Глубокая утилизация тепла уходящих газов. Использование тепла отходящих дымовых газов. Особенности глубокой утилизации с конденсационным теплообменником

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Государственное образовательное учреждение высшего профессионального образования

Пермский национальный исследовательский политехнический университет

Березниковский филиал

Контрольная работа

по дисциплине "Ресурсосбережение"

на тему "Использование тепла отходящих дымовых газов"

Работу выполнила студентка

группы ЭиУ- 10з(2)

Пауэльс Ю.С.

Работу проверил преподаватель

Нечаев Н.П.

Березники 2014 г.

Введение

1. Общие сведения

3. Котлы-утилизаторы

Заключение

Введение

Газы в технике, применяются главным образом в качестве топлива; сырья для химической промышленности: химических агентов при сварке, газовой химико-термической обработке металлов, создании инертной или специальной атмосферы, в некоторых биохимических процессах и др.; теплоносителей; рабочего тела для выполнения механической работы (огнестрельное оружие, реактивные двигатели и снаряды, газовые турбины, парогазовые установки, пневмотранспорт и др.): физической среды для газового разряда (в газоразрядных трубках и др. приборах).

Рассмотрим ближе применение отходящих дымовых газов.

газ дымовой тепло рекуператор

1. Общие сведения

Дымовые газы -- продукты горения топлива органического происхождения, отходящие из рабочего пространства отапливаемых металлургических агрегатов.

Отходящие газы (вторичные энергетические ресурсы) -- газы, образующиеся в результате сжигания топлива, а также технологических процессов, покидающие печь или агрегат.

Использование физического тепла отходящими газами определяется их количеством, составом, теплоемкостью и температурой. Наиболее высокая температура отходящих газов кислородных конвертеров (1600-1800 °С), наиболее низкая - температура отходящих газов воздухонагревателей доменных печей (250-400 °С). Использование тепла отходящих газов организуется разными способами. При регенеративном или замкнутом охлаждении тепло отходящих газов используется для непосредственного повышения экономичности технологического процесса (нагрев регенераторов или рекуператоров, шихты или технологического продукта и т. п.). Если в результате регенеративного охлаждения используется не все тепло отходящих газов, то применяют котлы-утилизаторы. Физическое тепло отходящие газы используют также для выработки электроэнергии во встроенных газотурбинных установках. Содержащиеся в отходящие газы колошниковая пыль доменного газа, оксиды железа в газах мартеновских печей и кислородных конвертеров улавливаются на установках газоочистки и в качестве оборотного продукта возвращаются в технологический процесс.

2. Регенераторы и рекуператоры для нагрева воздуха и газа

Как было указано выше, подогрев воздуха и газа осуществляется в регенераторах или рекуператорах путем использования тепла дымовых газов, уходящих из рабочих камер печей. Регенераторы применяются в мартеновских сталеплавильных печах, в которых подогрев воздуха и газа доходит до 1000 - 1200°. Принцип работы регенераторов заключается в попеременном нагреве двух теплоемких кирпичных насадок (решеток) газами, выходящими из рабочей камеры печи, с последующим пропуском через нагретую насадку подогреваемого газа или воздуха. Подогрев газа или воздуха в регенераторах связан с переключением последних то на нагрев, то на охлаждение. Это требует периодических перемен направления движения пламени в рабочей камере печи, что вызывает необходимость переключения топочных устройств; таким образом, весь процесс работы печи становится реверсивным. Это усложняет конструкцию печи и удорожает ее эксплуатацию, но способствует равномерному распределению температур в рабочем пространстве печи.

Принцип работы рекуператора представляющего собой поверхностный теплообменник, состоит в непрерывной передаче тепла, дымовых газов, уходящих из рабочей камеры печи, нагреваемому воздуху или газообразному топливу.

Рекуператор характеризуется непрерывным движением газов в одном направлении, что сильно упрощает конструкцию печей и удешевляет строительство и эксплуатацию.

На рис. 1 показан распространенный керамический рекуператор, в котором трубы составляются из восьмигранных керамических элементов, а пространство между трубами перекрыто фасонными плитками. Внутри труб движутся дымовые газы, а снаружи (в поперечном направлении) - нагреваемый воздух. Толщина стенок труб составляет 13 - 16 мм и представляет значительное термическое сопротивление. Коэффициент теплопередачи (отнесенный к воздушной поверхности) составляет 6 - 8 вт/(м 2 град). Элементы керамических рекуператоров изготовляются из шамотной или из какой-либо другой более теплопроводной огнеупорной массы с последующим обжигом. Преимуществами керамических рекуператоров являются их высокая огнеупорность и хорошая термическая стойкость - материал не портится при пропуске через рекуператор дымовых газов с очень высокой температурой.

Рис. 1. Трубчатый керамический рекуператор.

1 - нагретый воздух; 2 - дымовые газы; 3 - холодный воздух; 4 - керамические трубы; 5 - перегородки.

К недостаткам керамических рекуператоров относятся их малая плотность, большая теплоемкость, плохая теплопередача от дымовых газов к воздуху и расстройство соединений элементов от сотрясений и перекосов. Эти недостатки сильно ограничивают распространение керамических рекуператоров, и они применяются лишь в непрерывно действующих печах, установленных в цехах, где нет механизмов ударного действия (например, паровых молотов).

Наибольшее распространение получили металлические рекуператоры, имеющие наиболее благоприятные перспективы развития. Экономическая целесообразность установки таких рекуператоров подтверждается быстрой окупаемостью затрат на сооружение (0,25 - 0,35 лет).

Металлические рекуператоры отличаются эффективной теплопередачей, малой теплоемкостью, а, следовательно, быстрой готовностью к нормальной работе и большой плотностью. Элементы металлических рекуператоров изготовляются из различных металлов в зависимости от рабочей температуры материала и состава дымовых газов, проходящих через рекуператор. Простые черные металлы - углеродистая сталь и литейный серый чугун - начинают интенсивно окисляться при невысоких температурах (500 °С), и поэтому для изготовления рекуператоров применяются жаростойкие чугун и сталь, в состав которых входят в качестве легирующих добавок никель, хром, кремний, алюминий, титан и др., которые повышают сопротивляемость металла окалинообразованию.

