Случайные величины. Дискретная случайная величина.Математическое ожидание

Одним из важнейших основных понятий теории вероятностей является понятие о случайной величине.

Случайной величиной называется величина, которая в результате опыта может принять то или иное значение, причем неизвестно заранее, какое именно.

Примеры случайных величин:

1) число попаданий при трех выстрелах;

2) число вызовов, поступавших на телефонную станцию за сутки;

3) частота попадания при 10 выстрелах.

Во всех трех приведенных примерах случайные величины могут принимать отдельные, изолированные значения, которые можно заранее перечислить.

Так, в примере 1) эти значения:

в примере 2):

в примере 3)

0; 0,1; 0,2; …; 1,0.

Такие случайные величины, принимающие только отделенные друг от друга значения, которые можно заранее перечислить, называются прерывными или дискретными случайными величинами.

Существуют случайные величины другого типа, например:

1) абсцисса точки попадания при выстреле;

2) ошибка взвешивания тела на аналитических весах;

3) скорость летательного аппарата в момент выхода на заданную высоту;

4) вес наугад взятого зерна пшеницы.

Возможные значения таких случайных величин не отделены друг от друга; они непрерывно заполняют некоторый промежуток, который иногда имеет резко выраженные границы, а чаще – границы неопределенные, расплывчатые.

Такие случайные величины, возможные значения которых непрерывно заполняют некоторый промежуток, называются непрерывными случайными величинами.

Понятие случайной величины играет весьма важную роль в теории вероятностей. Если «классическая» теория вероятностей оперировала по преимуществу с событиями, то современная теория вероятностей предпочитает, где только возможно, оперировать со случайными величинами.

Приведем примеры типичных для теории вероятностей приемов перехода от событий к случайным величинам.

Производится опыт, в результате которого может появиться или не появиться некоторое событие. Вместо события можно рассмотреть случайную величину , которая равна 1, если событие происходит, и равна 0, если событие не происходит. Случайная величина, очевидно, является прерывной; она имеет два возможных значения: 0 и 1. Эта случайная величина называется характеристической случайной величиной события . На практике часто вместо событий оказывается удобнее оперировать их характеристическими случайными величинами. Например, если производится ряд опытов, в каждом из которых возможно появление события , то общее число появлений события равно сумме характеристических случайных величин события во всех опытах. При решении многих практических задач пользование таким приемом оказывается очень удобным.

С другой стороны, очень часто для вычисления вероятности события оказывается удобно связать это событие с какой-то непрерывной случайной величиной (или системой непрерывных величин).

Пусть, например, измеряются координаты какого-то объекта О для того, чтобы построить точку М, изображающую этот объект на панораме (развертке) местности. Нас интересует событие , состоящее в том, что ошибка R в положении точки М не превзойдет заданного значения (рис. 2.4.1). Обозначим случайные ошибки в измерении координат объекта. Очевидно, событие равносильно попаданию случайной точки М с координатами в пределы круга радиуса с центром в точке О. Другими словами, для выполнения события случайные величины и должны удовлетворять неравенству

Вероятность события есть не что иное, как вероятность выполнения неравенства (2.4.1). Эта вероятность может быть определена, если известны свойства случайных величин .

Такая органическая связь между событиями и случайными величинами весьма характерна для современной теории вероятностей, которая, где только возможно, переходит от «схемы событий» к «схеме случайных величин». Последняя схема сравнительно с первой представляет собой гораздо более гибкий и универсальный аппарат для решения задач, относящихся к случайным явлениям.

ЗАКОН РАСПРЕДЕЛЕНИЯ И ХАРАКТЕРИСТИКИ

СЛУЧАЙНЫХ ВЕЛИЧИН

Случайные величины, их классификация и способы описания.

Случайной называется величина, которая в результате опыта может принимать то или иное значение, но какое именно заранее не известно. Для случайной величины, таким образом, можно указать только значения, одно из которых она обязательно примет в результате опыта. Эти значения в дальнейшем будем называть возможными значениями случайной величины. Так как случайная величина количественно характеризует случайный результат опыта, она может рассматриваться как количественная характеристика случайного события.

Случайные величины обычно обозначаются заглавными буквами латинского алфавита, например, X..Y..Z, а их возможные значения- соответствующими малыми буквами.

Различают три типа случайных величин:

Дискретные; Непрерывные; Смешанные.

Дискретной называется такая случайная величина, число возможных значений которой образует счетное множество. В свою очередь, счетным называется множество, элементы которого можно пронумеровать. Слово «дискретный» происходит от латинского discretus , что означает «прерывистый, состоящий из отдельных частей» .

Пример 1. Дискретной случайной величиной является число бракованных деталей Х в партии из nтук. Действительно, возможными значениями этой случайной величины является ряд целых чисел от 0 до n.

