Чем лучше использование солнечных систем теплоснабжения. Солнечное теплоснабжение. Плоские солнечные коллекторы

Соорудить солнечное отопление частного дома своими руками – не такая и сложная задача, как кажется неосведомленному обывателю. Для этого понадобятся навыки сварщика и материалы, доступные в любом строительном магазине.

Актуальность создания солнечного отопления частного дома своими руками

Получить полную автономию – мечта каждого владельца, затевающего частное строительство. Но действительно ли солнечная энергия способна отапливать жилой дом, особенно если устройство для ее накопления собрано в гараже?

В зависимости от региона солнечный поток может давать от 50 Вт/кв.м в пасмурный день до 1400 Вт/кв.м при ясном летнем небе. При таких показателях даже примитивный коллектор с низким КПД (45-50%) и площадью 15 кв.м. может выдавать в год около 7000-10000 кВт*ч. А это сэкономленные 3 тонны дров для твердотопливного котла!

  • в среднем на квадратный метр устройства приходится 900 Вт;
  • чтобы повысить температуру воды, необходимо затратить 1,16 Вт;
  • учитывая также теплопотери коллектора, 1 кв.м сможет нагреть около 10 литров воды в час до температуры 70 градусов;
  • для обеспечения 50 л горячей воды, необходимой одному человеку, понадобится затратить 3,48 кВт;
  • сверившись с данными гидрометцентра о мощности солнечного излучения (Вт/кв.м) в регионе, необходимо 3480 Вт разделить на получившуюся мощность солнечного излучения – это и будет нужная площадь солнечного коллектора для нагрева 50 л воды.

Как становится понятно, эффективное автономное отопление исключительно с использованием солнечной энергии осуществить довольно проблематично. Ведь в хмурую зимнюю пору солнечного излучения крайне мало, а разместить на участке коллектор площадью 120 кв.м. не всегда получится.

Так неужели солнечные коллекторы нефункциональны? Не стоит заранее сбрасывать их со счетов. Так, с помощью подобного накопителя можно летом обходиться без бойлера – мощности будет достаточно для обеспечения семьи горячей водой. Зимой же удастся сократить затраты на энергоносители, если подавать уже нагретую воду из солнечного коллектора в электрический бойлер.
Кроме того, солнечный коллектор станет отличным помощником тепловому насосу в доме с низкотемпературным отоплением (теплыми полами).

Так, зимой нагретый теплоноситель будет использоваться в теплых полах, а летом излишки тепла можно отправить в геотермальный контур. Это позволит снизить мощность теплового насоса.
Ведь геотермальное тепло не возобновляется, так что со временем в толще грунта образовывается все увеличивающийся «холодный мешок». Например, в обычном геотермальном контуре на начало отопительного сезона температура составляет +5 градусов, а в конце -2С. При подогреве же начальная температура поднимается до +15 С, а к концу отопительного сезона не падает ниже +2С.

Устройство самодельного солнечного коллектора

Для уверенного в своих силах мастера собрать тепловой коллектор не составит труда. Можно начать с небольшого устройства для обеспечения горячей воды на даче, а в случае успешного эксперимента перейти к созданию полноценной солнечной станции.

Плоский солнечный коллектор из металлических труб

Самый простой в исполнении коллектор – плоский. Для его устройства понадобится:

  • сварочный аппарат;
  • трубы из нержавеющей стали или меди;
  • стальной лист;
  • закаленное стекло или поликарбонат;
  • деревянные доски для рамы;
  • негорючий утеплитель, способный выдержать нагретый до 200 градусов металл;
  • черная матовая краска, устойчивая к высоким температурам.

Сборка солнечного коллектора довольно проста:

  1. Трубы привариваются к стальному листу – он выступает в роли адсорбера солнечной энергии, поэтому прилегание труб должно быть максимально плотным. Все красится в матовый черный цвет.
  2. На лист с трубами кладется рама так, чтобы трубы оказались с внутренней стороны. Просверливаются отверстия для входа и выхода труб. Укладывается утеплитель. Если используется гигроскопичный материал, нужно позаботиться о гидроизоляции – ведь намокших утеплитель больше не будет защищать трубы от охлаждения.
  3. Утеплитель фиксируется листом ОСБ, все стыки заполняются герметиком.
  4. Со стороны адсорбера кладется прозрачное стекло или поликарбонат с небольшим воздушным зазором. Оно служит для предотвращения остывание стального листа.
  5. Фиксировать стекло можно с помощью деревянных оконных штапиков, предварительно проложив герметик. Он предотвратит попадание холодного воздуха и защитит стекло от сжатия рамы при нагревании и охлаждении.

Для полноценного функционирования коллектора понадобится накопительный бак. Его можно сделать из пластиковой бочки, утепленной снаружи, в которой спиралью уложен теплообменник, соединенный с солнечным коллектором. Вход нагретой воды должен располагаться сверху, а выход холодной – снизу.

Важно правильно разместить бак и коллектор. Чтобы обеспечить естественную циркуляцию воды, бак должен находиться выше коллектора, а трубы – иметь постоянный наклон.

