Как посчитать дисперсию случайной величины. Дисперсия, среднее квадратическое отклонение дискретной случайной величины. Свойства дисперсии

Математическим ожиданием (средним значением) случайной величины X , заданной на дискретном вероятностном пространстве, называется число m =M[X]=∑x i p i , если ряд сходится абсолютно.

Назначение сервиса . С помощью сервиса в онлайн режиме вычисляются математическое ожидание, дисперсия и среднеквадратическое отклонение (см. пример). Кроме этого строится график функции распределения F(X) .

Свойства математического ожидания случайной величины

  1. Математическое ожидание постоянной величины равно ей самой: M[C]=C , C – постоянная;
  2. M=C M[X]
  3. Математическое ожидание суммы случайных величин равно сумме их математических ожиданий: M=M[X]+M[Y]
  4. Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий: M=M[X] M[Y] , если X и Y независимы.

Свойства дисперсии

  1. Дисперсия постоянной величины равна нулю: D(c)=0.
  2. Постоянный множитель можно вынести из-под знака дисперсии, возведя его в квадрат: D(k*X)= k 2 D(X).
  3. Если случайные величины X и Y независимы, то дисперсия суммы равна сумме дисперсий: D(X+Y)=D(X)+D(Y).
  4. Если случайные величины X и Y зависимы: D(X+Y)=DX+DY+2(X-M[X])(Y-M[Y])
  5. Для дисперсии справедлива вычислительная формула:
    D(X)=M(X 2)-(M(X)) 2

Пример . Известны математические ожидания и дисперсии двух независимых случайных величин X и Y: M(x)=8 , M(Y)=7 , D(X)=9 , D(Y)=6 . Найти математическое ожидание и дисперсию случайное величины Z=9X-8Y+7 .
Решение. Исходя из свойств математического ожидания: M(Z) = M(9X-8Y+7) = 9*M(X) - 8*M(Y) + M(7) = 9*8 - 8*7 + 7 = 23.
Исходя из свойств дисперсии: D(Z) = D(9X-8Y+7) = D(9X) - D(8Y) + D(7) = 9^2D(X) - 8^2D(Y) + 0 = 81*9 - 64*6 = 345

Алгоритм вычисления математического ожидания

Свойства дискретных случайных величин: все их значения можно перенумеровать натуральными числами; каждому значению сопоставить отличную от нуля вероятность.
  1. Поочередно умножаем пары: x i на p i .
  2. Складываем произведение каждой пары x i p i .
    Например, для n = 4: m = ∑x i p i = x 1 p 1 + x 2 p 2 + x 3 p 3 + x 4 p 4
Функция распределения дискретной случайной величины ступенчатая, она возрастает скачком в тех точках, вероятности которых положительны.

Пример №1 .

x i 1 3 4 7 9
p i 0.1 0.2 0.1 0.3 0.3

Математическое ожидание находим по формуле m = ∑x i p i .
Математическое ожидание M[X] .
M[x] = 1*0.1 + 3*0.2 + 4*0.1 + 7*0.3 + 9*0.3 = 5.9
Дисперсию находим по формуле d = ∑x 2 i p i - M[x] 2 .
Дисперсия D[X] .
D[X] = 1 2 *0.1 + 3 2 *0.2 + 4 2 *0.1 + 7 2 *0.3 + 9 2 *0.3 - 5.9 2 = 7.69
Среднее квадратическое отклонение σ(x) .
σ = sqrt(D[X]) = sqrt(7.69) = 2.78

Пример №2 . Дискретная случайная величина имеет следующий ряд распределения:

Х -10 -5 0 5 10
р а 0,32 2a 0,41 0,03
Найти величину a , математическое ожидание и среднее квадратическое отклонение этой случайной величины.