Пример 2. Дискретной случайной величиной является число выстрелов до первого попадания в цель. Здесь, как и в примере 1, возможные значения можно пронумеровать, хотя в предельном случае возможное значение является бесконечно большим числом.

Непрерывной называется случайная величина, возможные значения которой непрерывно заполняют некоторый интервал числовой оси, называемый иногда интервалом существования этой случайной величины. Таким образом, на любом конечном интервале существования число возможных значений непрерывной случайной величины бесконечно велико.

Пример 3. Непрерывной случайной величиной является расход электроэнергии на предприятии за месяц.

Пример 4. Непрерывной случайной величиной является ошибка измерения высоты с помощью высотомера. Пусть из принципа работы высотомера известно, что ошибка лежит в пределах от 0 до 2 м. Поэтому интервалом существования данной случайной величины является интервал от 0 до 2 м.

Закон распределения случайных величин.

Случайная величина считается полностью заданной, если на числовой оси указаны ее возможные значения и установлен закон распределения.

Законом распределения случайной величины называется соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими вероятностями.

Про случайную величину говорят, что она распределена по данному закону, или подчинена данному закону распределения. В качестве законов распределения используются ряд вероятностей, функция распределения, плотность вероятности, характеристическая функция.

Закон распределения дает полное вероятное описание случайной величины. По закону распределения можно судить до опыта о том какие возможные значения случайной величины будут появляться чаще, а какие – реже.

Для дискретной случайной величины закон распределения может быть задан в виде таблицы, аналитически (в виде формулы) и графически.

Простейшей формой задания закона распределения дискретной случайной величины является таблица (матрица), в которой перечислены в порядке возрастания все возможные значения случайной величины и соответствующие их вероятности, т.е.

Такая таблица называется рядом распределения дискретной случайной величины. 1

События Х 1 , Х 2 ,..., Х n , состоящие в том, что в результате испытания случайная величина X примет соответственно значения х 1 , x 2 ,...х n являются несовместными и единственно возможными (ибо в таблице перечислены все возможные значения случайной величины), т.е. образуют полную группу. Следовательно, сумма их вероятностей равна 1. Таким образом, для любой дискретной случайной величины

(Эта единица как-то распределена между значениями случайной величины, отсюда и термин «распределение»).

Ряд распределения может быть изображен графически, если по оси абсцисс откладывать значения случайной величины, а по оси ординат - соответствующие их вероятности. Соединение полученных точек образует ломаную, называемую многоугольником или полигоном распределения вероятностей (рис. 1).

Пример В лотерее разыгрывается: автомобиль стоимостью 5000 ден. ед., 4 телевизора стоимостью 250 ден. ед., 5 видеомагнитофонов стоимостью 200 ден. ед. Всего продается 1000 билетов по 7 ден. ед. Составить закон распределения чистого выигрыша, полученного участником лотереи, купившим один билет.

Решение . Возможные значения случайной величины X - чистого выигрыша на один билет - равны 0-7 = -7 ден. ед. (если билет не выиграл), 200-7 = 193, 250-7 = 243, 5000-7 = 4993 ден. ед. (если на билет выпал выигрыш соответственно видеомагнитофона, телевизора или автомобиля). Учитывая, что из 1000 билетов число невыигравших составляет 990, а указанных выигрышей соответственно 5, 4 и 1, и используя классическое определение вероятности, получим.

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

§ 1. ПОНЯТИЕ СЛУЧАЙНОЙ ВЕЛИЧИНЫ.

В физике и других науках о природе встречается много различных величин разной природы, как например: время, длина, объём, вес и т.д. Постоянной величиной называют ве- личину, принимающую лишь одно фиксированное значение. Величины, которые могут принимать различные значения, на-зываются переменными. Величина считается заданной, если указано множество значений, которые она может принимать. Если однозначно известно, какое именно значение из множества примет величина при создании опреде- лённых условий, то о ней говорят как об «обычной», детерминированной величине. Примером такой величины является количество букв в слове. Большинство физических величин измеряются при помощи приборов с присущей им точностью измерений и, в смысле приведенного определения, они не являются «обычными». Такого рода «необычные» величины называются случайными . Для случайных величин множество целесообразно назвать множеством возможных значений. Случайная величина принимает то или иное значе- ние с некоторой вероятностью. Заметим, что все величины можно считать случайными, так как детерминированная вели-чина – это случайная величина, принимающая каждое значение с вероятностью, равной единице. Всё сказанное выше является достаточным основанием для изучения случайных величин.

Определение. Случайной величиной называется величина, которая в результате опыта может принимать то или иное (но обязательно только одно) значение, причём заранее, до опыта, неизвестно, какое именно.

Понятие случайной величины является фундаментальным понятием теории вероятностей и играет важную роль в её приложениях.

Случайные величины обозначаются: , а их зна -чения, соответственно: .

Выделяют два основных класса случайных величин: диск -ретные и непрерывные.