Солнечный нагреватель из подручных материалов

Если со сварочным аппаратом дружбу свести так и не удалось, можно сделать простой солнечный нагреватель из того, что под рукой. Например, из жестяных банок. Для этого в дне делаются отверстия, сами банки скрепляются друг с другом герметиком, на него же садятся в местах соединения с ПВХ-трубами. Красятся в черный цвет и укладываются в раму под стекло также, как и обычные трубы.

Фасад дома из солнечных батарей

Почему бы вместо обычного сайдинга не отделать дом чем-то полезным? Например, сделав с южной стороны на всю стену солнечный нагреватель.

Такое решение позволит оптимизировать расходы на отопление сразу по двум направлениям – снизить затраты на энергоноситель и существенно сократить теплопотери за счет дополнительного утепления фасада.

Устройство просто до безобразия и не требует специальных инструментов:

  • на утеплитель уложен окрашенный оцинкованный лист;
  • поверх уложена нержавеющая гофрированная труба, также выкрашенная в черный;
  • все прикрыто листами поликарбоната и зафиксировано алюминиевыми уголками.

Если же и этот способ кажется сложным, на видео представлен вариант из жести, полипропиленовых труб и пленки. Куда уж проще!

Главным критерием уюта в частном коттедже или квартире является тепло. В холодном доме даже самая шикарная обстановка не поможет создать комфортных условий. Но чтобы оптимальная для проживания температура поддерживалась в помещении не только летом, но и зимой понадобится монтаж системы отопления.

Сделать это сегодня можно легко, приобретя в качестве источника тепла газовый, дизельный или электрический котел. Но проблема заключается в том, что топливо для такого оборудования стоит дорого и доступно не во всех населенных пунктах. Что же тогда выбрать? Лучшим решением являются альтернативные источники тепла и в частности солнечное отопление.

Устройство и принцип работы

Что же представляет собой такая система? В первую очередь следует сказать, что есть два варианта солнечного отопления. Они предполагают использование различных как в конструктивном плане, так и по назначению элементов:

  • Коллектора;
  • Фотоэлектрической панели.

И если оборудование первого типа предназначено сугубо для поддержания в помещении комфортной температуры, то солнечные панели для отопления дома могут применяться для получения электричества и тепла. Их принцип работы основан на преобразовании энергии солнца и накапливании ее в аккумуляторах, чтобы потом использовать для различных нужд.

Смотрим видео, все о данном коллекторе:

Применение коллектора позволяет организовать только солнечное системы отопление для частного дома, при этом используется тепловая энергия. Такое устройство действует следующим образом. Солнечные лучи подогревают воду, которая является теплоносителем и поступает с трубопровод. Эта же система может использоваться и в качестве горячего водоснабжения. В состав входят специальные фотоэлементы.

Устройство коллектора

Но кроме них в комплектацию солнечного отопления включены:

  • Специальный бак;
  • Аванкамеры;
  • Радиатор, выполненный из трубок и заключенный в короб, у которого передняя стенка выполнена из стекла.

Солнечные батареи для отопления дома размещаются на крыше. В нем вода нагреваясь перемещается в аванкамеру где происходит ее замена горячим теплоносителем. Это позволяет поддерживать в системе постоянное динамическое давление.

Виды отопления с использованием альтернативных источников

Самый простой способ преобразования энергии светила в тепло – это использование солнечных батарей для отопления дома. Они все чаще используются в качестве дополнительных источников энергии. Но что же представляют собой эти устройства и действительно ли они эффективны?

Смотрим видео, виды и их особенности работы:

Задача, установленного на крыше коллектора солнечного системы отопления для дома впитать как можно больше солнечного излучения, преобразовав его затем в так необходимую человеку энергию. Но при этом следует учитывать, что оно может быть превращено как в тепловую, так и электрическую энергию. Для получения тепла и подогрева воды используют солнечные системы отопления. Для получения электрического тока используют специальные батареи. Они аккумулируют энергию в дневное время суток и отдают ее ночью. Однако сегодня существуют и комбинированные системы. В них солнечные панели вырабатывают одновременно тепло и электричество.

Что касается солнечных водонагревателей для отопления дома, то они представлены на рынке широкой линейкой. Причем модели могут иметь различное назначение, дизайн, принцип работы, габариты.

Различные варианты

Например, по внешнему виду и конструкции системы отопления частного дома подразделяются на:

  1. Плоские;
  2. Трубчатые вакуумные.

По назначению они классифицируются на используемые для:

  • Системы отопления и ГВС;
  • Для нагрева воды в бассейне.

Есть отличия и принципе работы. Солнечное отопление с применением коллекторов является идеальным выбором для дачных домиков, так как не требуют подключения к электросети. Модели с принудительной циркуляцией подключают к общей системе отопления, в них циркуляция теплоносителя осуществляется при помощи насоса.

Смотрим видео, сравниваем плоский и трубчатый коллектор:

Не все коллекторы пригодны для солнечного отопления загородного дома. Согласно этому критерию они делятся на:

  • Сезонные;
  • Круглогодичные.

Первые применяются для отопления дачных строений, вторые в частных домовладениях.