Конструктивное решение низкотемпературного рекуператора с подогревом воздуха до 300 -- 400 ?С относительно просто. Создание же высокотемпературного рекуператора для подогрева воздуха и газообразного топлива до 700 - 900 °С представляет серьезную техническую задачу, пока еще полностью не решенную. Сложность ее заключается в обеспечении надежной работы рекуператоров в течение длительной эксплуатации при использовании дымовых газов с высокой температурой, несущих взвешенные твердые частицы золы, сажистого углерода, шихты и т. д., что вызывает абразивный износ. При выпадении этих частиц из потока поверхность нагрева рекуператора со стороны газов загрязняется. При запыленном воздухе поверхность нагрева загрязняется и со стороны воздуха. Отдельные трубки трубных пучков рекуператоров, заделанные в трубные доски, работают по ходу газов в разных температурных условиях, по-разному нагреваются и расширяются.

Это различие в расширении труб требует различной их компенсации, что трудно осуществить. На рис. 2 показана удачная конструкция трубчатого рекуператора, поверхность нагрева которого состоит из свободно висящих петель, вваренных в коллекторы (коробки). Рекуператор состоит из двух секций, через которые проходит последовательно воздух навстречу дымовым газам, движущимся поперек трубных пучков. Петлеобразный рекуператор имеет хорошую компенсацию тепловых расширений, что является очень важным условием надежной работы.

Рис. 2. Трубчатый петлеобразный рекуператор для установки на борове (может быть установлен и на своде печи).

На рис. 3 изображена принципиальная схема высокотемпературного радиационного щелевого рекуператора, состоящего из двух стальных цилиндров, образующих концентрический зазор, по которому прогоняется с большой скоростью нагреваемый воздух. Внутри цилиндра движутся раскаленные дымовые газы, лучеиспускающие на поверхность внутреннего цилиндра. Трубчатый рекуператор более надежен в работе, чем щелевой. Преимуществами радиационных рекуператоров являются: меньший расход жаростойкой стали за счет интенсивного лучистого теплообмена в условиях высоких температур газов (800 - 1200 °С) и меньшая чувствительность поверхности нагрева к загрязнениям. После радиационного рекуператора должен быть установлен конвективный рекуператор, так как температура газов после радиационного рекуператора еще очень высока.

Рис. 3. Схемы радиационных стальных рекуператоров.

а - кольцевой (щелевой); б - трубчатый с однорядным экраном.

На рис. 4 показан рекуператор с трубами двойной циркуляции. Холодный воздух сначала проходит через внутренние трубы, а затем через концентрическое пространство труб поступает в коллектор горячего воздуха. Внутренние трубы играют роль косвенной поверхности нагрева.

Трубчатые рекуператоры отличаются большой плотностью и поэтому могут применяться также для подогрева газообразного топлива. Коэффициент теплопередачи может достигать 25 - 40 вт/(м 2 град). Пластинчатые рекуператоры сложнее в изготовлении, менее плотны и долговечны и применяются редко. Рекуператоры, установленные отдельно от печи, занимают некоторое дополнительное место в помещении цеха, во многих случаях это препятствует их применению, однако часто удается удачно расположить рекуператоры на печи или под печью.

Рис. 4. Стальной трубчатый рекуператор с двойной циркуляцией.

3. Котлы-утилизаторы

Тепло дымовых газов, уходящих из печей, кроме подогрева воздуха и газообразного топлива, может быть использовано в котлах-утилизаторах для выработки водяного пара. В то время как подогретые газ и воздух используются в самом печном агрегате, пар направляется внешним потребителям (для производственных и энергетических нужд).

Во всех случаях следует стремиться к наибольшей регенерации тепла, т. е. к возвращению его в рабочее пространство печи в виде тепла нагретых компонентов горения (газообразного топлива и воздуха). В самом деле, увеличение регенерации тепла ведет к сокращению расхода топлива и к интенсификации и улучшению технологического процесса. Однако наличие рекуператоров или регенераторов не всегда исключает возможность установки котлов-утилизаторов. В первую же очередь котлы-утилизаторы нашли применение в крупных печах с относительно высокой температурой отходящих дымовых газов: в мартеновских сталеплавильных печах, в медеплавильных отражательных печах, во вращающихся печах для обжига цементного клинкера, при сухом способе производства цемента и т. д.

Рис. 5. Газотрубный котел-утилизатор ТКЗ типа КУ-40.

1 - пароперегреватель; 2 - трубная поверхность; 3 - дымосос.

Тепло дымовых газов, отходящих от регенераторов мартеновских печей с температурой 500 -- 650 °С, используется в газотрубных котлах-утилизаторах с естественной циркуляцией рабочего тела. Поверхность нагрева газотрубных котлов состоит из дымогарных труб, внутри которых проходят дымовые газы со скоростью примерно 20 м/сек. Тепло от газов к поверхности нагрева передается путем конвекции, а потому увеличение скорости повышает теплопередачу. Газотрубные котлы просты в эксплуатации, при монтаже не требуют обмуровки и каркасов и обладают высокой газоплотностью.

На рис. 5 показан газотрубный котел Таганрогского завода средней производительности D ср = 5,2 т/ч с расчетом на пропуск дымовых газов до 40000 м 3 /ч. Давление пара, вырабатываемого котлом, равно 0,8 Мн/м 2 ; температура 250 °С. Температура газов до котла 600 °С, за котлом 200 - 250 °С.

В котлах с принудительной циркуляцией поверхность нагрева составляется из змеевиков, расположение которых не ограничивается условиями естественной циркуляции, и поэтому такие котлы компактны. Змеевиковые поверхности изготовляются из труб малого диаметра, например d = 32Ч3 мм, что облегчает вес котла. При многократной циркуляции, когда кратность циркуляции составляет 5 - 18, скорость воды в трубках значительна, не менее 1 м/сек, вследствие чего в змеевиках уменьшается выпадение из воды растворенных солей, а кристаллическая накипь смывается. Тем не менее котлы должны питаться водой, химически очищенной при помощи катионитовых фильтров и других способов водоподготовки, соответствующей нормам питательной воды для обычных паровых котлов.

Рис. 6. Схема котла-утилизатора с многократной принудительной циркуляцией.

1 - экономайзерная поверхность; 2 - испарительная поверхность; 3 - пароперегреватель; 4 - барабан-коллектор; 5 - циркуляционный насос; 6 - шламоуловитель; 7 -- дымосос.

На рис. 6 дана схема размещения змеевиковых поверхностей нагрева в вертикальных дымоходах. Движение пароводяной смеси осуществляется циркуляционным насосом. Конструкции котлов подобного типа разработаны Центроэнергочерметом и Гипромезом и изготовляются на расходы дымовых газов до 50 - 125 тыс. м 3 /ч со средней паропроизводительностью от 5 до 18 т/ч.