Определение. Дискретной случайной величиной называют случайную величину, число возможных значений которой конечное либо счётное множество.

Примеры дискретных случайных величин:

1. - частота попаданий при трёх выстрелах. Возможные значения:

2. - число деффектных изделий из штук. Возможные значения:

3. - число выстрелов до первого попадания. Возможные значения:

Определение. Непрерывной случайной величиной называют такую случайную величину, возможные значения которой не –прерывно заполняют некоторый промежуток (конечный или бесконечный).

Примеры непрерывных случайных величин:

1. - случайное отклонение по дальности от точки попада- ния до цели при выстреле из орудия.

Так как снаряд может попасть в любую точку, интервала, ограниченного минимальным и максимальным значениями дальности полёта снаряда, возможных для данного орудия, то возможные значения случайной величины заполняют про -межуток между минимальным и максимальным значением.

2. - ошибки при измерении радиолокатором.

3. - время работы прибора.

Случайная величина является своего рода абстрактым вы- ражением некоторого случайного события. С каждым случай -ным событием можно связать одну или несколько характеризу- ющих его случайных величин. Например, при стрельбе по ми -шени можно рассмотреть такие случайные величины: число попаданий в мишень, частота попаданий в мишень, количество очков, набираемых при попадании в определённые области мишени и т.д.

§ 2 ЗАКОНЫ РАСПРЕДЕЛЕНИЯ ВЕРОЯТНОСТЕЙ

СЛУЧАЙНЫХ ВЕЛИЧИН.

Определение. Законом распределения случайной величины называется всякое соотношение, устанавливающее связь меж- ду возможными значениями случайной величины и соответст- вующими им вероятностями.

Если вспомнить определение функции, то закон распреде -ления является функцией, область определения которой есть область значений случайной величины, а область значений рассматриваемой функции состоит из вероятностей значений случайной величины.

2.1. РЯД РАСПРЕДЕЛЕНИЯ

Рассмотрим дискретную случайную величину , воз- можные значения которой нам известны. Но зна- ние значений случайной величины, очевидно, не позволяет нам её полностью описать, так как мы не можем сказать, насколь- ко часто следует ожидать тех или иных возможных значений случайной величины при повторении опыта в одних и тех же условиях. Для этого необходимо знать закон распределения вероятностей.

В результате опыта дискретная случайная величина прини –мает одно из своих возможных значений, т.е. произойдёт одно из событий:

которые образуют полную группу несовместных событий.

Вероятности этих событий:

Простейшим законом распределения дискретной случайной величины является таблица, в которой приведены все возмож- ные значения случайной величины и соответствующие им ве –роятности:

Такую таблицу называют рядом распределения случайной величины .

Для наглядности, ряд распределения можно представить графиком:

Эта ломаная называется многоугольником распределения . Это также одна из форм задания закона распределения дискрет – ной случайной величины .

Сумма ординат многоугольника распределения, представля – ющая сумму вероятностей всех возможных значений случай -ной величины, равна единице.

Пример 1. Произведено три выстрела по мишени. Вероят- ность попадания при каждом выстреле равна 0,7. Составить ряд распределения числа попаданий.

Случайная величина - «число попаданий» может прин- мать значения от 0 до 3 – х, причём в этом случае вероят – ности определяются по формуле Бернулли:

.

0,027 0,189 0,441 0,343

Проверка

Пример 2. В урне назодится 4 белых и 6 чёрных щаров. Наугад извлекаются 4 шара. Найти закон распределения слу- чайной величины - «число белых шаров среди отобран -ных».

Эта случайная величина может принимать значения от 0 до 4 – х. Найдём вероятности аозможных значений случайной величины.

Можем проверить, что сумма полученных вероятностей рав- на единице.

2.2. ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ .

Ряд распределения нельзя построить для непрерывной слу- чайной величины, так как она принимает бесконечно много значений. Более универсальным законом распределения под- ходящим, как для дискретной, так и для непрерывной слу - чайной величины является функция распределения.

Определение. Функцией распределения (интегральным зако- ном распределения) случайной величины называется зада- ние вероятности выполнения неравенства , т.е.

(1)

Таким образом, функция распределения равна вероят -ности того, что случайная величина в результате опыта попа- дает левее точки .

Для дискретной случайной величины, для которой мы знаем ряд распределения:

функция распределения будет иметь вид:

График функции распределения дискретной случайной вели- чины - разрывная ступенчатая фигура. Для наглядности, рассмотрим пример.

Пример 3 Дан ряд паспределения. Найти функцию распре -деления и построить её график

0,2 0,1 0,3 0,4

По определению,

СВОЙСТВА ФУНКЦИИ РАСПРЕДЕЛЕНИЯ

1 Функция распределения - это неотрицательная фун- кция, значения которой заключены между 0 и 1, т.е.