Сравниваем с обычными система отопления

Если сравнивать это оборудование с газовым или электрическим, то оно имеет гораздо больше преимуществ. В первую очередь это экономия топлива. Летом солнечное отопление способно полностью обеспечить проживающих в доме людей горячей водой. Осенью и весной, когда ясных дней мало, оборудование можно использовать для снижения нагрузки на стандартный котел. Что касается зимней поры, то обычно в это время эффективность работы коллекторов очень мала.

Смотрим видео, эффективность коллекторов зимой:

Но кроме экономии топлива использование оборудования, работающего на солнечных батареях, снижает зависимость от газа и электричества. Для установки солнечного отопления не нужно получать разрешение и установить его сможет каждый, кто имеет элементарные знания в сантехнике.

Смотрим видео, критерии подбора оборудования:

Еще один плюс – это большая продолжительность работы коллектора. Гарантированный срок службы оборудования составляет не менее 15 лет, значит на этот период ваши коммунальные платежи будут минимальными.

Однако, как и у любого устройства у коллектора имеются некоторые недостатки:

  • На солнечные водонагреватели для частного дома цена достаточно высокая;
  • Невозможность использования как единственного источника тепла;
  • Необходима установка бака-накопителя.

Есть и еще один нюанс. Эффективность работы солнечного отопления зависит от региона. В южных районах, где активность солнца высока оборудование будет иметь самый большой КПД. Поэтому наиболее выгодно использовать такое оборудование на юге и менее эффективным оно будет на севере.

Выбор солнечного коллектора и его монтаж

Прежде, чем приступать к установке оборудования, входящего в отопительную систему необходимо изучить его возможности. Для того чтобы узнать сколько тепла потребуется на обогрев дома необходимо рассчитать его площадь. Важно правильно выбрать место для установки солнечного коллектора. Оно должно быть максимально освещенным на протяжении дня. Поэтому обычно оборудование устанавливаются на южной части крыши.

Выполнение монтажных работ лучше доверить специалистам, потому что даже небольшая ошибка в установке системы солнечного отопления приведет к значительному снижению эффективности системы. Только при правильной установке солнечного коллектора он прослужит до 25 лет, причем полностью окупив себя за первые 3 года.

Основные типы коллекторов и их характеристики

Если здание по каким-либо причинам не подходит для установки оборудования, то можно разместить панели на соседнем строении, а накопитель поставить в подвале.

Преимущества солнечного отопления

Нюансы, на которые стоит обратить внимание при выборе этой системы были рассмотрены выше. И если вы все сделали правильно, то ваша система отопления на солнечных коллекторах доставит вам только приятные моменты. Среди ее достоинств следует отметить:

  • Возможность круглогодичного обеспечения дома теплом, с возможностью регулировки температуры;
  • Полная автономия от централизованных коммунальных сетей и снижение финансовых расходов;
  • Использование солнечной энергии на различные нужды;
  • Длительный эксплуатационный срок оборудования и редкие аварийные ситуации.

Единственное, что останавливает потребителей от покупки солнечной системы для отопления частного дома – это зависимость их работы от географии проживания. Если в вашем регионе ясные дни редкость, то эффективность оборудования будет минимальной.

Для чего используются тепловые солнечные коллекторы? Где можно их использовать - сферы применения, варианты применения, плюсы и минусы коллекторов, технические характеристики, эффективность. Можно ли сделать самому и насколько это оправдано. Схемы применения и перспективы.

Назначение

Коллектор и солнечная батарея два разных устройства. Батарея использует преобразование солнечной энергии в электрическую, накапливающуюся в аккумуляторах и применяющуюся для бытовых нужд. Солнечные коллекторы, как и тепловой насос, предназначены для сбора и накапливания экологически чистой энергии Солнца, преобразование которой используется для нагрева воды либо отопления. В промышленных масштабах стали широко использоваться солнечные тепловые электростанции, преобразующую тепло в электроэнергию.

Устройство

Коллекторы состоят из трех основных частей:

  • панели;
  • аванкамера;
  • накопительный бак.

Панели представлены в виде трубчатого радиатора, помещенного в короб с наружной стенкой из стекла. Их необходимо располагать на любом хорошо освещенном месте. В радиатор панели поступает жидкость, которая затем нагревается и передвигается в аванкамеру, где холодная вода замещается горячей, что создает постоянное динамическое давление в системе. При этом холодная жидкость поступает в радиатор, а горячая в накопительный бак.

Стандартные панели легко приспособить к любым условиям. При помощи специальных монтажных профилей их можно устанавливать параллельно друг другу в ряд в неограниченном количестве. В алюминиевых монтажных профилях просверливают отверстия и крепят к панелям снизу на болты или заклепки. После завершения работы панели солнечных абсорберов вместе с монтажными профилями представляют собой единую жесткую конструкцию.

Система солнечного теплоснабжения делится на две группы: с воздушным и с жидкостным теплоносителем. Коллекторы улавливают и поглощают излучение, и, совершая преобразование ее в тепловую энергию, передают в накопительный элемент, из которой тепло распределяется по помещению. Любая из систем может дополняться вспомогательным оборудованием (циркуляционный насос, датчики давления, предохранительные клапаны).

