которой электрона вращаются вокруг атомного ядра. Ядерная модель, однако, оказалась в противоречии с законами классической механики и электродинамики. Поскольку система неподвижных зарядов не может находиться в состоянии устойчивого равновесия, Резерфорду пришлось предположить, что электроны движутся вокруг ядра по криволинейным траекториям. Но в этом случае электрон движутся с ускорением, и согласно законам классической электродинамики он должен излучать эл.магн. волны, теряя при этом энергию, в результате чего должен в конечном счете упасть на ядро.

Модель атома Бора.

Молодой датский студент Нильс Бор, прибывший в Манчестер в группу Резерфорда, увлекся планетарной моделью атома. В начале 1912 года Бор подготовил для Резерфорда работу «О строении атомов и молекул», в которой предполагал, что в рамках планетарной модели могут существовать некоторые стационарные орбиты электронов, которые каким-то образом должны быть связаны с формулой Планка-Эйнштейна Е=hn. Прорыв был сделан, когда Бор открыл для себя формулу Бальмера.

Для разрешения возникших противоречий в 1913 г. Нильс Бор предложил два постулата :

1. Из бесконечного числа электронных орбит, разрешенных классической механикой, в действительности реализуются только некоторые дискретные орбиты, удовлетворяющие определенным квантовым условиям. Электрон, находясь на такой орбите, не излучает ЭМ волн.

2. Излучение испускается или поглощается в виде светового кванта энергии при переходе электрона из одного стационарного состояния в другое. Величина кванта энергии равна разности энергий стационарных состояний

hn = Е 1 – Е 2

Согласно постулату Бора осуществляются только те электронные орбиты, для которых момент импульса кратен постоянной Планка

L = mvR = n h/2p

(впервые предположение о квантовании момента импульса было опубликовано Никольсоном в 1912 году).

Используя классическое описание движения электрона как вращения в кулоновском поле ядра, Бор получил аналитические выражения для радиусов стационарных орбит и энергий соответствующих состояний атома:

Где r 1 =0.53 A= 0.53 10 -10 м

, где Ry=-13.6 эВ.

Теория Бора позволила объяснить спектры атома водорода. Рассчитанное теоретически значение постоянной Ридберга лишь на несколько процентов отличалось от полученного Бальмером. Теория Бора сочетала в себе классический и квантовый подходы к описанию атомных процессов. Она явилась переходным этапом на пути создания квантовой механики, в настоящее время имеет, в основном, историческое значение.

Более тщательное экспериментальное изучение спектра атома водорода показало наличие большого числа спектральных линий, которое уже не описывались теорией Бора. Арнольд Зоммерфельд (1868-1951), теоретик, профессор из Мюнхена, учел эллиптичность орбит электронов, что позволило объяснить дополнительные спектральные линии и потребовало введения дополнительного квантового числа I (орбитального квантового числа). В последнем десятилетии 19 века датчанин Питер Зееман (1865-1943) обнаружил, что в спектре возбужденных атомов водорода, помещенных в магнитное поле, появляются дополнительные спектральные линии (эффект Зеемана). Зоммерфельд предположил, что наблюдаемое явление расщепления спектральных линий в магнитном поле связано с разными ориентациями орбит электрона относительно внешнего поля. Зоммерфельд ввел в рассмотрение еще одно – магнитное квантовое число m.

Более тонкие эксперименты с магнитным полем позволили обнаружить дополнительные спектральные линии (аномальный эффект Зеемана), которые не описывались теорией Бора-Зоммерфельда. Проблемой АЭЗ заинтересовался швейцарский физик-теоретик Вольфганг Паули (1900-1958), который принял приглашение Бора работать в Копенгагене в 1922-23 гг. Размышления над природой АЭЗ привели Паули к мысли о том, что для электрона характерен некий дополнительный вращательный процесс, которому соответствует добавочный момент импульса. Паули предложил ввести в теорию атома четвертое квантовое число, которое может принимать только два значения. Паули стремился понять физическую суть явления и не спешил с публикацией. В то же время два молодых голландских физика Уленбек и Гаудсмит пришли к той же идее. Их руководитель профессор Пауль Эренфест направил их статью для публикации. Впоследствии Уленбек и Гаудсмит получили за эту работу Нобелевскую премию по физике.

Однако оставалось непонятным, почему все электроны в многоэлектронных атомах не переходят в основное состояние. Паули дал ответ на этот вопрос.

Принцип Паули

Итак, состояние каждого электрона в атоме характеризуется четырьмя квантовыми числами:

главным n (n=1, 2, …)

азимутальным l (l=1, 2, …, n-1)

магнитным m l (m l =-l,…,-1,0,+1,…,+l)

спиновым m s (m s =+1/2, -1/2)

В нормальном (невозбужденном) состоянии атома электроны должны располагаться на самых низких доступных для них энергетических уровнях. Согласно принципу Паули , в одном и том же атоме (или другой квантовой системе) не может быть двух электронов, обладающих одинаковой совокупностью квантовых чисел.

В атоме каждому n состоянию могут соответствовать n 2 состояний, отличающихся { n, l, m l } , и кроме того спиновое квантовое число может принимать значения ±1/2. Таким образом,

n=1 – 2 электрона,

n=2 – 8 электронов,

n=3 – 18 электронов и т.д.

Совокупность электронов, имеющих одинаковые значения главного квантового числа n, образует оболочку.

Значение n 1 2 3 4 …

Обозначение оболочки K L M N …

Принцип Паули дает объяснение повторяемости свойств атомов. Аналогичными свойствами обладают атомы с одинаковым количеством электронов во внешней оболочке (для полностью заполненной оболочки характерно равенство нулю суммарного орбитального и спинового моментов) (см. периодическую систему элементов Менделеева: щелочные металлы, металлы, галогены, инертные газы).