2 Вероятность появления случайной величины в про- межутке равна разности значений функции распределения на концах промежутка:

3 Функция распределения - неубывающая функция, т.е. при выполнено: ;

Перейдём в равенстве (2) к пределу при . Полу- чим вместо вероятности попадания случайной величины в про- межуток вероятность точечного значения случайной величины, т.е.

Значение этого предела зависит от того, является ли точка точкой непрерывности функции , или в этой точке функция имеет разрыв. Если функция непрерыв- на в точка , то предел равен 0, т.е. . Если же в этой точке функция имеет разрыв (1 – го ро- да), то предел равен значению скачка функции в точке .

Так как непрерывная случайная величина имеет непрерыв -ную функцию распределения , то из равенства нулю предела (3) следует, что вероятность любого фиксированного значения непрерывной случайной величины равна нулю. Это следует из того, что возможных значений непрерывной случайной величины бесконечно много. Из этого, в частности, следует, что следующие вероятности совпадают:

Приведённые свойства функции распределения можно сфор- мулировать следующим образом: функция распределения - это неотрицательная неубывающая функция, удовлетворяющая ус –ловиям: Обратное утверждение также имеет место: монотонно возрастающая непрерывная функция, удовлетворяющая условиям

является функцией распределения некоторой непрерывной слу- чайной величины. Если значения этой величины сосредоточе -ны на некотором промежутке , то график этой функции можно схематически изобразить следующим образом:

Рассмотрим пример. Функция распределения непрерывной случайной величины задана следующим образом:

Найти значение « », построить график и найти веро –ятность

Так как функция распределения непрерывной случайной ве- личины непрерывна, то - непрерывная функция, и при должно выполгяться равенство:

или , т.е.

Построим график этой функции

Найдём требуемую вероятность

Замечание. Функцию распределения, иногда ещё называют интегральным законом распределения . Ниже объясним, почему именно.

2.3 ПЛОТНОСТЬ РАСПРЕДЕЛЕНИЯ.

Так как с помощью функции распределения дискретной

случайной величины в любой точке мы можем определить вероятность возможных значений, то она однозначно опре- деляет закон распределения дискретной случайной величины.

Однако по функции распределения трудно судить о харак- тере распределения непрерывной случайной величины в не -большой окрестности той или иной точки числовой оси.

Более наглядное представление о характере распределения непрерывной случайной величины вблизи различных точек даёт функция, которую называют плотностью распределения (или дифференциальным законом распределения)

Пусть - непрерывная случайная величина с функцикй распределения . Найдём вероятность попадания этой случайной величины в элементарный участок .

По формуле (2), имеем

Разделим это равенство на

Отношение, стоящее слева, называется средней вероятно –стью на единице длины участка.

Считая функцию дифференцируемой, перейдём к перейдём в этом равенстве к пределу

Определение. Предел отношения вероятности попадания непрерывной случайной величины на элементарный участок к длине этого участка при называ- ется плотностью распределения непрерывной случайной ве – личины и обозначается Следовательно,

Плотность распределения показывает, насколько часто слу -чайная величина появляется в некоторой окрестности точ –ки при повторении опытов.

Кривая, изображающая график плотности распределения, на- зывается кривой распрелеления.

Если возможные значения случайной величины запол- няют некоторый промежуток , то вне этого промежутка.

Определение. Случайная величина называется непре – рывной , если её функция распределения непрерывна на всей числовой прямой, а плотность распределения не- прерывна везде, за исключением может быть конечного числа точек (точек разрыва 1 – го рода).

СВОЙСТВА ПЛОТНОСТИ РАСПРЕДЕЛЕНИЯ

1. Плотность распределения неотрицательна, т.е.

(это следует из того, что - производная неубывающей функции ).

2. Функция распределения непрерывной случайной величи-

ны равна интегралу от плотности распределения (и поэтому является интегральным законом распределения), т.е.

В самом деле, (по определению дифференциала функции). Следовательно,

На графике плотности распределения функция распределения

изображается площадью заштрихованной области.

3. Вероятность попадания случайной величины на участок равна интегралу от плотности распределения по этому промежутку, т.е.

В самом деле,

4. Интеграл в бесконечных пределах от плотности распре –деления равен единице, т.е.

Другими словами, площадь фигуры под графиком плотности распределения равна 1. В частности, если возможные значе- ния случайной величины сосредоточены на участке , то

Пример. Пусть плотность распределения зазана функцией

Найти: а) значение параметра ; б) функцию распределения в) Вычислить вероятность того, что случайная величи- на примет значение из отрезка .

а) По свойству 4, . Тогда

б) По свойству 2, Если

Если , .

Таким образом,

в) По свойству 3,

§ 3. ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ

При решении многих практических задач нет необходимости знать все вероятностные характеристики случайной величины. Иногда достаточно знать только некоторые числовые характе - ристики закона распределения.