Принцип работы

В дневное время тепловое излучение передается теплоносителю (вода или антифриз), циркулирующему через коллектор. Нагретый теплоноситель передает энергию в бак водонагревателя, расположенного выше его и собирающего воду для горячего водоснабжения. В простой версии циркуляция воды осуществляется естественным образом благодаря разности плотности горячей и холодной воды в контуре, а для того, чтобы циркуляция не прекращалась, используется специальный насос. Циркуляционный насос предназначен для активной прокачки жидкости по конструкции.


В усложненном варианте коллектор включен в отдельный контур, наполненный водой или антифризом. Насос помогает им начать циркулировать, передавая при этом сохраненную солнечную энергию в теплоизолированный бак-аккумулятор, который позволяет запасать тепло и брать его в случае необходимости. Если энергии недостаточно, предусмотренный в конструкции бака электрический или газовый нагреватель, автоматически включается и поддерживает необходимую температуру.

Виды

Тем, кто хочет, чтобы в его доме была система солнечного теплоснабжения, для начала следует определиться с наиболее подходящим типом коллектора.

Коллектор плоского типа

Представлен в виде коробки, закрытой закаленным стеклом, и имеющий особый слой, поглощающий солнечное тепло. Этот слой соединен с трубками, по которым ведется циркуляция теплоносителя. Чем больше энергии он будет получать, тем выше его эффективность. Уменьшение тепловых потерь в самой панели и обеспечение наибольшего поглощения тепла на пластинах абсорбера позволяет обеспечить максимальный сбор энергии. При отсутствии застоя плоские коллекторы способны нагреть воду до 200 °C. Они предназначены для подогрева воды в бассейнах, бытовых нужд и отопления дома.

Коллектор вакуумного типа

Представляет собой стеклянные батареи (ряд полых трубок). Наружная батарея имеет прозрачную поверхность, а внутренняя батарея покрыта специальным слоем, который улавливает излучение. Вакуумная прослойка между внутренними и внешними батареями помогает сохранить около 90% поглощаемой энергии. Проводниками тепла являются специальные трубки. При нагревании панели происходит преобразование жидкости, находящейся в нижней части батареи в пар, который поднимаясь, предает тепло в коллектор. Этот тип системы имеет больший КПД по сравнению с коллекторами плоского типа, так как его можно использовать при низких температурах и в условиях плохой освещенности. Вакуумная солнечная батарея позволяет нагреть температуру теплоносителя до 300 °C, при использовании многослойного стеклянного покрытия и создании в коллекторах вакуума.

Тепловой насос

Системы солнечного теплоснабжения наиболее эффективно работают с таким устройством, как тепловой насос. Предназначен для сбора энергии из окружающей среды вне зависимости от погодных условий и может устанавливаться внутри дома. В качестве источника энергии здесь могут выступать вода, воздух либо грунт. Тепловой насос может работать, используя лишь солнечные коллекторы, если достаточно солнечной электроэнергии. При использовании комбинированной системы «тепловой насос и солнечный коллектор», не имеет значения тип коллектора, однако наиболее подходящим вариантом будет солнечная вакуумная батарея.

Что лучше

Система солнечного теплоснабжения может устанавливаться на крышах любого вида. Более прочными и надежными считаются плоские коллекторы, в отличие от вакуумных, конструкция которых более хрупкая. Однако при повреждении плоского коллектора придется заменить всю абсорбирующую систему, тогда как у вакуумного замене подлежит лишь поврежденная батарея.


Эффективность вакуумного коллектора гораздо выше, чем плоского. Их можно использовать в зимнее время и они производят больше энергии в пасмурную погоду. Достаточно большое распространение получил тепловой насос, несмотря на свою высокую стоимость. Показатель выработки энергии у вакуумных коллекторов зависит от величины трубок. В норме размеры трубок должны составлять в диаметре 58 мм при длине от 1,2-2,1 метра. Достаточно сложно установить коллектор своими руками. Однако обладание определенными знаниями, а также следование подробным инструкциям по монтажу и выбору места системы, указанными при покупке оборудования существенно упростит задачу и поможет принести в дом солнечное теплоснабжение.


Системы отопления разделяют следующим образом: на пассивные (см. гл. 5); активные, которые в большинстве используют жидкостные солнечные коллекторы и баки-аккумуляторы; комбинированные.

За рубежом широкое распространение получили системы воздуш­ного отопления, где в качестве аккумуляторов используют конструк­ции здания или специальную каменную засыпку под ним. В нашей стране в этом направлении работают ФТИ АН УзССР и ТбилЗНИИЭП, однако результаты работ явно недостаточны и отлаженных решений не создано, хотя воздушные системы теоретически эффективнее жидкостных, в которых собственно система отопления выполнена низкотемпературной панельно-лучистой или высокотемпературной с обычными нагревательными приборами. В нашей стране здания с жидкостными системами разработаны ИВТАН, ФТИ АН УзССР, ТашЗНИИЭП, ТбилЗНИИЭП, КиевЗНИИЭП и др. и в ряде случаев возведены.