Электронные волны в атоме.

Квантовые условия Бора получили простое объяснение на основе дуализма «волна-частица», примененного к находящимся на стационарных орбитах электронам. Связанные с электронами волны рассматривались как стоячие волны, подобные тем, что возникают на закрепленной с двух сторон струне. Тогда на длине орбиты должно укладываться целое число волн

Использую соотношение де Бройля, легко получить условие квантования момента импульса.

«Старая» квантовая теория, созданная Планком, Эйнштейном, де Бройлем, Резерфордом, Бором, Зоммерфельдом, Паули и др., смогла объяснить:

ü спектр атома водорода;

ü квантование энергии в стационарных состояниях атома;

ü периодическую систему Менделеева.

Были заложены основополагающие идеи новой квантовой механики, однако полуклассическая теория не смогла ответить на многие важные вопросы.

Одна из важнейших особенностей строения атомных спектров - это их сериальная структура. Сериальные закономерности представляют собой яркое проявление квантовых свойств излучающих атомных систем. Линии спектра атомов газа могут быть объединены в определенные, закономерно построенные группы - так называемые серии. Длины волн всех линий, принадлежащих к одной и той же серии, связаны между собой. Сериаль­ные закономерности в наиболее простой форме проявляются в спектре одноэлектронного атома водорода, для которого они и были впервые получе­ны.

Рассмотрим атом водорода и сходные с ним ионы (модель так называе­мого водородоподобного атома) , то есть предположим, что имеется атом­ная система, состоящая из ядра с зарядом z и одного электрона (z - поряд­ковый номер элемента в периодической системе).

Кулоновская сила / взаимодействия между ядром и электроном играет роль центростремительной силы, равной для круговой орбиты

где т - масса электрона, r - радиус орбиты. В электрическом поле ядра электрон обладает потенциальной энергией

(6)

Полная энергия электрона равна сумме потенциальной и кинетической энергий. С учетом (5) и (6) и знаков в этих выражениях, имеем:

(7)

Согласно представлениям классической электромагнитной теории, вращающийся по орбите электрон возбуждает вокруг себя переменное электромагнитное поле, распространяющееся в пространстве со скоростью света. Иначе говоря, ускоренно движущийся электрон при своем вращении вокруг ядра должен излучать и вследствие этого терять часть энергии. Та­ким образом, согласно классической механике, энергия электрона всё вре­мя уменьшается. Из формулы (7) следует, что меньшему значению энергии соответствует меньший радиус. В результате электрон должен упасть на ядро.

Из формулы (5) следует, что с уменьшением радиуса орбиты скорость движения электрона возрастает, то есть период обращения уменьшается. Это должно привести к непрерывному увеличению частоты излучаемых электромагнитных волн и атом должен излучать непрерывный (сплошной) спектр. Однако в действительности атом - устойчивая система и может из­лучать лишь линейчатый спектр. Выход из создавшегося противоречивого положения был предложен Бором.

Основываясь на гипотезе Планка о квантовом характере излучения и поглощения света, Бор сформулировал законы, описывающие состояние и движение электронов в атоме в виде определенных постулатов, которые дают объяснение экспериментальным данным. Постулаты эти таковы:

1. Электрон в атоме может вращаться только по строго определен­ным орбитам, радиусы которых определяются из условия:

(8)

где р - момент количества движения электрона; п - число, принимающее положительные целые значения 1, 2, 3, ... и определяющее принадлеж­ность к той или иной орбите; h - постоянная Планка. Все другие орбиты «запрещены».

Таким образом, Бор постулировал, что момент количества движения электрона в атоме, а значит и его энергия, может принимать только строго определенные дискретные значения, то есть величина момента импульса электрона квантована.

Излучение невзаимодействующих друг с другом атомов состоит из отдельных спектральных линий. В соответствии с этим спектр испускания атомов называется линейчатым.

На рис. 12.1 показан спектр испускания паров ртути. Такой же характер имеют и спектры других атомов.

Изучение атомных спектров послужило ключом к позианию строения атомов. Прежде всего было замечено, что линии в спектрах атомов расположены не беспорядочно, а объединяются в группы или, как их называют, серии линий. Отчетливее всего это обнаруживается в спектре простейшего атома - водорода. На рис. 12.2 представлена часть спектра атомарного водорода в видимой и близкой ультрафиолетовой области. Символами обозначены видимые линии, указывает границу серии (см. ниже). Очевидно, что линии располагаются в определенном порядке. Расстояние между линиями закономерно убывает по мере перехода от более длинных волн к более коротким.

Швейцарский физик Бальмер (1885) обнаружил, что длины волн этой серии линий водорода могут быть точно представлены формулой

где - константа, - целое число, принимающее значения 3, 4, 5 и т. д.

Если перейти в (12,1) от длины волны к частоте, получится формула

где - константа, называемая в честь шведского спектроскописта постоянной Ридберга. Она равна

Формула (12.2) называется формулой Бальмера, а соответствующая серия спектральных линий водородного атома - серией Бальмера. Дальнейшие исследования показали, что в спектре водорода имеется еще несколько серий. В ультрафиолетовой части спектра находится серия Лаймана. Остальные серии лежат в инфракрасной области. Линии этих серий могут быть представлены в виде формул, аналогичных (12.2):

Частоты всех линий спектра водородного атома можно представить одной формулой:

где имеет значение 1 для серии Лаймана, 2- для серии Бальмера и т. д. При заданном число принимает все целочисленные значения, начиная с Выражение (12.4) называют обобщенной формулой Бальмера.

При возрастании частота линии в каждой серии стремится к предельному значению которое называется границей серии (на рис. 12.2 символом отмечена граница серии Бальмера).