Числовые характеристики позволяют в сжатой форме выра -зить наиболее существенные особенности того или иного рас- пределения.

О каждой случайной величине прежде всего необходимо знать её среднее значения, около которого группируются все возможные значения этой величины, а также некоторое число, характеризующее степень рассеяния этих значений относитель- но среднего.

Различают характеристики положения и характеристики рас- сеяния. Одной из самых важных характеристик положения яв- ляется математическое ожидание.

3.1 Математическое ожидание (среднее значение).

Рассмотрим сначала дискретную случайную величину, име -ющую возможные значения с вероятностями

Определение. Математическим ожиданием дискретной слу- чайной величины называется сумма произведений всех возможных значений этой величины на их вероятности, т.е.

По другому, математическое ожидание обозначается

Пример. Пусть дан ряд распределения:

0,2 0,1 0,3 0,4

Рассмотрим теперь непрерывную случайную величину все возможные значения которой заключены в отрезке .

Разобьём этот отрезок на частичных отрезков, длины которых обозначим: , и в каждом частичном интервале возьмём по произвольной точке, соответственно .

Так как произведение при- ближённо равно вероятности попадания случайной величины на элементарный участок , то сумма произведений составленная по аналогии с опреде -лением математического ожидания дискретной случайной ве- личины, приближённо равна математическому ожиданию не -прерывной случайной величины Пусть .

Тогда

Определение. Математическим ожиданием непрерывной случайной величины называется следующий определённый интеграл:

(2)

Если непрерывная случайная величина принимает значения на всей числовой прямой, то

Пример. Пусть дана плотность распределения непрерывной случайной величины:

Тогда её математическое ожидание:

Понятие математического ожидания имеет простую меха -ническую интерпретацию. Распределение вероятностей слу -чайной величины можно интерпретироварь как распределение единичной массы по прямой. Дискретной случайной величине, принимающей значения с вероятностями соответствует прямая, на которой массы сосредоточены в точках . Непре- рывной случайной величине отвечает непрерывное распреде -ление масс на всей прямой или на конечном отрезке этой прямой. Тогда математическое ожидание - это абсцисса цент- ра тяжести .

СВОЙСТВА МАТЕМАТИЧЕСКОГО ОЖИДАНИЯ

1. Математическое ожидание постоянной величины равно самой постоянной:

2. Постоянный множитель можно вынести за знак матема- тического ожидания:

3. Математическое ожидание алгебраической суммы слу –чайных величин равна алгебраической сумме их мате- матических ожиданий:

4. Математическое ожидание произведения независимых случайных величин равно произведению их математи -ческих ожиданий:

5. Математическое ожидание отклонения случайной вели- чины от её математического ожидания равно нулю:

3.2. Мода и медиана случайной величины.

Это ещё две характеристики положения случайной вели- чины.

Определение. Модой дискретной случайной величины называется её наиболее вероятное значение. Для непрерыв –ной случайной величины мода - это точка максимума функ- ции .

Если многоугольник распределения (для дискретной случай- ной величины) или кривая распределение (для непрерывной случайной величины) имеет две или более точек максимума, то распределение называется двухмодальным или многомо -дальным, соответственно.

Если нет ни одной точки максимума, то распределение называется антимодальным.

Определение. Медианой случайной величины на – зывается такое её значение, относитеоьно которого равноверо- ятны получение большего или меньшего значения случайной величины, т.е.

Другими словами, - это абсцисса точки, в которой площадь под графиком плотности распределения (многоуголь- ником распределения) делится пополам.

Пример. Дана плотность случайной величины:

Найти медиану этой случайной величины.

Медиану найдём из условия . В нашем случае,

Из четырёх корней необходимо выбрать тот, который заключён между 0 и 2, т.е.

Замечание . Если распределение случайной величины одно- модальное и симметричное (нормальное), то все три характе -ристики положения: математическое ожидание, мода и медиа -на, совпадают.

3.3 Дисперсия и среднее квадратическое отклонение.

Значения наблюдаемых случайных величин, обычно, более или менее колеблются около некоторого среднего значения. Это явление называется рассеянием случайной величины око- ло её среднего значения. Числовые характеристики, показыва- ющие, насколько плотно сгруппированы возможные значения случайной велипины около среднего, называются характерис – тиками рассеяния. Из свойства 5 математического ожидания следует, что линейное отклонение значений случайной вели –чины от среднего значения не может служить характеристикой рассеяния, так как положительные и отрицательные отклоне –ния «гасят» друг друга. Поэтому основной характеристикой рассеяния случайной величины принято считать математичес - кое ожидание квадрата отклонения случайной величины от среднего.

Определение. Дисперсией называется математическое ожи –дание квадрата отклонения случайной величины от её матема- тического ожидания (среднего значения), т.е.

(3)

(4) для непрерывной случайной величины:

(5)

Но, несмотря на удобства этой характеричтики рассеяния, желательно иметь характеристику рассеяния соразмерную с самой случайной величиной и её математическим ожиданием.