Стоимость пара составляет 0,4 - 0,5 руб/т вместо 1,2 - 2 руб/т у пара, отобранного из паровых турбин ТЭЦ и 2 - 3 руб/т у пара от промышленных котельных. Стоимость пара составляется из затрат на энергию для привода дымососов, расходов на приготовление воды, амортизацию, ремонт и обслуживание. Скорость газов в котле составляет от 5 до 10 м/сек, что обеспечивает хорошую теплопередачу. Аэродинамическое сопротивление газового тракта составляет 0,5 - 1,5 кн/м 2 , поэтому агрегат должен иметь искусственную тягу от дымососа. Усиление тяги, которым сопровождается установка котлов-утилизаторов, как правило, улучшает работу мартеновских печей. Подобные котлы получили распространение на заводах, но для их хорошей работы требуется защита поверхностей нагрева от заноса пылью и частицами шлака и систематическая очистка поверхностей нагрева от уноса посредством обдувки перегретым паром, промывки водой (при остановках котла), вибрационным путем и др.

Рис. 7. Поперечный разрез котла-утилизатора КУ-80. 1 - испарительная поверхность; 2 - пароперегреватель; 3 - барабан; 4 - циркуляционный насос.

Для использования тепла дымовых газов, отходящих от медеплавильных отражательных печей, устанавливаются водотрубные котлы с естественной циркуляцией (рис. 7). Дымовые газы в этом случае имеют очень высокую температуру (1100 - 1250 °С) и загрязнены пылью в количестве до 100 - 200 г/м 3 , причем часть пыли имеет высокие абразивные (истирающие) свойства, другая часть находится в размягченном состоянии и может шлаковать поверхность нагрева котла. Именно большая запыленность газов и заставляет пока отказываться от регенерации тепла в этих печах и ограничиваться использованием дымовых газов в котлах-утилизаторах.

Передача тепла от газов к экранным испарительным поверхностям протекает очень интенсивно, благодаря чему обеспечивается интенсивное парообразование частицы шлака, охлаждаясь, гранулируются и выпадают в шлаковую воронку, чем исключается шлакование конвективной поверхности нагрева котла. Установка подобных котлов для использования газов с относительно невысокой температурой (500 -- 700 °С) нецелесообразна из-за слабой теплопередачи лучеиспусканием.

В случае оборудования высокотемпературных печей металлическими рекуператорами котлы-утилизаторы целесообразно устанавливать непосредственно за рабочими камерами печей. В этом случае в котле температура дымовых газов понижается до 1000 - 1100 °С. С такой температурой они уже могут быть направлены в жароупорную секцию рекуператора. Если газы несут много пыли, то котел-утилизатор устраивается в виде экранного котла-шлакогранулятора, что обеспечивает сепарацию уноса из газов и облегчает работу рекуператора.

Заключение

По мере увеличения затрат на добычу топлива и производства энергии возрастает необходимость в более полном использовании их при преобразовании в виде горючих газов, тепла нагретого воздуха и воды. Хотя утилизация вторичных энергетических ресурсов нередко связана с дополнительными капитальными вложениями и увеличением численности обслуживающего персонала, опыт передовых предприятий подтверждает, что использование вторичных энергетических ресурсов экономически весьма выгодно.

Список использованной литературы

1. Розенгарт Ю.И. Вторичные энергетические ресурсы черной металлургии и их использование. - К.: " Высшая школа", 2008г. - 328с.

2. Щукин А. А. Промышленные печи и газовое хозяйство заводов. Учебник для вузов. Изд. 2-е, перераб. М., "Энергия", 1973. 224 с. с ил.

3. Хараз Д. И. Пути использования вторичных энергоресурсов в химических производствах / Д. И. Хараз, Б. И. Псахис. - М.: Химия, 1984. - 224 с.

Размещено на Allbest.ru

Подобные документы

    Описание процесса подготовки твердого топлива для камерного сжигания. Создание технологической схемы производства энергии и тепла. Проведение расчетов материального и теплового баланса котлоагрегата. Методы очистки дымовых газов от оксидов серы и азота.

    курсовая работа , добавлен 16.04.2014

    Проектирование рекуператора. Расчёт сопротивлений на пути движения воздуха, суммарные потери. Подбор вентилятора. Расчет потерь напора на пути движения дымовых газов. Проектирование борова. Определение количества дымовых газов. Расчет дымовой трубы.

    курсовая работа , добавлен 17.07.2010

    Теоретические основы абсорбции. Растворы газов в жидкостях. Обзор и характеристика абсорбционных методов очистки отходящих газов от примесей кислого характера, оценка их преимуществ и недостатков. Технологический расчет аппаратов по очистке газов.

    курсовая работа , добавлен 02.04.2015

    Расчет установки для утилизации тепла отходящих газов от клинкерной печи цементного завода. Скрубберы комплексной обработки уходящих газов. Параметры теплоутилизаторов первой и второй ступеней. Определение экономических параметров проектируемой системы.

    курсовая работа , добавлен 15.06.2011

    Характеристика дымовых газов. Разработка контура регулирования. Газоанализатор: назначение и область применения, условия эксплуатации, функциональные возможности. Электропневматический преобразователь серии 8007. Регулирующий клапан с пневмоприводом.

    курсовая работа , добавлен 22.07.2011

    Виды и состав газов, образующихся при разложении углеводородов нефти в процессах ее переработки. Использование установок для разделения предельных и непредельных газов и мобильных газобензиновых заводов. Промышленное применение газов переработки.

    реферат , добавлен 11.02.2014

    Система менеджмента качества Новокузнецкого алюминиевого завода. Образование газов при электролитическом производстве алюминия. Особенности технологии сухой очистки отходящих газов, типы реакторов, устройства для улавливания фторированного глинозема.

    отчет по практике , добавлен 19.07.2015

    Выполнение расчета горения топлива с целью определения количества необходимого для горения воздуха. Процентный состав продуктов сгорания. Определение размеров рабочего пространства печи. Выбор огнеупорной футеровки и способа утилизации дымовых газов.

    курсовая работа , добавлен 03.05.2009

    Описание технологической схемы установки утилизации теплоты отходящих газов технологической печи. Расчет процесса горения, состав топлива и средние удельные теплоемкости газов. Расчет теплового баланса печи и ее КПД. Оборудование котла-утилизатора.

