В каких случаях целесообразно применение защитного отключения. Защитное отключение. Устройство защитного отключения. Что такое устройство защитного отключения

С. Защитное отключение

Назначение, принцип действия, область применения. Защитным отключением называется автоматическое отключение электроустановок при однофазном (однополюсном) прикосновении к частям, находящимся под напряжением, недопустимым для человека, и (или) при возникновении в электроустановке тока утечки (замыкания), превышающего заданные значения.

Назначение защитного отключения - обеспечение электробезопасности, что достигается за счет ограничения времени воздействия опасного тока на человека. Защита осуществляется специальным устройством защитного отключения (УЗО), которое, работая в дежурном режиме, постоянно контролирует условия поражения человека электрическим током.

Область применения: электроустановки в сетях с любым напряжением и любым режимом нейтрали.

Наибольшее распространение защитное отключение получило в электроустановках, используемых в сетях напряжением до 1 кВ с заземленной или изолированной нейтралью.

Принцип работы УЗО состоит в том, что оно постоянно контролирует входной сигнал и сравнивает его с наперед заданной величиной (устав-кой). Если входной сигнал превышает уставку, то устройство срабатывает и отключает защищенную электроустановку от сети. В качестве входных сигналов устройств защитного отключения используют различные параметры электрических сетей, которые несут в себе информацию об условиях поражения человека электрическим током.

Все УЗО по виду входного сигнала классифицируют на несколько типов (рис. 4.11).

Рис.4.11. Классификация УЗО по виду входного сигнала

Кроме того УЗО могут классифицироваться по другим критериям, например, по конструктивному исполнению.

Основными элементами любого устройства защитного отключения являются датчик, преобразователь и исполнительный орган.

Основными параметрами, по которым подбирается то или иное УЗО являются: номинальный ток нагрузки т.е. рабочий ток электроустановки, который протекает через нормально замкнутые контакты УЗО в дежурном режиме; номинальное напряжение; уставка; время срабатывания устройства.

Рассмотрим более подробно

УЗО, реагирующее на потенциал корпуса относительно земли , предназначенное для обеспечения безопасности при возникновении на заземленном (или зануленном) корпусе электроустановки повышенного потенциала. Датчиком в этом устройстве (рис.4.12) служит реле Р, обмотка которого включена между корпусом электроустановки и вспомогательным заземлителем R в. Электроды вспомогательного заземлителя R в располагаются вне зоны растекания токов заземлителя R з .

Рис.4.12. Схема УЗО, реагирующего на потенциал корпуса

При замыкании на корпус защитное заземление

R з снизит потенциал корпуса относительно земли до величины j з =I з R з. Если по каким-либо причинам окажется, что j з > j здоп , где j здоп - потенциал корпуса, при котором напряжение прикосновения не превышает допустимого, то срабатывает реле Р, которое своими контактами замкнет цепь питания катушки коммутационного аппарата и произойдет отключение поврежденной электроустановки от сети.

Фактически данный тип УЗО дублирует защитные свойства заземления или зануления и применяется в качестве дополнительной защиты, повышая надежность заземления или зануления.

Данный тип УЗО может применяться в сетях с любым режимом нейтрали, когда заземление или зануление неэффективно.

УЗО, реагирующее на дифференциальный (остаточный) ток, находят широкое применение во всех отраслях промышленности. Характерной их особенностью является многофункциональность. Такие УЗО могут осуществлять защиту человека от поражения электрическим током при прямом прикосновении, при косвенном прикосновении, при несимметричном снижении изоляции проводов относительно земли в зоне защиты устройства, при замыканиях на землю и в других ситуациях.

Принцип действия УЗО дифференциального типа заключается в том, что оно постоянно контролирует дифференциальный ток и сравнивает его с уставкой. При превышении значения дифференциального тока уставки УЗО срабатывает и отключает аварийный потребитель электроэнергии от сети. Входным сигналом для трехфазных УЗО является ток нулевой последовательности. Входной сигнал УЗО функционально связан с током, протекающим через тело человека

I h .