Поэтому вводится ещё одна характеристика рассеяния, кото -рая называется средним квадратическим отклонением и рав -на корню из дисперсии, т.е. .

Для вычисления дисперсии удобно пользоваться формулой, которую даёт следующая теорема.

ТЕОРЕМА. Дисперсия случайной величины равна разности между математическим ожиданием квадрата случайной вели -чины и квадратом её математического ожиданием, т.е.

В самом деле, по определению

Так как .

СВОЙСТВА ДИСПЕРСИИ:

1. Дисперсия постоянной случайной величины равна нулю, т.е.

2. Постоянный множитель сучайной величины выносится из дисперсии с квадратом, т.е.

3. Дисперсия алгебраической суммы двух случайных вели- чин равна сумме их дисперсий, т.е.

Следствие из 2 и 3 свойств:

Рассмотрим примеры..

Пример 1. Дан ряд распределения дискретной случайной величины. Найти её среднее квадратическое отклонение.

- 1
0,2 0,05 0,2 0,3 0,25

Сначала найдём

Тогда среднее квадратическое отклонение

Пример 2 . Пусть дана плотность распределения непрерыв -ной случайной величины:

Найти её дисперсию и среднее квадратическое отклонение.

3.4 Моменты случайных величин.

Различают моменты двух видов: начальные и центральные.

Определение. Начальным моментом порядка случайной

величины называют математическое ожидание величины , т.е. .

Для дискретной случайной величины:

Для непрерывной случайной величины:

В частности, математическое ожидание - это началь- ный момент 1 – го порядка.

Определение. Центральным моментом полрядка слу -чайной величины называется математическое ожидание ве- личины , т.е.

Для дискретной случайной величины:

Для непрерывной -

Центральный момент 1 – го порядка равен нулю (свойство 5 математического ожидания); ; характеризует асимметрию (скощенность) графика плотности распределения. называется коэффициентом асимметрии.

Служит для характеристики островерхости распределения.

Определение. Эксцессом случайной величины называет- ся число

Для номально распределённой случайной величины отноше- ние . Поэтому кривые распределения, более островер- хие, чем нормальная, имеют положительный эксцесс (), а более плосковерхие имеют отрицательный эксцесс ().

Пример. Пусть дана плотность распределения случайной величины :

Найти коэффициент асимметрии и эксцесс этой случайной величины.

Найдём необходимые для этого моменты:

Тогда коэффициент асимметрии: (отрицательная асимметрия).

Если классическая теория вероятностей изучала, в основном, события и вероятность их появления (наступления), то современная теория вероятностей изучает случайные явления и их закономерности с помощью случайных величин. Понятие случайной величины, таким образом, является основополагающим в теории вероятностей. Ещё ранее проводились события, состоящие в появлении того или иного числа. Например, при бросании игральной кости могли появиться числа 1, 2, 3, 4, 5, 6. Наперёд определить число появившихся очков невозможно, поскольку оно зависит от многих случайных причин, которые полностью не могут быть учтены. В этом смысле число очков есть величина случайная, а числа 1, 2, 3, 4, 5 и 6 есть возможные значения этой величины.

Случайной величиной называется величина, которая в результате опыта принимает то или иное (причём, одно и только одно) возможное числовое значение, наперёд неизвестное и зависящее от случайных причин, которые заранее не могут быть учтены.

Случайны величины принято, обычно, обозначать прописными буквами , а их возможное значения - соответствующими строчными буквамиНапример, если случайная величинаимеет три возможных значения, то они, соответственно, обозначаются так:. Для удобства будем писать:.

ПРИМЕР 1 . Число родившихся мальчиков среди ста новорожденных есть величина случайная, которая имеет следующие возможные значения: 0, 1, 2, ..., 100.

ПРИМЕР 2 . Расстояние, которое пролетит снаряд при выстреле из орудия, есть также величина случайная. Действительно, расстояние зависит не только от установки прицела, но и от многих других причин (силы и направления ветра, температуры и т. п.), которые не могут быть полностью учтены. Возможные значения этой величины, очевидно, принадлежат некоторому промежутку (интервалу) .

Заметим, что с каждым случайным событием можно связать какую-либо случайную величину, принимающую значения из R. Например, опыт - выстрел по мишени; событие - попадание в мишень; случайная величина - число попаданий в мишень.

Вернёмся к примерам, приведённым выше. В первом из них случайная величина могла принять одно из следующих возможных значений: 0, 1, 2,..., 100. Эти значения отделены одно от другого промежутками, в которых нет возможных значений. Таким образом, в этом примере случайная величина принимает отдельные, изолированные, возможные значения.

Во втором примере случайная величина могла принять любое из значений промежутка . Здесь нельзя отделить одно возможное значение от другого промежутком, не содержащим возможных значений случайной величины.