Решение. Величину a находим из соотношения: Σp i = 1
Σp i = a + 0,32 + 2 a + 0,41 + 0,03 = 0,76 + 3 a = 1
0.76 + 3 a = 1 или 0.24=3 a , откуда a = 0.08

Пример №3 . Определить закон распределения дискретной случайной величины, если известна её дисперсия, причем х 1 x 1 =6; x 2 =9; x 3 =x; x 4 =15
p 1 =0,3; p 2 =0,3; p 3 =0,1; p 4 =0,3
d(x)=12,96

Решение.
Здесь надо составить формулу нахождения дисперсии d(x) :
d(x) = x 1 2 p 1 +x 2 2 p 2 +x 3 2 p 3 +x 4 2 p 4 -m(x) 2
где матожидание m(x)=x 1 p 1 +x 2 p 2 +x 3 p 3 +x 4 p 4
Для наших данных
m(x)=6*0,3+9*0,3+x 3 *0,1+15*0,3=9+0.1x 3
12,96 = 6 2 0,3+9 2 0,3+x 3 2 0,1+15 2 0,3-(9+0.1x 3) 2
или -9/100 (x 2 -20x+96)=0
Соответственно надо найти корни уравнения, причем их будет два.
x 3 =8, x 3 =12
Выбираем тот, который удовлетворяет условию х 1 x 3 =12

Закон распределения дискретной случайной величины
x 1 =6; x 2 =9; x 3 =12; x 4 =15
p 1 =0,3; p 2 =0,3; p 3 =0,1; p 4 =0,3

Пусть производится п независимых испытаний, в каждом из которых вероятность появления события А постоянна. Чему равна дисперсия числа появлений события в этих испытаниях? Ответ на этот вопрос дает следующая теорема.

Теорема. Дисперсия числа появлений события А в п независимых испытаниях, в каждом из которых вероятность р появления события постоянна, равна произведению числа испытаний на вероятности появления и непоявления события в одном испытании:

D (X ) = npq.

Доказательство. Рассмотрим случайную величину X - число появлений события А в п независимых испытаниях. Очевидно, общее число появлений события в этих испытаниях равно сумме появлений события в отдельных испытаниях:

X = Х 1 + X 2 + …+ Х п,

где Х 1 - число наступлений события в первом испытании, Х 2 - во втором, ..., Х п - в п- м.

Величины Х 1 , Х 2 , ..., Х п взаимно независимы, так как исход каждого испытания не зависит от исходов остальных, поэтому мы вправе воспользоваться следствием 1 (см. § 5):

D (X ) = D (X 1) + D (X 2)+ ...+D (Х п ). (*)

Вычислим дисперсию X 1 по формуле

D (X 1)=M ( )- [M (X 1)] 2 . (**)

Величина Х 1 -число появлений события А в первом испытании, поэтому (см. гл. VII, § 2, пример 2) М (Х 1).

Найдем математическое ожидание величины , которая может принимать только два значения, а именно: 1 2 c вероятностью р и О 2 с вероятностью q:

M ( )= 1 2 *p+ 0 2 *q=p.

Подставляя найденные результаты в соотношение (**), имеем

D (X 1)=p-p 2 =p (1-p )=pq

Очевидно, дисперсия каждой из остальных случайных величин также равна pq. Заменив каждое слагаемое правой части (*) через pq, окончательно получим

D (X ) = npq.

Замечание. Так как величина X распределена по биномиальному закону, то доказанную теорему можно сформулировать и так: дисперсия биномиального распределения с параметрами п и р равна произведению npq.

Пример. Производятся 10 независимых испытаний, в каждом из которых вероятность появления события равна 0,6. Найти дисперсию случайной величины X -числа появлений события в этих испытаниях.

Решение. По условию, n =10, р = 0,6. Очевидно, вероятность непоявления события

q = 1- 0, 6 = 0, 4.

Искомая дисперсия

D (X ) = npq = 10 0, 6 0, 4 = 2, 4.

Среднее квадратическое отклонение

Для оценки рассеяния возможных значений случайной величины вокруг ее среднего значения кроме дисперсии служат и некоторые другие характеристики. К их числу относится среднее квадратическое отклонение.

Средним квадратическим отклонением случайной величины X называют квадратный корень из дисперсии:

Легко показать, что дисперсия имеет размерность, равную квадрату размерности случайной величины. Так как среднее квадратическое отклонение равно квадратному корню из дисперсии, то размерность s(X )совпадает сразмерностью X. Поэтому в тех случаях, когда желательно, чтобы оценка рассеяния имела размерность случайной величины, вычисляют среднее квадратическое отклонение, а не дисперсию. Например, если X выражается влинейных метрах, то а (X )будет выражаться также влинейных метрах, a D (X )- в квадратных метрах.

Пример. Случайная величина X задана законом распределения

X
p 0, 1 0, 4 0, 5

Найти среднее квадратическое отклонение s(X ).

Решение. Найдем математическое ожидание X:

М (Х ) = 2* 0, 1 + 3* 0, 4+ 10* 0, 5 = 6, 4.