Область применения УЗО дифференциального типа – сети с заземленной нейтралью напряжением до 1 кВ (система TN - S).

Схема включения УЗО, реагирующего на дифференциальный ток в сети с заземленной нейтралью типа

TN - S представлена на рис 4.13.

Рис.4.13. Схема подключения к сети УЗО (система TN – S), реагирующего на дифференциальный ток

Датчиком такого устройства является трансформатор тока нулевой последовательности (ТТНП), на выходных обмотках которого формируется сигнал, пропорциональный току через тело человека I h . Преобразователь УЗО (П) сравнивает значение входного сигнала с уставкой, значение которой определяется допустимым током через человека, усиливает входной сигнал до уровня, необходимого для управления исполнительным органом (ИО). Исполнительный орган, например, контактор, отключает электроустановку от сети в случае возникновения опасности поражения электрическим током в зоне защиты УЗО.

По условиям функционирования дифференциальные УЗО подразделяются на следующие типы: АС, А, В,

S, G.

УЗО типа АС – устройство защитного отключения, реагирующее на переменный синусоидальный дифференциальный ток, возникающий внезапно, либо медленно возрастающий.

УЗО типа А – устройство защитного отключения, реагирующее на переменный синусоидальный дифференциальный ток и пульсирующий постоянный дифференциальный ток, возникающие внезапно, либо медленно возрастающие.

УЗО типа В – устройство защитного отключения, реагирующее на переменный, постоянный и выпрямленный дифференциальные токи.

S – устройство защитного отключения, селективное (с выдержкой времени отключения). G – то же, что и типа S ,но с меньшей выдержкой времени

Конструктивно дифференциальные УЗО разделяются на два типа:

  • Электромеханические УЗО, функционально не зависящие от напряжения питания. Источником энергии, необходимой для функционирования таких УЗО – выполнения защитных функций, включая операцию отключения, является сам входной сигнал – дифференциальный ток, на который оно реагирует.

  • Электронные УЗО, функционально зависящие от напряжения питания . Их механизм для выполнения операции отключения нуждается в энергии, получаемой либо от контролируемой сети, либо от внешнего источника.

Для чего используют защитное отключение?

Опасность поражения током обусловливается напряжением прикосновения (£ / доя1, В) а затем силой тока, который может пройти через тело человека (/ "А). Как известно.

где /? А - сопротивление тела человека, Ом.

Если напряжение прикосновения в момент касания человека к корпусу или фазы сети превышает допустимое значение, то возникает реальная угроза поражения током и степени защиты в этом случае может стать только разрыв цепи тока, отключение соответствующего участка сети. Для выполнения этой задачи используют защитное отключение.

Защитным отключением называется быстродействующая защита, который обеспечивает автоматическое отключение электроустановки при возникновении опасности поражения человека током.

Заземление и зануление не всегда гарантируют безопасность людей. Защитное отключение значительно быстрее зануление отключает поврежденный участок установки чем более гарантированно обеспечивает защиту людей от поражения электрическим током.

В каких случаях применяют защитное выключение?

Защитное отключение применяют только в электрических установках напряжением до 1000 В качестве самостоятельную защиту или одновременно с заземлением:

в передвижных электроустановках с изолированной нейтралью генератора;

в стационарных установках с изолированной нейтралью для защиты работающих с ручными электроинструментами;

в стационарных электроустановках с глухозаземленной нейтралью на отдельных удаленных от трансформаторов потребителям большой мощности, на которых защита зануление неэффективен;

в условиях повышенной опасности поражения электрическим током. Сфера применения устройств защитного отключения практически не ограничена. Они могут использоваться в сетях любого назначения и с любым режимом нейтрали. Однако наибольшее распространение они получили в пределах до 1000 В, особенно там, где трудно осуществлять эффективное заземление или зануление, когда есть высокая вероятность случайного прикосновения к токоведущим частям (передвижные электроустановки, ручной электроинструмент).