Большой объем информации по активным системам солнечного отопления приведен в вышедшей в 1980 г. книге . Далее же описаны разработанные КиевЗНИИЭП, построенные и испытанные два индиви­дуальных жилых дома с автономными системами солнечного тепло­снабжения: с низкотемпературной панельно-лучистой системой отопле­ния (жилой дом в с. Колесное Одесской обл.) и с тепловым насосом (жилой дом в с. Букурия Молдавской ССР).

При разработке системы солнечного теплоснабжения жилого дома в с. Колесное внесен ряд изменений в архитектурно-строительную часть дома (проект УкрНИИПграждансельскстрой), направленных на его приспособление к требованиям солнечного теплоснабжения: использо­вана эффективная кладка с утеплителем для наружных стен и трой­ное остекление оконных проемов; змеевики системы отопления совме­щены с междуэтажными перекрытиями; предусмотрен подвал для размещения оборудования ; проведено дополнительное утепление чердака и утилизация тепла вытяжного воздуха.

В архитектурно-компоновочном отношении дом выполнен в двух уровнях. На первом этаже размещены передняя, общая комната, спальня, кухня, ванная комната и кладовые, а на втором - две спаль­ни и санузел, предусмотрена электроплита для приготовления пищи. Оборудование системы солнечного теплоснабжения (кроме коллекто­ров) расположено в подвале; дублером системы служат электроводо­нагреватели, что позволяет осуществить единый энерговвод в здание и повысить комфортные качества жилья.

Система солнечного теплоснабжения жилого дома (рис. 4.1) состоит Из трех контуров: теплоприемного циркуляционного и контуров отопления и горячего водоснабжения. В состав первого из них входят солнечные водонагреватели, змеевик-теплообменник бака-аккумуля­тора, циркуляционный насос и теплообменник "труба в трубе" для работы системы в летнее время в режиме с естественной циркуляцией. Оборудование объединено системой трубопроводов с арматурой, контрольно-измерительными приборами и приборами автоматики. В бак-аккумулятор вместимостью 16 м3 вмонтированы двухсекцион­ный змеевиковый теплообменник с площадью поверхности 4,6 м2 для теплоносителя циркуляционного контура и односекционной теплооб­менник с площадью поверхности 1,2 м2 для системы горячего водо­снабжения. Теплоемкость бака с температурой воды в нем +45 °С обеспечивает трехсуточную потребность жилого дома в тепле. Теплооб­менник типа "труба в трубе" поверхностью 1,25 м2 размещен под коньком крыши дома.

Контур отопления состоит из двух последовательно соединенных участков: панельно-лучистого с поточными отопительными панелями, обеспечивающими работу системы в базовом режиме с перепадом температур воды 45 ... 35 °С, и вертикально-однотрубного с конвекто­рами типа "Комфорт", обеспечивающими пиковые нагрузки системы отопления с перепадом температур воды 75 ... 70 °С. Змеевики труб отопительных панелей замоноличены в штукатурно-отделочныи слой круглопустотных панелей потолочного перекрытия. Конвекторы устанавливаются под окнами. Циркуляция в системе отопления - побудительная. Пиковый подогрев воды осуществляется проточным электроводонагревателем ЭПВ-2 мощностью 10 кВт; он же служит дублером системы отопления.

В состав контура горячего водоснабжения входит теплообменник, встроенный в бак-аккумулятор, и второй проточной электроводонагре­ватель в качестве доводчика и дублера системы.

В течение отопительного периода теплота от коллекторов пере­дается теплоносителем (45 %-м водным раствором этиленгликоля) воде в бак-аккумуляторе, которая насосом направляется в змеевики отопительной панели, а затем возвращается вновь в бак-аккумулятор.


Необходимая температура воздуха в помещении дома поддерживается автоматическим регулятором РРТ-2 путем включения и выключения электроводоподогревателя на конвекторном участке системы отопления.

Летом система обеспечивает потребности горячего водоснабжения от теплообменника типа "труба в трубе" при естественной циркуляции теплоносителя в теплоприемном контуре. Переход на побудительную циркуляцию осуществляется с помощью электронного дифференциаль­ного регулятора РРТ-2.

Система солнечного теплоснабжения четырехкомнатного жилого дома в с. Букурия Молдавской ССР запроектирована институтом Молдгипрограждансельстрой под научным руководством КиевЗНИИЭП.

Жилой дом - мансардного типа. На первом этаже находятся общая комната, кухня, постирочная, хозяйственное помещение, а на вто­ром - три спальни. В цокольном этаже размещены гараж, погребла также помещение для оборудования системы солнечного теплоснабже­ния. С домом блокируется хозяйственная постройка, которая вклю­чает в себя летнюю кухню, душ, навес, инвентарную и мастерскую.

Автономная система солнечного теплоснабжения (рис. 4.2) представ­ляет собой комбинированную солнечно-теплонасосную установку, предназначенную для обеспечения нужд отопления (расчетные тепло - потери дома 11 кВт) и горячего водоснабжения в течение всего года. Недостаток солнечной теплоты и теплоты от компрессора теплонасос - ной установки покрывается за счет электроподогрева. Система состоит из четырех контуров: теплоприемного циркуляционного, контуров теплонасосной установки, отопления и горячего водоснабжения.