Найдем математическое ожидание X 2 :

М (Х 2) = 2 2 * 0, 1+ 3 2 * 0, 4+ 10 2 * 0, 5 = 54.

Найдем дисперсию:

D (X )= М (X 2) - [М (X )] 2 = 54 - 6, 4 2 = 13, 04.

Искомое среднее квадратическое отклонение

s(X)= =

Среднее квадратическое отклонение суммы взаимно независимых случайных величин

Пусть известны средние квадратические отклонения нескольких взаимно независимых случайных величин. Как найти среднее квадратическое отклонение суммы этих величин? Ответ на этот вопрос дает следующая теорема.

Это разность математического ожидания квадрата случайной величины и квадрата ее мат ожидания.

D(X)=M(X^2)-M^2(X)

Дисперсия характеризует степень рассеяния значение случайной величины относительно ее мат ожидания. Если все значения тесно сконцентрированы около ее мат ожидания и больше отклонения от мат ожид, то такая случайная величина имеет малую дисперсию, а если рассеяны и велика вероятность больших отклонений от М, то случ величина имеет большую дисперсию.

Свойства:

1.Дисперсия постоянно равна 0 D(C)=0

2.Дисперсия произведения случ величины на постоянную С равна произ десперсии случ велич Х на квадрат постоянной D(CX)=C^2D(X)

3.Если случ велич X and Y независимы, дисперсия их суммы (разности) равна сумме дисперсий

D(X Y)=D(X)+D(Y)

4.Дисперсия случ велич не изменится если к ней прибавить постоянную

Теорема:

Дисперсия числа появление соб А в n независимых испытаниях в каждом из которых вероятность появления соб постоянна и равна p, равна произведению числа испытания на вероятность появления и вероятности непоявления соб в одном испытании

Среднее квадратичское отклонение.

Средним квадрат отклонением случайной величины Х называется арифметический корень из дисперсия

Непрерывные случайные величины. Функция распределения вероятностей и ее свойства.

Случайная величина, значение которой заполняет некоторый промежуток, называется непрерывной .

Промежутки могут быть конечными, полубесконечными или бесконечными.

Функция распред св.

Способы задания ДСВ неприменимы для непрерывной. В этой связи вводиться понятие функции распределение вероятностей.

Функция распределения называют функцию F(x) определяющую для каждого значения х вероятность того что случ велич Х примет значение меньшее х т.е

Функция распределения ДСВ принимающие значение (x1,x2,x3) с вероятностью (p1,p2,p3) определяется

Так, например функция распределения биномиального распределения определяется формулой:

Случайную величину называют непрерывной, если ее функция распределения есть непрерывная, частично-дифференцируемая функция с непрерывной производной.

Свойства:

1.значение функции принадлежит

2. функция распределения есть неубывающая функция F(x2)

3.Вероятность того что случайная величина X примет значение заключенное в интервале (α,β) равна приращению функции распределения на этом интервале P(α

Следствие. Вероятность того что случ велич примет одно значение равно 0.

4.Если все возможные значение случ велич Х принадлежит (a,b) то F(x)=0 при x a и F(x)=1 при x b


5.Вероятность того, что случ велич Х примет значение большее чем x равно разности между единицей и функцией распределения

Дисперсия в статистике находится как индивидуальных значений признака в квадрате от . В зависимости от исходных данных она определяется по формулам простой и взвешенной дисперсий:

1. (для несгруппированных данных) вычисляется по формуле:

2. Взвешенная дисперсия (для вариационного ряда):

где n — частота (повторяемость фактора Х)

Пример нахождения дисперсии

На данной странице описан стандартный пример нахождения дисперсии, также Вы можете посмотреть другие задачи на её нахождение

Пример 1. Имеются следующие данные по группе из 20 студентов заочного отделения. Нужно построить интервальный ряд распределения признака, рассчитать среднее значение признака и изучить его дисперсию

Построим интервальную группировку. Определим размах интервала по формуле:

где X max– максимальное значение группировочного признака;
X min–минимальное значение группировочного признака;
n – количество интервалов:

Принимаем n=5. Шаг равен: h = (192 — 159)/ 5 = 6,6

Составим интервальную группировку

Для дальнейших расчетов построим вспомогательную таблицу:

X’i– середина интервала. (например середина интервала 159 – 165,6 = 162,3)

Среднюю величину роста студентов определим по формуле средней арифметической взвешенной:

Определим дисперсию по формуле:

Формулу дисперсии можно преобразовать так:

Из этой формулы следует, что дисперсия равна разности средней из квадратов вариантов и квадрата и средней.