Какие требования предъявляются к защитного отключения и какие функции оно выполняет?

Защитное отключение можно использовать как основной вид защиты или вместе с заземлением и занулением.

К устройству защитного отключения ставят следующие требования: самоконтроль, надежность, высокая чувствительность и малое время выключения.

Защитное отключение отдельно или в совокупности с другими средствами защиты выполняет следующие функции:

защита при замыкании на землю или корпус оборудования;

защиту при появлении опасных токов утечки;

защиту при переходе высшего напряжения на сторону низшего;

автоматический контроль круга защитного заземления и зануления.

Как выполняется защитное отключение?

Защитное отключение выполняется очень чувствительными и быстродействующими защитными возникающими устройствами. Чувствительность и скоротечна действие их значительно превышает автоматические выключатели или другие меры элементы.

В электрических схемах защитных отключающих устройствах используют чувствительные элементы, реагирующие на появление тока в нулевом проводе, напряжения на корпусе поврежденного электрооборудования и др.

Защитные отключающие устройства срабатывают по 0,1-0,05 с, в то время как зануление 0,2 и более секунд. При такой кратковременной длительности прохождения тока через тело человека безопасным будет ток даже величиной 500-600 мА. Учитывая, что сопротивление тела человека 1000 Ом, то ток приведенной величины может протекать по телу человека только в том случае, когда его напряжение будет составлять 500-650 В, а такого напряжения в электрических сетях напряжением 380/220 В с заземленной нейтралью быть не может даже при аварийном режиме в чрезвычайных ситуациях.

Защитное отключение также применяется в тех случаях, когда устройство заземления будет вызывать значительные трудности (скальные грунты) или будет нецелесообразным вследствие подвижного фронта работ.

Поэтому защитные отключающие устройства является надежной защитой людей от поражения электрическим током.

Одной из мер обеспечения безопасности в электроустановках является использование малых напряжений порядка 36,34,12 В и менее: для ламп местного освещения у станков; для переносных ламп (12 В); питания электропаяльников, электродрели и другого электрического инструмента.

Защитным отключением называется устройство, быстро (не более 0,2 с) автоматически отключающее участок электрической сети при возникновении в нем опасности поражения человека током.

Такая опасность может возникнуть, в частности, при замыкании фазы на корпус электрооборудования; при снижении сопротивления изоляции фаз относительно земли ниже определенного предела; при появлении в сети более высокого напряжения; при прикосновении человека к токоведущей части, находящейся под напряжением. В этих случаях в сети происходит изменение некоторых электрических параметров; например, могут измениться напряжение корпуса относительно земли, ток замыкания на землю, напряжение фаз относительно земли, напряжение нулевой последовательности и др. Любой из этих параметров, а точнее говоря — изменение его до определенного предела, при котором возникает опасность поражения человека током, может служить импульсом, вызывающим срабатывание защитно-отключающего устройства, т. е. автоматическое отключение опасного участка сети.

Основными частями устройства защитного отключения являются прибор защитного отключения и автоматический выключатель.

Прибор защитного отключения — совокупность отдельных элементов, которые реагируют на изменение какого-либо параметра электрической сети и дают сигнал на отключение автоматического выключателя. Этими элементами являются: датчик — устройство, воспринимающее изменение параметра и преобразующее его в соответствующий сигнал. Как правило, датчиками служат реле соответствующих типов; усилитель, предназначенный для усиления сигнала датчика, если он оказывается недостаточно мощным; цепи контроля, служащие для периодической проверки исправности схемы защитно-отключающего устройства; вспомогательные элементы — сигнальные лампы, измерительные приборы (например, омметр), характеризующие состояние электроустановки и т. п.

Автоматический выключатель — устройство, служащее для включения и отключения цепей, находящихся под нагрузкой, и при коротких замыканиях. Он должен отключать цепь автоматически при поступлении сигнала от прибора защитного отключения.