Уже из сказанного можно заключить о целесообразности различать случайные величины, принимающие лишь отдельные, изолированные значения и случайные величины, возможные значения которых сплошь заполняют некоторый промежуток.

Дискретной ( прерывной ) случайной величиной называется такая случайная величина, которая принимает конечное или счётное множество 1 различных значений. Другими словами - это такая случайная величина, которая принимает отдельные, изолированные возможные значения с определенными вероятностями.

Число возможных значений дискретной случайной величины может быть конечным или бесконечным.

Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка действительной числовой оси.

Очевидно, во-первых, число возможных значений непрерывной случайной величины – бесконечно. Во-вторых, дискретная случайная величина является частным случаем непрерывной случайной величины.

    Закон распределения вероятностей

I . Закон распределения вероятностей дискретной случайной величины

На первый взгляд может показаться, что для задания дискретной случайной величины достаточно перечислить все её возможные значения. В действительности это не так: различные случайные величины иногда могут иметь одинаковые перечни возможных значений, а соответствующие вероятности этих значений – различные. Поэтому для полной характеристики мало знать значения случайной величины, нужно ещё знать, как часто эти значения встречаются в опыте при его повторении, т.е. нужно ещё указать вероятности их появления.

Рассмотрим случайную величину . Появление каждого их возможных значенийсвидетельствует о том, что произошло соответственно одно из событий, которые образуют полную группу 2 . Допустим, что вероятности этих событий известны:

, . . . , ,

Тогда: соответствие, устанавливающее связь между возможными значениями случайной величины и их вероятностями, называется законом распределения вероятностей случайной величины , или просто – законом распределения случайной величины.

Закон распределения вероятностей данной случайной величины можно задать таблично (ряд распределения), аналитически (в виде формулы) и графически.

При табличном задании закона распределения дискретной случайной величины первая строка таблицы содержит возможные значения, а вторая - их вероятности, т.е.


В целях наглядности закон распределения дискретной случайной величины можно изобразить и графически, для чего в прямоугольной системе координат строят точки , а затем соединяют их отрезками прямых. Полученную фигуру называют многоугольником распределения. При этом, сумма ординатпостроенного многоугольника равна единице.

Аналитически закон распределения дискретной случайной величины можно записать, например, используя формулу Бернулли для схемы повторения независимых опытов. Так, если обозначить случайную величину, которой является число бракованных деталей в выборке, через , то возможные её значениябудут 0, 1, 2, . . . ,. Тогда, очевидно, формула Бернулли будет устанавливать зависимость между значениямии вероятностью() их появления, где

,

что о определяет закон распределения данной случайной величины.

II . Закон распределения вероятностей непрерывной случайной величины

Вспомним, что дискретная случайная величина задаётся перечнем всех её возможных значений и их вероятностей. Такой способ задания не является общим: он не применим, например, для непрерывных случайных величин.

Действительно, рассмотрим случайную величину , возможные значения которой сплошь заполняют интервал. Можно ли составить перечень всех возможных значений? Очевидно, что этого сделать нельзя. Этот пример указывает на целесообразность дать общий способ задания любых типов случайных величин (как уже отмечалось, дискретная случайная величина является частным случаем непрерывной случайной величины). С этой целью вводятинтегральную функцию распределения.

Пусть – переменная, принимающая произвольные действительные значения (на оси:) . Рассмотрим событие, состоящее в том, что случайная величинапримет значение меньшее. Тогда, вероятностьсобытиязависит от, т.е. является функцией от. Эту функцию принято обозначать черези называть функцией распределения случайной величины или, ещё – интегральной функцией распределения. Другими словами:

интегральной функцией распределения называют функцию , определяющую для каждого значенияR вероятность того, что случайная величина примет значение, меньшее, т.е.

.

Геометрически это равенство можно истолковывать так: есть вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее точки.

Свойства интегральной функции :


Доказательство этого свойства вытекает из определения интегральной функции как вероятности: вероятность всегда есть неотрицательное число, не превышающее единицы.

Действительно, пусть – событие, состоящее в том, что случайная величинапримет значение меньшее; аналогично,
– событие, состоящее в том, что случайная величинапримет значение меньшее. Другими словами:

Следовательно, если , то . Значит (объяснить - почему?)или, что то же самое:

Что и требовалось показать.

Это свойство вполне очевидно. Так, если - достоверное событие, а– невозможное событие, то

Рассмотрим следующие события: . Видим, что– т.е. событияинесовместны. Тогда

Но ,В результате, можем записать:, что и требовалось показать.

Мы будем в основном изучать такие непрерывные случайные величины, функции распределения которых непрерывны.

График функция распределения дискретной случайной величины представляет собой ступенчатую ломаную линию (см. рис.). Величина скачка в точках разрыва равна вероятности значения случайной величины в этой точке. Зная ряд распределения случайной величины, можно построить график её функции распределения:

.