Дисперсия в вариационных рядах с равными интервалами по способу моментов может быть рассчитана следующим способом при использовании второго свойства дисперсии (разделив все варианты на величину интервала). Определении дисперсии , вычисленной по способу моментов, по следующей формуле менее трудоемок:

где i - величина интервала;
А - условный ноль, в качестве которого удобно использовать середину интервала, обладающего наибольшей частотой;
m1 — квадрат момента первого порядка;
m2 — момент второго порядка

(если в статистической совокупности признак изменяется так, что имеются только два взаимно исключающих друг друга варианта, то такая изменчивость называется альтернативной) может быть вычислена по формуле:

Подставляя в данную формулу дисперсии q =1- р, получаем:

Виды дисперсии

Общая дисперсия измеряет вариацию признака по всей совокупности в целом под влиянием всех факторов, обуславливающих эту вариацию. Она равняется среднему квадрату отклонений отдельных значений признака х от общего среднего значения х и может быть определена как простая дисперсия или взвешенная дисперсия.

характеризует случайную вариацию, т.е. часть вариации, которая обусловлена влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки. Такая дисперсия равна среднему квадрату отклонений отдельных значений признака внутри группы X от средней арифметической группы и может быть вычислена как простая дисперсия или как взвешенная дисперсия.

Таким образом, внутригрупповая дисперсия измеряет вариацию признака внутри группы и определяется по формуле:

где хi - групповая средняя;
ni - число единиц в группе.

Например, внутригрупповые дисперсии, которые надо определить в задаче изучения влияния квалификации рабочих на уровень производительности труда в цехе показывают вариации выработки в каждой группе, вызванные всеми возможными факторами (техническое состояние оборудования, обеспеченность инструментами и материалами, возраст рабочих, интенсивность труда и т.д.), кроме отличий в квалификационном разряде (внутри группы все рабочие имеют одну и ту же квалификацию).

Средняя из внутри групповых дисперсий отражает случайную , т. е. ту часть вариации, которая происходила под влиянием всех прочих факторов, за исключением фактора группировки. Она рассчитывается по формуле:

Характеризует систематическую вариацию результативного признака, которая обусловлена влиянием признака-фактора, положенного в основание группировки. Она равняется среднему квадрату отклонений групповых средних от общей средней. Межгрупповая дисперсия рассчитывается по формуле:

Правило сложения дисперсии в статистике

Согласно правилу сложения дисперсий общая дисперсия равна сумме средней из внутригрупповых и межгрупповых дисперсий:

Смысл этого правила заключается в том, что общая дисперсия, которая возникает под влиянием всех факторов, равняется сумме дисперсий, которые возникают под влиянием всех прочих факторов, и дисперсии, возникающей за счет фактора группировки.

Пользуясь формулой сложения дисперсий, можно определить по двум известным дисперсиям третью неизвестную, а также судить о силе влияния группировочного признака.

Свойства дисперсии

1. Если все значения признака уменьшить (увеличить) на одну и ту же постоянную величину, то дисперсия от этого не изменится.
2. Если все значения признака уменьшить (увеличить) в одно и то же число раз n, то дисперсия соответственно уменьшится (увеличить) в n^2 раз.

Дисперсией случайной величины называют математическое ожидание квадрата отклонения случайной величины от своего математического ожидания (если последнее существует):

D(x) = M((x-M(x)) 2).

Для дискретной случайной величины:

Если дискретная случайная величина может принимать бесконечное число значений, сумма в правой части будет представлять собой ряд.

Для чего подсчитывают дисперсию? Математическое ожидание само по себе не дает нам верного представления о характере исследуемого явления, о том, как может изменяться случайная величина. Мы узнаем только ее среднее значение при большом числе экспериментов, но не можем судить о том, каков в среднем разброс ее значений вокруг этого числа. Судить об этом позволяет дисперсия. Отклонения при ее вычислении берутся в квадрате, так как в противном случае отклонения в разные стороны (значения больше и меньше среднего) компенсировали бы друг друга. Выбор для избавления от знака именно возведения в квадрат, а не какого-либо другого действия (например, взятия по модулю) объясняется тем, что на этом факте основывается доказательство некоторых важных свойств дисперсии, изучаемых математической статистикой.