Типы устройств. Каждое защитно-отключающее устройство в зависимости от параметра, на который оно реагирует, может быть отнесено к тому или иному типу, в том числе к типам устройств, реагирующих на напряжение корпуса относительно земли, ток замыкания на землю, напряжение фазы относительно земли, напряжение нулевой последовательности, ток нулевой последовательности, оперативный ток и др. Ниже в качестве примера рассмотрено два типа таких устройств.

Защити отключающие устройства, реагирующие на напряжение корпуса относительно земли, имеют назначение устранить опасность поражения током при возникновении на заземленном или запуленном корпусе повышенного напряжения. Эти устройства являются дополнительной мерой защиты к заземлению или занулению.

Принцип действия — быстрое отключение от сети установки, если напряжение ее корпуса относительно земли окажется выше некоторого предельно допустимого значения Uк.доп, вследствие чего прикосновение к корпусу становится опасным.

Принципиальная схема такого устройства приведена на рис. 76. Здесь в качестве датчика служит реле максимального напряжения, включенное между защищаемым корпусом и вспомогательным заземлителем RB непосредственно или через трансформатор напряжения. Электроды вспомогательного заземлителя размещаются в зоне нулевого потенциала, т. е. не ближе 15—20 м от заземлителя корпуса R3 или заземлителей нулевого провода.

При пробое фазы на заземленный или зануленный корпус вначале проявится защитное свойство заземления (или зануления), благодаря которому напряжение корпуса будет ограничено некоторым пределом UK. Затем, если UK окажется выше заранее установленного предельно допустимого напряжения Uк.доп, срабатывает защитно-отключающее устройство, т. е. реле максимального напряжения, замкнув контакты, подаст питание на отключающую катушку и вызовет тем самым отключение установки от сети.

Рис. 76. Принципиальная схема защитно-отключающего устройства, реагирующего на напряжение корпуса относительно земли:
1 — корпус; 2 — автоматический выключатель; НО — катушка отключающая; H — реле напряжения максимальное; R3 — сопротивление защитного заземления; RB — сопротивление вспомогательного заземления

Применение этого типа защитно-отключающих устройств ограничивается установками с индивидуальными заземлениями.

Защитно-отключающие устройства, реагирующие на оперативный постоянный ток, предназначены для непрерывного автоматического контроля изоляции сети, а также для защиты человека, прикоснувшегося к токоведущей части, от поражения током.

В этих устройствах сопротивление изоляции проводов относительно земли оценивается величиной постоянного тока, проходящего через эти сопротивления и получаемого от постороннего источника.

При снижении сопротивления изоляции проводов ниже некоторого заранее установленного предела в результате повреждения или прикосновения человека к проводу постоянный ток возрастет и вызовет отключение соответствующего участка.

Принципиальная схема этого устройства показана на рис. 77. Датчиком служит реле тока Т с малым током срабатывания (несколько миллиампер). Трехфазный дроссель — трансформатор ДТ предназначен для получения нулевой точки сети. Однофазный дроссель Д ограничивает утечку переменного тока в землю, которому он оказывает большое индуктивное сопротивление.


Рис. 77. Принципиальная схема защитно-отключающего устройства, реагирующего на оперативный постоянный ток: *
1 — автоматический выключатель;
2 — источник постоянного тока; КО — катушка отключения выключателя; ДТ — дроссель трехфазный; Д — дроссель однофазный; Т — реле тока; R1, R2, R3 — сопротивления изоляции фаз относительно земли; Ram - сопротивление замыкания фазы на землю

Постоянный ток Iр, получаемый от постороннего источника, протекает по замкнутой цепи: источник — земля — сопротивление изоляции всех проводов относительно земли — провода — трехфазный дроссель ДТ — однофазный дроссель Д — обмотка реле тока Т — источник тока.

Величина этого тока (А) зависит от напряжения источника постоянного тока Uист и общего сопротивления цепи:

где Rд — суммарное сопротивление реле и дросселей, Ом;

Ra — суммарное сопротивление изоляции проводов R1, R2, R3 и замыкания фазы на землю R3M.