В состав оборудования теплоприемного контура входят солнечные коллекторы, теплообменник "труба в трубе" и бак-аккумулятор вместимостью 16 м3 с встроенным в него теплообменником с площадью поверхности 6 м2. Солнечные коллекторы конструкции КиевЗНИИЭП с двухслойным остеклением общей площадью 70 м2 размещены в раме на южном скате крыши дома под углом 55° к горизонту. В качестве теплоносителя использован 45 %-й водный раствор этиленгликоля. Теплообменник размещен под коньком крыши, а остальное оборудо­вание расположено в подвальном помещении дома.

В качестве теплонасосной установки служит компрессорно-конден - саторный холодильный агрегат АК1-9 теплопроизводительностью 11,5 кВт и потребляемой мощностью 4,5 кВт. Рабочим агентом тепло­насосной установки является фреон-12. Компрессор - поршневой бессальниковый, конденсатор и испаритель - кожухотрубные с водяным охлаждением.

В состав оборудования контура отопления входят циркуляционный насос, отопительные приборы типа "Комфорт" проточный электроводо­нагреватель ЭПВ-2 в качестве доводчика и дублера. В состав оборудо­вания контура горячего водоснабжения входят емкостный (0,4 м3) водонагреватель типа СТД с поверхностью теплообменника 0,47 м2 и концевой электронагреватель БАС-10/М 4-04 мощностью 1 кВт. Циркуляционные насосы всех контуров - типа ЦВЦ, бессальниковые, вертикальные, малошумные, бесфундаментные.

Система работает следующим образом. Теплоноситель передает тепло от коллекторов воде в баке-аккумуляторое й фреону в испари­теле теплового насоса. Парообразный фреон после сжатия в компрес­соре конденсируется в конденсаторе, нагревая при этом воду в системе отопления и водопроводную воду в системе горячего водоснабжения.

При отсутствии солнечной радиации и израсходовании теплоты, запасенной в баке-аккумуляторе, теплонасосная установка выклю­чается и теплоснабжение дома осуществляется полностью от электро­водонагревателей (электрокотлов). Зимой теплонасосная установка находится в работе только при определенном уровне отрицательных температур наружного воздуха (не ниже - 7 °С) с тем, чтобы исключить замерзание воды в баке-аккумуляторе. Летом система горячего водо­снабжения обеспечивается теплотой в основном при естественной циркуляции теплоносителя через теплообменник типа "труба в трубе". В результате осуществления различных режимов работы комбиниро­ванная солнечно-теплонасосная установка позволяет сберечь теплоты около 40 ГДж/год (результаты эксплуатации этих установок приведе­ны в гл. 8).

Сочетание солнечной энергии и тепловых насосов нашло ^ зое отражение и в разработанном ЦНИИЭП инженерного оборудования

Рис. 4.3. Принципиальная схема системы теплоснабжения в г. Геленджике

1 - солнечный коллектор; 2 - теплообменник догрева с теплоносителем от контура конден­сатора тепловых насосов; 3 - теплообменник догрева с теплоносителем от тепловой сети; 4 - насос контура конденсатора; 5 - тепловой насос; 6 - насос контура испартеля; 7 - теплообменник подогрева (охлаждения) воды контура испарителя (конденсатора); 8 - Теплообменник подогрева исходной (сырой) воды; 9 - насос горячего водоснабжения; 10 - Аккумуляторные баки; 11 - теплообменник солнечного контура; 12 - насос солнечного контура

Проекте теплоснабжения гостиничного комплекса "Приветливый берег" в г. Геленджике {рис. 4.3).

Основу солнечно-теплонасосной установки составляют: плоские солнечные коллекторы общей площадью 690 м2 и тре серийно выпуска­емые холодильные машины MKT 220-2-0, работающие в режиме тепло­вого насоса. Расчетная годовая выработка теплоты составляет около 21000 ГДж, в том числе солнечной установкой - 1470 ГДж.

Низкопотенциальным источником тепла для тепловых насосов служит морская вода. Для обеспечения безкоррозионного и безнакип­ного режима работы поверхностей нагрева коллекторов, трубопрово­дов и конденсаторов их заполняют умягченной и деаэрированной водой тепловой сети. По сравнению с традиционной схемой теплоснаб­жения от котельной привлечение нетрадиционных источников тепла -

Солнца и морской воды, позволяет сэкономить около 500 т усл. топл /год.

Другим характерным примером использования новых источников энергии является проект теплоснабжения усадебного дома с помощью

Солнечно-теплонасосной установки. Проект предусматривает круглого­дичное полное удовлетворение потребностей отопления и горячего водоснабжения усадебного дома мансардного типа жилой площадью 55 м2. Низкопотенциальным источником теплоты для теплового насоса служит грунт. Предположительный экономический эффект от внедре­ния системы - не менее 300 руб. на квартиру по сравнению с тради­ционным вариантом теплоснабжения от твердотопливного аппарата.

Классификация и основные элементы гелиосистем

Системами солнечного теплоснабжения называются системы, использующие в качестве источника тепловой энергии солнечную радиацию. Их характерным отличием от других систем низкотемпературного отопления является применение специального элемента – гелиоприемника, предназначенного для улавливания солнечной радиации и преобразования ее в тепловую энергию.