    курсовая работа , добавлен 07.10.2010

    Расчет горения смеси коксового и природного газов по заданным составам. Теплота сгорания топлива. Процесс нагрева металла в печах, размеры рабочего пространства. Коэффициент излучения от продуктов сгорания на металл с учетом тепла, отраженного от кладки.

В. В. Гетман, Н. В. Лежнева МЕТОДЫ УТИЛИЗАЦИИ ТЕПЛОТЫ УХОДЯЩИХ ГАЗОВ ОТ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК

Ключевые слова: газотурбинные установки, парогазовые установки

В работе рассмотрены различные методы утилизации теплоты уходящих газов от энергетических установок с целью повышения их эффективности, экономии органического топлива и наращивания энергетических мощностей.

Keywords: gas-turbine installations, steam-gas installations

In work various methods of utilization of warmth of leaving gases from power installations for the purpose of increase of their efficiency, economy of organic fuel and accumulation of power capacities are considered.

С началом экономических и политических реформ в России, в первую очередь необходимо произвести ряд принципиальных изменений в электроэнергетике страны. Новая энергетическая политика должна решить ряд задач, в числе которых освоение современных высокоэффективных технологий производства электрической и тепловой энергии.

Одной из таких задач является повышение эффективности энергетических установок с целью экономии органического топлива и наращивания энергетических мощностей. Наиболее

перспективными в этом отношении являются газотурбинные установки, с уходящими газами которых выбрасывается до 20% тепла .

Существуют несколько путей повышения к. п. д. газотурбинных двигателей , в числе которых:

Повышение температуры газа перед турбиной для ГТУ простого термодинамического цикла,

Применение регенерации тепла,

Использование тепла уходящих газов в бинарных циклах,

Создание ГТУ по сложной термодинамической схеме и т. д.

Наиболее перспективным направлением считается совместное использование газотурбинных и паротурбинных установок (ГТУ и ПТУ) с целью повышения их экономических и экологических характеристик.

Газотурбинные и созданные с их использованием комбинированные установки при технически достижимых в настоящее время параметрах обеспечивают существенное повышение эффективности производства тепловой и электроэнергии.

Широкое применение бинарных ПГУ, а также различных комбинированных схем при техническом перевооружении ТЭС позволит экономить до 20% топлива по сравнению с традиционными паротурбинными блоками.

По оценкам специалистов экономичность комбинированного парогазового цикла возрастает при повышении начальной температуры газов перед ГТУ и увеличении доли газотурбинной мощности. Немаловажное значение

имеет также то обстоятельство, что помимо выигрыша в экономичности такие системы требуют значительно меньших капитальных затрат, их удельная стоимость в 1.5 - 2 раза меньше, чем стоимость газо-мазутных паротурбинных блоков и ПГУ с минимальной газотурбинной мощностью .

По данным можно выделить три основных направления использования ГТУ и ПГУ в энергетике.

Первое, широко используемое в промышленно развитых странах, - применение ПГУ на крупных конденсационных ТЭС, работающих на газе. В этом случае наиболее эффективно использовать ПГУ утилизационного типа с большой долей газотурбинной мощности (рис. 1).

Применение ПГУ позволяет повысить на ТЭС эффективность сжигания топлива на ~ 11-15 % (ПГУ со сбросом газов в котёл), на ~ 25-30 % (бинарные ПГУ).

До недавнего времени широких работ по внедрению ПГУ в России не проводилось. Тем не менее, единичные образцы таких установок достаточно давно и успешно используются, например ПГУ с высоконапорным парогенератором (ВПГ) типа ВПГ-50 головного энергоблока ПГУ-120 и 3-х модернизированных энергоблоков с ВПГ-120 на филиале «ТЭЦ-2» ОАО «ТГК-1» ; ПГУ-200 (150) с ВПГ-450 на филиале «Невинномысская ГРЭС». На Краснодарской ГРЭС установлено три парогазовых энергоблока мощностью по 450 МВт. В состав энергоблока входят две газовые турбины мощностью по 150 МВт, два котла-утилизатора и паровая турбина, мощностью 170 МВт, к. п. д. такой установки составляет 52.5% . Дальнейшее

повышение к. п. д. ПГУ утилизационного типа возможно путем усовершенствования

газотурбинной установки и усложнения схемы парового процесса.

Рис. 1 - Схема ПГУ с котлом-утилизатором

Парогазовая установка с котлом-

утилизатором (рис. 1) включает в себя: 1-

компрессор; 2 - камеру сгорания; 3 - газовую

турбину; 4 - электрогенератор; 5 - котел-

утилизатор; 6 - паровую турбину; 7 - конденсатор; 8

Насос и 9 - деаэратор. В котле-утилизаторе топливо не дожигается, а вырабатываемый перегретый пар используется в паротурбинной установке.

Второе направление - использование газовых турбин для создания ПГУ - ТЭЦ и ГТУ -ТЭЦ. За последние годы было предложено множество вариантов технологических схем ПГУ -ТЭЦ. На ТЭЦ, работающих на газе целесообразно использовать теплофикационные ПГУ

утилизационного типа. Характерным примером

крупной ПГУ - ТЭЦ такого типа является Северо -Западная ТЭЦ в г. Санкт - Петербурге. Один блок ПГУ на этой ТЭЦ включает: две газовые турбины, мощностью по 150 МВт, два котла - утилизатора, паровую турбину. Основные показатели блока: электрическая мощность - 450 МВт, тепловая мощность - 407 МВт, удельный расход условного топлива на отпуск электроэнергии - 154.5 г у. т./(кВт. ч), удельный расход условного топлива на отпуск тепла - 40.6 кг у. т./ГДж, к. п. д. ТЭЦ по отпуску электрической энергии - 79.6%, тепловой энергии - 84.1%.

Третье направление - использование газовых турбин для создания ПГУ - ТЭЦ и ГТУ -ТЭЦ малой и средней мощности на базе котельных. ПГУ - ТЭЦ и ГТУ - ТЭЦ наилучших вариантов, создаваемые на базе котельных, обеспечивают к. п. д. по отпуску электрической энергии в теплофикационном режиме на уровне 76 - 79%.

Типовая парогазовая установка состоит из двух ГТУ, каждая со своим котлом-утилизатором, подающим вырабатываемый пар в одну общую паровую турбину.

Установка такого типа была разработана для Щекинской ГРЭС . ПГУ-490 была предназначена для выработки электрической энергии в базовом и на частичных режимах работы электростанции с отпуском тепла стороннему потребителю до 90 МВт при зимнем температурном графике. Принципиальная схема блока ПГУ-490 вынужденно ориентировалась на недостаток места при размещении котла-утилизатора и

паротурбинной установки в корпусах электростанции, что создавало определенные трудности для достижения оптимальных режимов комбинированной выработки тепла и электроэнергии.