При нормальном режиме работы сети сопротивление Rd велико, и поэтому ток Iр незначителен. В случае же снижения сопротивления изоляции одной (или двух, трех фаз) в результате замыкания фазы на землю или на корпус, либо в результате прикосновения к фазе человека сопротивление Rэ уменьшится, а ток Iр возрастет и, если он превысит ток срабатывания реле, произойдет отключение сети от источника питания.

Область применения этих устройств — сети небольшой протяженности напряжением до 1000 В с изолированной нейтралью.

Защитным отключением называется автоматическое отключение электроустановок при однофазном прикосновении к частям, находящимся под напряжением, недопустимым для человека, и (или) при возникновении в электроустановке тока утечки (замыкания), превышающего заданные значения.

Назначение защитного отключения - обеспечение электробезопасности, что достигается за счет ограничения времени воздействия опасного тока на человека. Защита осуществляется специальным устройством защитного отключения (УЗО), которое, обеспечивает электробезопасность при прикосновении человека к токоведущим частям оборудования, позволяет осуществлять постоянный контроль изоляции, отключает установку при замыкании токоведущих частей на землю. Для защиты людей от поражения электрическим током применяются УЗО с током срабатывания не более 30 мА.

Область применения защитного отключения: электроустановки в сетях с любым напряжением и любым режимом нейтрали.

Наибольшее распространение защитное отключение получило в электроустановках, используемых в сетях напряжением до 1 кВ с заземленной или изолированной нейтралью.

Принцип работы УЗО состоит в том, что оно постоянно контролирует входной сигнал и сравнивает его с заданной величиной. Если входной сигнал превышает эту величину, то устройство отключает защищенную электроустановку от сети. В качестве входных сигналов устройств защитного отключения используют различные параметры электрических сетей, которые несут в себе информацию об условиях поражения человека электрическим током.

УЗО реагирует на «ток утечки» и в течение сотых долей секунды отключает электричество, защищая человека от поражения электрическим током, оно улавливает малейшую утечку тока и размыкает контакты.

Конструктивно УЗО бывают двух видов:

электронные, зависимые от напряжения питания, их механизм для выполнения операции отключения нуждается в энергии, получаемой либо от контролируемой сети, либо от внешнего источника; электромеханические, независимые от напряжения питания, они дороже электронных УЗО, но обладают большей чувствительностью. Источником энергии, необходимой для функционирования таких УЗО является сам входной сигнал - дифференциальный ток, на который оно реагирует.

Все УЗО по виду входного сигнала классифицируют на несколько типов:

реагирующее на напряжение корпуса относительно земли; реагирующее на дифференциальный (остаточный) ток; реагирующее на комбинированный входной сигнал; реагирующее на ток замыкания на землю; реагирующее на оперативный ток (постоянный; переменный 50 Гц); реагирующее на напряжение нулевой последовательности.

Применение УЗО должно осуществляться в соответствии с Правилами устройства электроустановок (ПУЭ).

В сетях с глухозаземленной нейтралью напряжением до 1 кВ (системах TN ) защитное заземление неэффективно, так как даже при глухом замыкании на землю ток зависит от сопротивления заземления и при его уменьшении ток возрастает, а напряжение прикосновения может достигать опасных значений. Поэтому в системах TN защита от поражения электрическим током при косвенном прикосновении обеспечивается ограничением времени воздействия электрического тока на организм человека. Для этого должно быть выполнено защитное автоматическое отключение питания, обеспечивающее защиту как от сверхтоков (токов короткого замыкания) и называемое защитным занулением, так и от токов утечки с помощью устройств защитного отключения, реагирующих на дифференциальный ток (УЗО-Д).

Защитное автоматическое отключение питания  автоматическое размыкание цепи одного или нескольких фазных проводников (и, если требуется, нулевого рабочего проводника), выполняемое в целях электробезопасности.