По способу использования солнечной радиации системы солнечного низкотемпературного отопления подразделяют на пассивные и активные.

Пассивныминазываются системы солнечного отопления, в которых в качестве элемента, воспринимающего солнечную радиацию и преобразующего ее в теплоту, служат само здание или его отдельные ограждения (здание-коллектор, стена-коллектор, кровля-коллектор и т. п. (рис. 3.4)).

Рис. 3.4. Пассивная низкотемпературная система солнечного отопления “стена-коллектор”: 1 – солнечные лучи; 2 – лучепрозрачный экран; 3 – воздушная заслонка; 4 – нагретый воздух; 5 – охлажденный воздух из помещения; 6 – собственное длинноволновое тепловое излучение массива стены; 7 – черная лучевоспринимающая поверхность стены; 8 – жалюзи.

Активныминазываются системы солнечного низкотемпературного отопления, в которых гелиоприемник является самостоятельным отдельным устройством, не относящимся к зданию. Активные гелиосистемы могут быть подразделены:

‑ по назначению (системы горячего водоснабжения, отопления, комбинированные системы для целей теплохолодоснабжения);

‑ по виду используемого теплоносителя (жидкостные – вода, антифриз и воздушные);

‑ по продолжительности работы (круглогодичные, сезонные);

‑ по техническому решению схем (одно-, двух-, многоконтурные).

Воздух является широко распространенным незамерзающим во всем диапазоне рабочих параметров теплоносителем. При применении его в качестве теплоносителя возможно совмещение систем отопления с системой вентиляции. Однако воздух – малотеплоемкий теплоноситель, что ведет к увеличению расхода металла на устройство систем воздушного отопления по сравнению с водяными системами.

Вода является теплоемким и широкодоступным теплоносителем. Однако при температурах ниже 0°С в нее необходимо добавлять незамерзающие жидкости. Кроме того, нужно учитывать, что вода, насыщенная кислородом, вызывает коррозию трубопроводов и аппаратов. Но расход металла в водяных гелиосистемах значительно ниже, что в большой степени способствует более широкому их применению.

Сезонные гелиосистемы горячего водоснабжения обычно одноконтурные и функционируют в летние и переходные месяцы, в периоды с положительной температурой наружного воздуха. Они могут иметь дополнительный источник теплоты или обходиться без него в зависимости от назначения обслуживаемого объекта и условий эксплуатации.



Гелиосистемы отопления зданий обычно двухконтурные или чаще всего многоконтурные, причем для разных контуров могут быть применены различные теплоносители (например, в гелиоконтуре – водные растворы незамерзающих жидкостей, в промежуточных контурах – вода, а в контуре потребителя – воздух).

Комбинированные гелиосистемы круглогодичного действия для целей теплохолодоснабжения зданий многоконтурные и включают дополнительный источник теплоты в виде традиционного теплогенератора, работающего на органическом топливе, или трансформатора теплоты.

Принципиальная схема системы солнечного теплоснабжения приведена на рис.3.5. Она включает три контура циркуляции:

‑ первый контур, состоящий из солнечных коллекторов 1, циркуляционного насоса 8 и жидкостного теплообменника 3;

‑ второй контур, состоящий из бака-аккумулятора 2, циркуляционного насоса 8 и теплообменника 3;

‑ третий контур, состоящий из бака-аккумулятора 2, циркуляционного насоса 8, водовоздушного теплообменника (калорифера) 5.

Рис. 3.5. Принципиальная схема системы солнечного теплоснабжения: 1 – солнечный коллектор; 2 – бак-аккумулятор; 3 – теплообменник; 4 – здание; 5 – калорифер; 6 – дублер системы отопления; 7 – дублер системы горячего водоснабжения; 8 – циркуляционный насос; 9 – вентилятор.

Функционирует система солнечного теплоснабжения следующим образом. Теплоноситель (антифриз) теплоприемного контура, нагреваясь в солнечных коллекторах 1, поступает в теплообменник 3, где теплота антифриза передается воде, циркулирующей в межтрубном пространстве теплообменника 3 под действием насоса 8 второго контура. Нагретая вода поступает в бак-аккумулятор 2. Из бака-аккумулятора вода забирается насосом горячего водоснабжения 8, доводится при необходимости до требуемой температуры в дублере 7 и поступает в систему горячего водоснабжения здания. Подпитка бака-аккумулятора осуществляется из водопровода.

Для отопления вода из бака-аккумулятора 2 подается насосом третьего контура 8 в калорифер 5, через который с помощью вентилятора 9 пропускается воздух и, нагревшись, поступает в здание 4. В случае отсутствия солнечной радиации или нехватки тепловой энергии, вырабатываемой солнечными коллекторами, в работу включается дублер 6.

Выбор и компоновка элементов системы солнечного теплоснабжения в каждом конкретном случае определяются климатическими факторами, назначением объекта, режимом теплопотребления, экономическими показателями.

Концентрирующие гелиоприемники

Концентрирующие гелиоприемникипредставляют собой сферические или параболические зеркала (рис. 3.6), выполненные из полированного металла, в фокус которых помещают тепловоспринимающий элемент (солнечный котел), через который циркулирует теплоноситель. В качестве теплоносителя используют воду или незамерзающие жидкости. При использовании в качестве теплоносителя воды в ночные часы и в холодный период систему обязательно опорожняют для предотвращения ее замерзания.