При отсутствии ограничений по размещению установки, а также при использовании усовершенствованной ГТУ можно существенно повысить экономичность блока. В качестве такой усовершенствованной ПГУ в предлагается одновальная ПГУ-320 мощностью 300 МВт. Комплектной ГТУ для ПГУ-320 является одновальная ГТЭ-200, создание которой предполагается осуществить переходом на

двухопорный ротор, модернизацией системы охлаждения и других узлов ГТУ с целью повышения начальной температуры газа. Кроме ГТЭ-200 моноблок ПГУ-320 содержит ПТУ К-120-13 с трехцилиндровой турбиной, конденсатный насос, конденсатор пара уплотнений, подогреватель, питаемый греющим паром, подаваемым из отбора перед последней ступенью ПТ, а также котел-утилизатор двух давлений, содержащий восемь участков теплообмена, включая промежуточный перегреватель пара.

Для оценки эффективности установки был проведен термодинамический расчет, в результате которого был сделан вывод о том, что при работе в конденсационном режиме ПГУ-490 ЩГРЭС ее электрический к. п. д. может быть повышен на 2.5% и доведен до 50.1%.

Исследования теплофикационных

парогазовых установок показали, что экономические показатели ПГУ существенно зависят от структуры их тепловой схемы, выбор которой осуществляется в пользу установки, обеспечивающей минимальную температуру уходящих газов. Это объясняется тем, что уходящие газы являются основным источником потерь энергии, и для увеличения эффективности схемы их температуру необходимо уменьшать.

Модель одноконтурной теплофикационной ПГУ, представленная на рис. 2, включает в себя котел - утилизатор барабанного типа с естественной циркуляцией среды в испарительном контуре . По ходу газов в котле снизу вверх последовательно расположены поверхности нагрева:

пароперегреватель ПП, испаритель И, экономайзер Э и газовый перегреватель сетевой воды ГСП.

Рис. 2 - Тепловая схема одноконтурной ПГУ

Расчеты системы показали, что при изменении параметров свежего пара происходит перераспределение мощности, вырабатываемой ПГУ, между тепловой и электрической нагрузками. При росте параметров пара увеличивается выработка электрической и уменьшается выработка тепловой энергии. Это объясняется тем, что при увеличении параметров свежего пара уменьшается его выработка. При этом из-за снижения расхода пара при малом изменении его параметров в отборах уменьшается тепловая нагрузка подогревателя сетевой воды.

Двухконтурная ПГУ, также как и одноконтурная, состоит из двух газовых турбин, двух котлов-утилизаторов и одной паровой турбины (рис.3). Подогрев сетевой воды осуществляется в двух подогревателях ПГС и (при необходимости) в пиковом сетевом подогревателе.

По ходу газов в котле-утилизаторе

последовательно расположены следующие

поверхности нагрева: пароперегреватель высокого давления ППВД, испаритель высокого давления ИВД, экономайзер высокого давления ЭВД, пароперегреватель низкого давления ППНД,

испаритель низкого давления ИНД, газовый подогреватель низкого давления ГПНД, газовый подогреватель сетевой воды ГСП.

Рис. 3 - Принципиальная тепловая схема

двухконтурной ПГУ

Рис. 4 - Схема утилизации теплоты уходящих газов ГТУ

Кроме котла-утилизатора тепловая схема включает в себя паровую турбину, имеющую три цилиндра, два подогревателя сетевой воды ПСГ1 и ПСГ2, деаэратор Д и питательные насосы ПЭН. Отработавший пар турбины направлялся в ПСГ1. В подогреватель ПСГ2 подается пар из отбора турбины. Вся сетевая вода проходит через ПСГ1, затем часть воды направляется в ПСГ2, а другая часть после первой ступени подогрева - в ГСП, расположенный в конце газового тракта котла-утилизатора. Конденсат греющего пара ПСГ2 сливается в ПСГ1, а затем поступает в ГПНД и далее в деаэратор. Питательная вода после деаэратора частично поступает в экономайзер контура высокого давления, а частично - в барабан Б контура низкого давления. Пар из перегревателя контура низкого давления смешивается с основным потоком пара после цилиндра высокого давления (ЦВД) турбины.

Как показал сравнительный анализ, при использовании газа в качестве основного топлива применение утилизационных схем целесообразно, если соотношение тепловой и электрической энергии составляет 0.5 - 1.0, при соотношениях 1.5 и более, предпочтение отдается ПГУ по «сбросной» схеме.

Кроме подстройки паротурбинного цикла к циклу ГТУ, утилизация теплоты уходящих газов

ГТУ может осуществляться подачей в камеру сгорания ГТУ пара, вырабатываемого котлом-утилизатором, а также путем реализации регенеративного цикла .

Реализация регенеративного цикла (рис. 4) обеспечивает существенное повышение к. п. д. установки, в 1.33 раза, в том случае, если при создании ГТУ степень повышения давления выбрана в соответствии с намечаемой степенью регенерации. Такая схема включает в себя К -компрессор; Р - регенератор; КС - камера сгорания; ТК - турбина компрессора; СТ - силовая турбина; ЦК - центробежный компрессор. Если ГТУ выполнена без регенерации, а степень повышения давления л близка к оптимальному значению, то оснащение такой ГТУ регенератором не приводит к повышению ее к. п. д.

К. п. д. установки, осуществляющей подачу пара в камеру сгорания, повышается в 1.18 раз по сравнению с ГТУ, что позволяет снизить расход топливного газа, потребляемого газотурбинной установкой.

Сравнительный анализ показал, что наибольшая экономия топлива возможна при осуществлении регенеративного цикла ГТУ с высокой степенью регенерации, относительно невысоким значением степени повышения давления в компрессоре л = 3 и с небольшими потерями продуктов сгорания. Однако в большинстве отечественных ТКА в качестве привода использованы авиационные и судовые газотурбинные двигатели с высокой степенью повышения давления, и в этом случае утилизация теплоты уходящих газов эффективнее в паротурбинном блоке. Установка с подачей пара в камеру сгорания конструктивно наиболее проста, но менее эффективна.