Назначение автоматического отключения питания  предотвращение появления напряжения прикосновения, длительность воздействия которого может представлять опасность при повреждении изоляции.

Для автоматического отключения питания могут быть применены защитно-коммутационные аппараты, реагирующие на сверхтоки (автоматические выключатели) и устанавливаемые в фазных проводниках, или на дифференциальный ток (УЗО-Д).

Защитное зануление  преднамеренное электрическое соединение открытых проводящих частей с глухозаземленной нейтральной точкой обмотки источника тока в трехфазных сетях. Это соединение осуществляется с помощью нулевого защитного PE - или совмещенного PEN -проводника.

Принципиальная схема защитного зануления в сети трехфазного тока (система TN - S ) показана на рис.14.8.

Принцип действия защитного зануления  превращение замыкания на открытые проводящие части (металлические корпуса электроустановок) в однофазное короткое замыкание (замыкание между фазным и нулевым защитным проводниками) с целью вызвать большой ток короткого замыкания I к, способный обеспечить срабатывание защиты и тем самым автоматически отключить поврежденную электроустановку от питающей сети.

При замыкании, например, фазного проводника L 3 на зануленный корпус (рис. 14.8) ток короткого замыкания проходит через следующие участки цепи: обмотку трансформатора (генератора), фазный L 3 и нулевой защитный PE -провод. Величина тока определяется фазным напряжением и полным сопротивлением цепи однофазного короткого замыкания:

при этом сопротивления трансформатора Z т, фазного провода Z ф.пр и нулевого защитного PE -провода Z н имеют активную и индуктивную составляющие.

В качестве аппаратов защиты выступают плавкие предохранители, автоматические предохранители и автоматические выключатели, которые должны обеспечить малое время размыкания цепи (отключения).

Кроме того, поскольку зануленные корпуса (или другие открытые проводящие части) заземлены через нулевой защитный PE - (или совмещенный PEN -) проводник и повторные заземления R п, то в аварийный период, т.е. с момента возникновения замыкания на корпус и до автоматического отключения поврежденной электроустановки от сети, проявляется защитное свойство этого заземления, как при защитном заземлении. За счет протекания тока замыкания I з через сопротивление повторного заземления R п, напряжение PE -проводника (или PEN -проводника), а, следовательно, и присоединенных к нему корпусов электрооборудования, относительно земли снижается в аварийный период до момента срабатывания защиты или в случае обрыва PE - (или PEN -) проводника. Таким образом, защитное зануление осуществляет два защитных действия  быстрое автоматическое отключение поврежденной установки от питающей сети и снижение напряжения зануленных металлических нетоковедущих частей, оказавшихся под напряжением, относительно земли.

Повторные заземления PE - или PEN -проводника на воздушных линиях выполняются на всех ответвлениях длиной более 200 м и на вводе в электроустановку. В сети напряжением 380/220 В сопротивление заземления нейтрали должно быть не более 4 Ом, а общее сопротивление растеканию заземлителей всех повторных заземлений PE - или PEN -проводника  не более 10 Ом.

Время защитного автоматического отключения для системы TN при номинальном фазном напряжении не должно превышать значений: 127 В  0,8 с; 220 В – 0,4 с; 380 В – 0,2 с; более 380 В – 0,1 с.

Для обеспечения указанного времени отключения питания ток однофазного короткого замыкания должен превышать не менее чем в три раза номинальный ток плавкой вставки ближайшего предохранителя или ток срабатывания расцепителя автоматического выключателя с обратно зависимой от тока характеристикой. При защите сети автоматическими выключателями с электромагнитным расцепителемпревышение тока короткого замыкания над номинальным током определяется типом электромагнитного расцепителя: A , B , C , D .

Рис. 14.8. Принципиальная схема защитного зануления.