Приведенное выше выражение для дисперсии является неудобным при проведении практических вычислений, поэтому выведем другое.

Приведем без доказательства некоторые свойства дисперсии:

1) Дисперсия неотрицательна (по определению):

2) Дисперсия постоянной равна нулю:

с – const D(c) = 0

Например, если работник получает постоянную зарплату х = 30 (тыс. руб.), то ее дисперсия будет равна нулю (в самом деле, характеристика рассеяния нулевая).

3) Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат:

с – const D(cx) = c 2 D(x)

Например, пусть дисперсия заработной платы работника равна 4 (х –заработная плата, D(х) = 4). Другой работник всегда получает на 20% больше, чем первый, т.е. заработная плата второго работника равна 1,2*х. Тогда дисперсия заработной платы второго работника равна D(1,2*х) =
= 1,2 2 *D(х) = 1,44*4 = 5,76.

4) Для независимых случайных величин дисперсия их суммы равна сумме дисперсий:

D(x + y) = D(x) + D(y) (для независимых х и y)

Например, пусть дисперсия заработной платы одного работника равна 4 (х – его заработная плата, D(х) = 4), а другого – 5 (y – его заработная плата, D(y) = 5). Тогда дисперсия суммарной заработной платы составит D(x +
+ y) = D(x) + D(y) = 4 + 5 = 9. Однако, выполнить расчет таким образом можно лишь в случае, когда заработные платы этих работников не зависят друг от друга. Если они зависимы, воспользоваться формулой нельзя.

Следует отметить, что дисперсия разности двух случайных величин будет равна тоже сумме дисперсий (а не разности). Это следует из свойств (3) и (4), поскольку при возведении в квадрат сомножителя (-1) получают 1.

Свойство (4) будет верным не только для двух, но для любого конечного числа случайных величин.

5) При увеличении (уменьшении) всех значений случайной величины на константу, ее дисперсия не изменится (это следует из свойств (2) и (4):

с – const D(x - с) = D(x)

Например, если дисперсия среднемесячной зарплаты равна 4, и из зарплаты каждый месяц вычитают 800 руб. на оплату проездного билета, то дисперсия зарплаты за вычетом оплаты проездного будет все равно равна 4.

Например, рассмотрим случайную величину х – количество проданных в день автомобилей. Эта величина измерялась в течение 100 дней, и за это время принимала значения {0; 1; 2; 3; 4} соответственно 18, 15, 28, 15 и 24 число раз. Необходимо определить дисперсию вероятностного распределения х.

Будем считать, что число экспериментов – 100 - достаточно велико, чтобы можно было рассматривать относительную частоту в качестве эмпирической оценки вероятности. Поэтому чтобы определить вероятности, разделим каждую из частот на 100. Представим вероятностное распределение в виде табл.2, приписав к ней две строки для вспомогательных вычислений.

Таблица 2

6,46-2,12 2 1,97.

Использовать полученную оценку все же представляется затруднительным. Ее нельзя сравнить с математическим ожиданием, так как ее единицы измерения не имеют экономического смысла (“автомобили в квадрате”). Поэтому, чтобы определить, действительно ли разброс количества продаж вокруг величины 2,12 так велик, извлечем корень из дисперсии . Полученный результат имеет те же единицы измерения, что и рассматриваемая случайная величина (в данном случае он измеряется в количестве автомобилей, т.е. в штуках).

Эту величину называют средним квадратическим отклонением (СКО) и обозначают .

СКО = 1,4 (шт.) – много это или мало? Вероятно, если бы объем продаж составлял в среднем, например, 10 машин в день, то такая величина характеризовала бы небольшой разброс. В рассматриваемом случае
М = 2,12 (шт.). Чтобы оценить полученный результат, необходимо подсчитать относительный показатель, который позволит сравнить СКО с математическим ожиданием.

Отношение СКО к математическому ожиданию случайной величины называют коэффициентом вариации : . Он представляет собой безразмерную величину (можно перевести его в проценты, умножив на 100%).

Для рассмотренного примера коэффициент вариации равен 1,4/2,12 =
= 0,66 или 66%.

Рассмотренные выше математическое ожидание, дисперсия, СКО и коэффициент вариации представляют собой числовые характеристики случайной величины. Кроме них, существуют и другие числовые характеристики, которые пока рассматривать не будем.