Одним из способов достижения экономии газа и решения экологических проблем является применение на КС парогазовых установок. В исследовательских разработках рассматриваются два альтернативных варианта использования пара, полученного при утилизации теплоты выхлопных газов ГТУ: ПГУ с приводом от паровой турбины нагнетателя природного газа и от паровой турбины электрогенератора. Принципиальное различие этих вариантов заключается в том, что в случае ПГУ с нагнетателем не только утилизируется теплота выхлопных газов ГПА, но и один ГПА заменяется на паротурбинный перекачивающий агрегат, а при ПГУ с электрогенератором число ГПА сохраняется, а за счет утилизируемой теплоты вырабатывается электроэнергия специальным паротурбинным агрегатом . Выполненный анализ показал, что ПГУ с приводом нагнетателя природного газа обеспечивали лучшие технико-экономические показатели.

В случае создания на базе КС парогазовой установки с котлом утилизатором , ГТУ используется для привода нагнетателя, а паросиловая установка (ПСУ) - для выработки электроэнергии, при этом температура отходящих газов за котлом - утилизатором составляет 1400С.

С целью повышения эффективности использования органического топлива в децентрализованных системах теплоснабжения возможна реконструкция отопительных котельных с размещением в них газотурбинных установок (ГТУ) небольшой мощности и утилизацией продуктов сгорания в топках существующих котлов . При этом электрическая мощность ГТУ зависит от режимов работы по тепловому или электрическому графикам нагрузок, а также от экономических факторов.

Оценить эффективность реконструкции котельной можно при сравнении двух вариантов : 1 - исходный (существующая котельная), 2 -альтернативный, с использованием ГТУ. Наибольший эффект был получен при электрической мощности ГТУ, равной

максимальной нагрузке района потребления.

Сравнительный анализ ГТУ с КУ, вырабатывающим пар в количестве 0.144 кг/кг с. г., конденсационным ТУ и ГТУ без КУ и с ТУ сухого теплообмена показал следующее: полезная

электрическая мощность - 1.29, расход природного газа - 1.27, отпуск тепла - 1.29 (соответственно 12650 и 9780 кДж/м3 природного газа). Таким образом, относительный прирост мощности ГТУ при вводе пара от КУ составил 29%, а расход дополнительного природного газа - 27%.

Согласно данным эксплуатационных испытаний температура уходящих газов в водогрейных котлах составляет 180 - 2300С, что создает благоприятные условия для утилизации теплоты газов с помощью конденсационных теплоутилизаторов (ТУ) . В ТУ, которые

используются для предварительного подогрева сетевой воды перед водогрейными котлами , осуществляется теплообмен с конденсацией водяных паров, содержащихся в уходящих газах, а нагрев воды собственно в котле происходит уже в режиме “сухого” теплообмена.

По данным наряду с экономией топлива использование ТУ обеспечивает также экономию электроэнергии. Объясняется это тем, что при вводе в котел дополнительного потока циркуляционной воды для сохранения расчетного расхода через котел необходимо часть обратной воды теплосети в количестве, равном рециркуляционному расходу, перепускать из обратной трубы в подающую.

При комплектовании электростанций из отдельных энергоблоков с газотурбинным приводом

электрогенераторов существует несколько вариантов утилизации теплоты выхлопных газов, например, с помощью утилизационного

теплообменника (УТО) для нагрева воды, или с использованием котла-утилизатора и

паротурбогенератора для увеличения выработки электроэнергии . Анализ работы станции с учетом утилизации теплоты с помощью УТО показал существенное увеличение коэффициента использования теплоты, в некоторых случаях в 2 раза и более, а экспериментальные исследования энергоблока ЭМ-25/11 с двигателем НК-37 позволили сделать следующий вывод. В зависимости от конкретных условий годовой отпуск утилизируемой теплоты может колебаться в пределах от 210 до 480 тыс. ГДж, а реальная экономия газа составила от 7 до 17 тыс. м3.

Литература

1. В.М. Масленников, Теплоэнергетика, 3, 39-41 (2000).

2. В.И. Романов, В.А. Кривуца, Теплоэнергетика, 4, 27-30 (1996).

3. Л.В. Арсеньев, В.Г. Тырышкин, Комбинированные установки с газовыми турбинами. Л.: Машиностроение, 1982, 407 с.

4. В.И. Длугосельский, А.С. Земцов, Теплоэнергетика, 12, 3-7 (2000).

5. Б.М. Трояновский, А.Д. Трухний, В.Г. Грибин, Теплоэнергетика, 8, 9-13 (1998).

6. А. Д. Цой, Промышленная энергетика, 4, 50-52 (2000).

7. А.Д. Цой, А.В. Клевцов, А.В. Корягин, Промышленная энергетика, 12, 25-32 (1997).

8. В.И. Евено, Теплоэнергетика, 12, 48-50 (1998).

9. Н.И. Серебрянников, Э.И. Тапелев, А.К. Маханьков, Энергосбережение и водоподготовка, 2, 3-11 (1998).

10. Г.Д. Баринберг, В.И. Длугосельский, Теплоэнергетика, 1, 16-20 (1998)

11. А.П. Берсенев, Теплоэнергетика, 5, 51-53 (1998).

12. Е.Н. Бухаркин, Промышленная энергетика, 7, 34-37 (1998).

13. В.И. Доброхотов, Теплоэнергетика, 1, 2-8 (2000).

14. А.С. Попов, Е.Е. Новгородский, Б.А. Пермяков, Промышленная энергетика, 1, 34-35 (1997).

15. И.В. Белоусенко, Промышленная энергетика, 5, 53-55 (2000).

16. В.В. Гетман, Н.В. Лежнева, Вестник Казан. технол. Ун-та, 18, 174-179 (2011).

17. Н.В. Лежнева, В.И. Елизаров, В.В. Гетман, Вестник Казан. технол. Ун-та, 17, 162-167 (2012).

© В. В. Гетман - канд. техн. наук, доц. каф. автоматизации технологических процессов и производств ФГБОУ ВПО «КНИТУ», 1ега151@уаМех; Н. В. Лежнева - канд. техн. наук, доц. каф. автоматизации технологических процессов и производств ФГБОУ ВПО «КНИТУ», [email protected].

В.С.Галустов, д.т.н., профессор, генеральный директор ГП НПО «Политехника»
Л.А.Розенберг, инженер, директор УП «Юмиран».

Введение.