Автоматическое отключение с использованием устройств защитного отключения (УЗО ) , реагирующих на токи утечки. При малых токах замыкания, токах утечки, снижении уровня изоляции, а также при обрыве нулевого защитного проводника защитное зануление недостаточно эффективно, поэтому в этих случаях УЗО является единственным средством защиты человека от поражения электрическим током. Современные устройства защитного отключения (УЗО) имеют быстродействие от 0,04 до 0,3 с.

УЗО создаются на различных принципах действия. Наиболее совершенным является УЗО, реагирующее на ток утечки (дифференциальный ток). Достоинство его состоит в том, что оно защищает человека от поражения электрическим током как в случае прикосновения к открытым проводящим частям электроустановки, оказавшимся под напряжением из-за повреждения изоляции, так и при прямом прикосновении к токоведущим частям. Именно такие УЗО могут быть отнесены одновременно к средствам защиты как при косвенных, так и при прямых прикосновениях.

Кроме того, УЗО выполняет еще одну важную функцию – защиту электроустановок от возгораний, первопричиной которых являются утечки, вызванные ухудшением изоляции. Известно, что более трети пожаров возникает от неисправностей электропроводок, поэтому вполне справедливо УЗО называют «противопожарным сторожем».

УЗО состоит из трех функциональных элементов: датчика, исполнительного органа и коммутационного устройства. Датчик улавливает токи утечки, стекающие с фазных проводов на землю в случае прямого прикосновения человека или повреждения изоляции. Сигнал о наличии тока утечки поступает в исполнительный орган, где усиливается и преобразуется в команду на отключение коммутационного устройства. Наибольшее распространение получили УЗО, основанные на использовании в качестве датчика информации о возникновении опасных ситуаций дифференциального трансформатора тока (ДТТ). Исполнительный орган УЗО может работать на двух различных принципах: электронном и электромеханическом.

Электрическая схема электромеханического УЗО приведена на рисунке 14.9. Датчиком устройства служит ДТТ (I), кольцевой магнитопровод которого охватывает провода, питающие нагрузку и играющие роль первичной обмотки. При отсутствии тока утечки рабочие токи (I1) в прямом (фазном L ) и (I2) в обратном (нулевом рабочем N ) проводах равны и наводят в магнитопроводе равные, но противоположно направленные магнитные потоки; результирующий поток равен нулю и поэтому ЭДС во вторичной обмотке отсутствует. УЗО не срабатывает. При появлении тока утечки (I ) (например, при замыкании на корпус или прикосновении человека к оголённому фазному проводу) ток в прямом проводе превышает обратный ток на величину тока утечки I  ; в сердечнике возникает магнитный поток небаланса, а во вторичной обмотке наводится ЭДС, пропорциональная току утечки. По обмотке магнитоэлектрического реле (2) протекает ток, вызывающий его срабатывание и воздействие на механизм свободного расцепления (3), отключающий контакты. УЗО срабатывает. Таково действие УЗО двухполюсного исполнения в цепи однофазной нагрузки.

Для работы в трехфазной сети (как трех-, так и четырехпроводной) УЗО выполняется четырехполюсным, то есть магнитопровод охватывает три фазных и нулевой рабочий проводники. Некоторые типы устройств защитного отключения (в основном, зарубежного производства) совмещают в себе функции УЗО и автоматического выключателя, что неизбежно ведет к снижению надежности и повышению стоимости за счет усложнения схемы и увеличения количества компонентов.

По виду рабочего напряжения (тока утечки) УЗО делятся на типы:

АС – только для переменного (синусоидального) напряжения;

А – для синусоидального напряжения и пульсирующего напряжения с постоянной составляющей.

При выборе УЗО следует учитывать, что источником пульсирующего напряжения могут быть стиральные машины, персональные компьютеры, телевизоры, регуляторы источников света.

УЗО является высокоэффективным и перспективным способом защиты. Оно используется в электроустановках до 1 кВ в дополнение к защитному заземлению (защитному занулению), а также в качестве основного или дополнительного способа защиты, когда другие способы и средства неприменимы или малоэффективны.

Рис. 14.9. Электрическая схема УЗО.