Для непрерывной случайной величины более наглядной является не интегральная, а дифференциальная функция распределения или, так называемая, плотность распределения случайной величины.

Учреждение образования «Белорусская государственная

сельскохозяйственная академия»

Кафедра высшей математики

Методические указания

по изучению темы «Случайные величины» студентами бухгалтерского факультета заочной формы получения образования (НИСПО)

Горки, 2013

Случайные величины

    Дискретные и непрерывные случайные величины

Одним из основных понятий в теории вероятностей является понятие случайной величины . Случайной величиной называется величина, которая в результате испытания из множества возможных своих значений принимает только одно, причём заранее неизвестно, какое именно.

Случайные величины бывают дискретными и непрерывными . Дискретной случайной величиной (ДСВ) называется случайная величина, которая может принимать конечное число изолированных друг о друга значений, т.е. если возможные значения этой величины можно пересчитать. Непрерывной случайной величиной (НСВ) называется случайная величина, все возможные значения которой сплошь заполняют некоторый промежуток числовой прямой.

Случайные величины обозначаются заглавными буквами латинского алфавита X, Y, Z и т.д. Возможные значения случайных величин обозначаются соответствующими малыми буквами.

Запись
означает «вероятность того, что случайная величинаХ примет значение, равное 5, равна 0.28».

Пример 1 . Один раз бросают игральный кубик. При этом могут выпасть цифры от 1 до 6, обозначающие число очков. Обозначим случайную величину Х ={число выпавших очков}. Эта случайная величина в результате испытания может принять только одно из шести значений: 1, 2, 3, 4, 5 или 6. Следовательно, случайная величина Х есть ДСВ.

Пример 2 . При бросании камня он пролетает некоторое расстояние. Обозначим случайную величину X ={расстояние полёта камня}. Эта случайная величина может принять любое, но только одно, значение из некоторого промежутка. Следовательно, случайная величина Х есть НСВ.

    Закон распределения дискретной случайной величины

Дискретная случайная величина характеризуется значениями, которые она может принимать, и вероятностями, с которыми эти значения принимаются. Соответствие между возможными значениями дискретной случайной величины и соответствующими им вероятностями называется законом распределения дискретной случайной величины .

Если известны все возможные значения
случайной величиныХ и вероятности
появления этих значений, то считают, что закон распределения ДСВХ известен и он может быть записан в виде таблицы:

Закон распределения ДСВ можно изобразить графически, если в прямоугольной системе координат изобразить точки
,
, …,
и соединить их отрезками прямых линий. Полученная фигура называется многоугольником распределения.

Пример 3 . В зерне, предназначенном для очистки, содержится 10% сорняков. Наугад отобраны 4 зерна. Обозначим случайную величину X ={число сорняков среди четырёх отобранных}. Построить закон распределения ДСВ Х и многоугольник распределения.

Решение . По условию примера . Тогда:

Запишем закон распределения ДСВ Х в виде таблицы и построим многоугольник распределения:

    Математическое ожидание дискретной случайной величины

Наиболее важные свойства дискретной случайной величины описываются её характеристиками. Одной из таких характеристик является математическое ожидание случайной величины.

Пусть известен закон распределения ДСВ Х :

Математическим ожиданием ДСВ Х называется сумма произведений каждого значения этой величины на соответствующую вероятность:
.

Математическое ожидание случайной величины приближённо равно среднему арифметическому всех её значений. Поэтому в практических задачах часто за математическое ожидание принимают среднее значение этой случайной величины.

Пример 8 . Стрелок выбивает 4, 8, 9 и 10 очков с вероятностями 0.1, 0.45, 0.3 и 0.15. Найти математическое ожидание числа очков при одном выстреле.

Решение . Обозначим случайную величину X ={число выбитых очков}. Тогда . Таким образом, ожидаемое среднее значение числа выбитых очков при одном выстреле равно 8.2, а при 10 выстрелах – 82.

Основными свойствами математического ожидания являются:


.


.


, где
,
.

.

, где Х и Y – независимые случайные величины.

Разность
называетсяотклонением случайной величины Х от её математического ожидания. Эта разность является случайной величиной и её математическое ожидание равно нулю, т.е.
.

    Дисперсия дискретной случайной величины

Для характеристики случайной величины, кроме математического ожидания, используется и дисперсия , которая даёт возможность оценить рассеяние (разброс) значений случайной величины около её математического ожидания. При сравнении двух однородных случайных величин с равными математическими ожиданиями «лучшей» считается та величина, которая имеет меньший разброс, т.е. меньшую дисперсию.

Дисперсией случайной величины Х называется математическое ожидание квадрата отклонения случайной величины от её математического ожидания: .

В практических задачах для вычисления дисперсии используют равносильную формулу .

Основными свойствами дисперсии являются:


.