С дымовыми газами различного происхождения в атмосферу выбрасываются тысячи и тысячи Гкал теплоты, а также тысячи тонн газообразных и твёрдых загрязнителей, водяного пара. В настоящей статье остановимся на проблеме утилизации теплоты (об очистке газовых выбросов поговорим в следующем сообщении). Наиболее глубокое использование теплоты сжигания топлива осуществляется в теплоэнергетических котлах, для чего в большинстве случаев в их хвостовой части предусматриваются экономайзеры. Температура дымовых газов после них порядка 130—190°С, т.е. близка к температуре точки росы паров кислот, которая при наличии в топливе сернистых соединений является нижним пределом. При сжигании природного газа указанное ограничение менее существенно.

Дымовые газы после различного рода печей могут иметь значительно более высокую температуру (до 300-500°С и выше). В этом случае утилизация теплоты (и охлаждение газов) просто обязательна, хоть бы для ограничения теплового загрязнения окружающей среды.

Теплоутилизаторы.

Ещё в первом сообщении мы ограничили круг наших интересов процессами и аппаратами с непосредственным контактом фаз, однако для полноты картины вспомним и оценим также и другие варианты. Все известные теплоутилизаторы можно разделить на контактные, поверхностные, а также устройства с промежуточным теплоносителем. На первых мы подробнее остановимся ниже. Поверхностные теплоутилизаторы — это традиционные калориферы, которые размещаются непосредственно в газоходе после печи (котла) и имеют серьёзные недостатки, ограничивающие их применение. Во-первых, они вносят значительное аэродинамическое сопротивление в газовый тракт и ухудшают работу печей (снижается разряжение) с проектным дымососом, а его замена на более мощный может не компенсировать сопровождающих затрат экономией теплоты. Во-вторых, низкие коэффициенты теплоотдачи от газа к поверхности трубок обусловливают большие значения необходимой поверхности контакта.

Аппараты с промежуточным теплоносителем бывают двух типов: периодического действия с твёрдым теплоносителем и непрерывного — с жидким. Первые представляют собой минимум две колонны, заполненные, например, дроблёным гранитом (насадкой). Дымовые газы проходят через одну из колонн, отдавая теплоту насадке, нагревают её до температуры, несколько ниже температуры газов. Затем дымовые газы переключаются на вторую колонну, а в первую подаётся нагреваемая среда (обычно подаваемый в ту же печь воздух, или воздух системы воздушного отопления) и т.д. Недостатки такой схемы очевидны (большое сопротивление, громоздкость, нестабильность температур и т.п.), а её применение весьма ограничено.

Аппараты с жидким промежуточным теплоносителем (обычно это вода) получили название контактных теплообменников с активной насадкой (КТАН) , а авторы после незначительного усовершенствования назвали их теплообменными аппаратами с насыщенным теплоносителем и конденсацией (ТАНТЕК). В обоих случаях нагреваемая дымовыми газами вода затем отдаёт полученную теплоту через стенку поверхностного встроенного теплообменника чистой воде (например, системы отопления). По сравнению с калориферами сопротивление таких утилизаторов значительно ниже, а в части теплообмена в системе дымовые газы — вода полностью аналогичны интересующим нас прямоточно-распылительным аппаратам. Однако есть и существенные отличия, о которых скажем ниже.

Разработчики аппаратов КТАН и ТАНТЕК не рассматривают в своих публикациях особенности теплопереноса при непосредственном контакте дымовых газов и воды, поэтому остановимся на них несколько подробнее.

Основные процессы в системе дымовые газы — вода.

Результат взаимодействия нагретых дымовых газов (по составу и свойствам это фактически влажный воздух) и воды (в виде капель того или иного размера), которую назовём теплоаккумулирующей средой (она может использоваться в качестве основного или промежуточного теплоносителя), определяется целым комплексом процессов.

Одновременно с нагреванием может происходить конденсация влаги на поверхности капель или испарение. Фактически возможны три варианта взаимного направления потоков теплоты и влаги (теплопередачи и массопередачи), которые зависят от соотношения температур фаз и соотношения парциальных давлений пара в пограничном слое (возле капли) и в ядре газового потока (рис. 1а).

При этом первый (верхний) случай, когда потоки теплоты и влаги направлены от капель к газу, соответствует испарительному охлаждению воды; второй (средний) — нагреванию капель при одновременном испарении влаги с их поверхности; третий (нижний) вариант, по которому теплота и влага направлены от газа к каплям, отражает нагревание воды с конденсацией паров. (Казалось бы, что должен существовать и четвёртый вариант, когда охлаждение капель и нагревание газа сопровождаются конденсацией влаги, однако на практике это не встречается.)

Все описанные процессы наглядно можно представить на диаграмме состояния влажного воздуха Рамзина (Н — х диаграмме, рис. 1б).

Уже из сказанного можно сделать вывод, что наиболее желателен третий вариант, но чтобы понять, как его обеспечить, необходимо дополнительно к изложенному в напомнить:

— количество водяных паров, содержащихся в 1 м3 влажного воздуха, называется абсолютной влажностью воздуха. Водяной пар занимает весь объём смеси, поэтому абсолютная влажность воздуха равна плотности водяного пара (в данных условиях) рп

— при насыщении воздуха паром наступает момент, когда начинается конденсация, т.е. достигается предельно возможное содержание пара в воздухе при данной температуре, что соответствует плотности насыщенного водяного пара рн;

— отношение абсолютной влажности к максимально возможному количеству пара в 1 м3 воздуха при данном давлении и температуре называется относительной влажностью воздуха ф;

— количество водяного пара в кг, приходящегося на 1 кг абсолютно сухого воздуха, называется влагосодержанием воздуха х;

— влажный воздух как теплоноситель характеризуется энтальпией / (теплосодержанием), являющейся функцией температуры и влагосодержания воздуха и равной сумме энтальпий сухого воздуха и водяного пара . В наиболее удобном для применения на практике виде формулу для расчёта энтальпии можно представить

I= (1000 + 1,97 . 103х) t+ 2493 . . 103х Дж/кг сухого воздуха, где 1000 — удельная теплоёмкость сухого воздуха, Дж/кг*град); 1,97*103 — удельная теплоёмкость пара, Дж/(кг*град); 2493*103 — постоянный коэффициент, примерно равный энтальпии пара при 0°С; t— температура воздуха, °С;

I = 0,24t + (595 + 0,47t) Xккал/кг сухого воздуха; где 595 — постоянный коэффициент, примерно равный энтальпии пара при 0°С; 0,24 — удельная теплоёмкость сухого воздуха, ккал/(кгтрад); 0,47 — теплоёмкость пара, ккал/(кгтрад);

— при охлаждении воздуха (в условиях постоянного влагосодержания) относительная влажность будет возрастать до тех пор, пока не достигнет 100%. Соответствующая этому температура называется температурой точки росы. Её значение определяется исключительно влагосодержанием воздуха. На диаграмме Рамзина это точка пересечения вертикальной прямой х = const с линией ф = 1.