Для обеспечения высокой эффективности процесса улавливания и преобразования солнечной радиации концентрирующий гелиоприемник должен быть постоянно направлен строго на Солнце. С этой целью гелиоприемник снабжают системой слежения, включающей датчик направления на Солнце, электронный блок преобразования сигналов, электродвигатель с редуктором для поворота конструкции гелиоприемника в двух плоскостях.

Преимуществом систем с концентрирующими гелиоприемниками является способность выработки теплоты с относительно высокой температурой (до 100 °С) и даже пара. К недостаткам следует отнести высокую стоимость конструкции; необходимость постоянной очистки отражающих поверхностей от пыли; работу только в светлое время суток, а следовательно, потребность в аккумуляторах большого объема; большие энергозатраты на привод системы слежения за ходом Солнца, соизмеримые с вырабатываемой энергией. Эти недостатки сдерживают широкое применение активных низкотемпературных систем солнечного отопления с концентрирующими гелиоприемниками. В последнее время наиболее часто для солнечных низкотемпературных систем отопления применяют плоские гелиоприемники.

Плоские солнечные коллекторы

Плоский солнечный коллектор– устройство с поглощающей панелью плоской конфигурации и плоской прозрачной изоляцией для поглощения энергии солнечного излучения и преобразования ее в тепловую.

Плоские солнечные коллекторы (рис. 3.7) состоят из стеклянного или пластикового покрытия (одинарного, двойного, тройного), тепловоспринимающей панели, окрашенной со стороны, обращенной к солнцу, в черный цвет, изоляции на обратной стороне и корпуса (металлического, пластикового, стеклянного, деревянного).

В качестве тепловоспринимающей панели можно использовать любой металлический или пластмассовый лист с каналами для теплоносителя. Изготавливаются тепловоспринимающие панели из алюминия или стали двух типов: лист-труба и штампованные панели (труба в листе). Пластмассовые панели из-за недолговечности и быстрого старения под действием солнечных лучей, а также из-за малой теплопроводности не находят широкого применения.

Рис. 3.6 Концентрирующие гелиоприемники: а – параболический концентратор; б – параболоцилиндрический концентратор; 1 – солнечные лучи; 2 – тепловоспринимающий элемент (солнечный коллектор); 3 – зеркало; 4 – механизм привода системы слежения; 5 – трубопроводы, подводящие и отводящие теплоноситель.

Рис. 3.7. Плоский солнечный коллектор: 1 – солнечные лучи; 2 – остекление; 3 – корпус; 4 – тепловоспринимающая поверхность; 5 – теплоизоляция; 6 – уплотнитель; 7 – собственное длинноволновое излучение тепловоспринимающей пластины.

Под действием солнечной радиации тепловоспринимающие панели разогреваются до температур 70-80 °С, превышающих температуру окружающей среды, что ведет к возрастанию конвективной теплоотдачи панели в окружающую среду и ее собственного излучения на небосвод. Для достижения более высоких температур теплоносителя поверхность пластины покрывают спектрально-селективными слоями, активно поглощающими коротковолновое излучение солнца и снижающими ее собственное тепловое излучение в длинноволновой части спектра. Такие конструкции на основе “черного никеля”, “черного хрома”, окиси меди на алюминии, окиси меди на меди и другие дорогостоящи (их стоимость часто соизмерима со стоимостью самой тепловоспринимающей панели). Другим способом улучшения характеристик плоских коллекторов является создание вакуума между тепловоспринимающей панелью и прозрачной изоляцией для уменьшения тепловых потерь (солнечные коллекторы четвертого поколения).

Опыт эксплуатации солнечных установок на основе солнечных коллекторов выявил ряд существенных недостатков подобных систем. Прежде всего это высокая стоимость коллекторов. Увеличение эффективности их работы за счет селективных покрытий, повышение прозрачности остекления, вакуумирования, а также устройства системы охлаждения оказываются экономически нерентабельными. Существенным недостатком является необходимость частой очистки стекол от пыли, что практически исключает применение коллектора в промышленных районах. При длительной эксплуатации солнечных коллекторов, особенно в зимних условиях, наблюдается частый выход их из строя из-за неравномерности расширения освещенных и затемненных участков стекла за счет нарушения целостности остекления. Отмечается также большой процент выхода из строя коллекторов при транспортировке и монтаже. Значительным недостатком работы систем с коллекторами является также неравномерность загрузки в течение года и суток. Опыт эксплуатации коллекторов в условиях Европы и европейской части России при высокой доле диффузной радиации (до 50%) показал невозможность создания круглогодичной автономной системы горячего водоснабжения и отопления. Все гелиосистемы с солнечными коллекторами в средних широтах требуют устройства больших по объему баков-аккумуляторов и включения в систему дополнительного источника энергии, что снижает экономический эффект от их применения. В связи с этим наиболее целесообразно их использование в районах с высокой средней интенсивностью солнечной радиации (не ниже 300 Вт/м 2).