Охлаждение воздуха ниже точки росы сопровождается конденсацией влаги, т.е. осушкой воздуха.

Некоторую путаницу вносят издания, приводящие значения точки росы для различных твёрдых и жидких топлив порядка 130-150°С. Надо иметь в виду, что это касается начала конденсации паров серной и сернистой кислот (обозначим eetpK), а не водяного пара (tp), о котором мы говорили выше. Для последнего температура точки росы значительно ниже (40-50°С).

Итак, три величины — расход, температура и влагосодержание (либо температура мокрого термометра) — в полной мере характеризуют дымовые газы как источник вторичных энергоресурсов.

При контакте воды с горячими газами первоначально происходит процесс нагревания жидкости и конденсации паров на поверхности холодных капель (соответствует 3-му варианту на рис. 1а) до тех пор, пока не будет достигнута температура, соответствующая точке росы для газа, т.е. граница перехода ко второму режиму (3-й вариант на рис. 1а). Далее, по мере нагревания воды и роста парциального давления пара у поверхности капель, количество теплоты, передаваемой им за счёт теплоотдачи Q1 будет уменьшаться, а количество теплоты, передаваемой от капель к дымовым газам за счёт испарения Q2, — возрастать. Продолжаться это будет до достижения равновесия (Q1= Q2), когда вся теплота, получаемая водой от дымового газа, будет возвращаться газу в виде теплоты испарения жидкости. После этого дальнейшее нагревание жидкости невозможно, и происходит её испарение при постоянной температуре. Достигаемая при этом температура называется температурой мокрого термометра tM(на практике определяют как температуру, показываемую термометром, шарик которого покрыт влажной тканью, с которой происходит испарение влаги).

Таким образом, если в утилизатор подавать воду с температурой, равной (или большей) tM, то будет наблюдаться адиабатическое (при постоянном теплосодержании) охлаждение газов и никакой теплоутилизации не будет (не считая негативных последствий — потерь воды и увлажнения газов).

Процесс становится более сложным, если учесть, что состав капель полидисперсный (обусловлен механизмами распада жидкостей при распылении). Мелкие капли мгновенно достигают tMи начинают испарятся, изменяя параметры газа в сторону увеличения влагосодержания, средние — могут находиться между tpи tM, а крупные — ниже tp, т.е.

нагреваются и конденсируют влагу. Всё это протекает одновременно при отсутствии чётких границ.

Всесторонне проанализировать результаты непосредственного контакта капель теплоаккумулирующей среды и горячих дымовых газов возможно только на основе математической модели, учитывающей весь комплекс явлений (одновременно протекающие тепло- и массоперенос, изменения параметров сред, аэродинамической обстановки, полидисперсный состав капельного потока и т.д.).

Описание модели и результатов анализа на её основе приведено в монографии , к которой мы и рекомендуем обратиться заинтересованному читателю. Здесь отметим лишь главное.

Для большинства дымовых газов температура мокрого термометра находится в пределах 45-55°С, т.е. вода в зоне непосредственного контакта с дымовыми газами, как отмечалось выше, может быть нагрета только до указанной температуры, хотя и с достаточно глубокой теплоутилизацией. Предварительное же увлажнение газов, как это предусматривается конструкцией ТАНТЕК, не только не приводит к увеличению количества утилизируемой теплоты, а даже к его снижению.

И, наконец, следует учитывать, что при утилизации теплоты даже из газов, не содержащих сернистые соединения, охлаждать их ниже 80°С не следует (затрудняется их эвакуация в окружающую среду через газоход и дымовую трубу).

Поясним сказанное на конкретном примере. Пусть дымовые газы после котла в количестве 5000 кг/ч, имеющие температуру 130°С и влагосодержание 0,05 кг/кг, контактируют с теплоутилизирующей средой (водой, tH= 15°С). Из Н—х диаграммы находим: tM= 49,5°С; tp= 40°С; I = 64 ккал/кг. Расчёты по модели показали, что при охлаждении газов до 80°С полидисперсным потоком капель со средним диаметром 480 мкм, влагосодержание фактически остаётся неизменным (испарение мелких капель компенсируется конденсацией на крупных), tMстановится равной 45°С, а теплосодержание I = 50 ккал/кг. Таким образом, утилизируется 0,07 Гкал/ч теплоты, а теплоаккумулирующая среда в количестве 2,5 м3/ч нагревается с 15 до 45°С.

Если же использовать ТАНТЕК и предварительно провести увлажнение — адиабатическое охлаждение газов до t- 100°С, а далее охлаждать до 80°С при X = const, то конечные параметры газа будут: tM = 48°С; I = 61,5°С. И хотя вода нагреется несколько выше (до 48°С), количество утилизируемой теплоты уменьшается в 4 раза и составит 0,0175 Гкал/ч.

Варианты организации утилизации теплоты.

Решение конкретной задачи утилизации теплоты дымовых газов зависит от ряда факторов, в том числе от наличия загрязняющих веществ (определяется видом сжигаемого топлива и объектом нагревания дымовыми газами), наличием потребителя теплоты или непосредственно горячей воды и т.д.

На первом этапе следует определить количество теплоты, которое в принципе может быть извлечено из имеющихся дымовых газов, и оценить экономическую целесообразность теплоутилизации, так как капитальные затраты на неё не пропорциональны количеству утилизируемой теплоты.

Если ответ на первый вопрос положительный, то следует оценить возможность использования умеренно нагретой воды (например, при сжигании природного газа направить её на подготовку подпиточной воды котлов или теплосети, а при загрязнении пылевыми частицами целевого продукта использовать на приготовление сырьевой массы, например в производстве керамических изделий и т.п.). Если вода слишком загрязнена, можно предусмотреть двухконтурную систему или теплоутилизацию сочетать с очисткой дымовых газов (получить более высокие (выше 45-5СРС) температуры или поверхностную ступень).

Вариантов организации процесса утилизации теплоты много. От выбора оптимального решения зависит экономическая эффективность мероприятия.

Литература:

1. Галустов B.C. Тепломассообменные процессы и аппараты с непосредственным контактом фаз в теплоэнергетике // Энергия и менеджмент.— 2003.— № 4.

2. Галустов B.C. Прямоточные распылительные аппараты в теплоэнергетике.— М.: Энергоатомиздат, 1989.

3. Суханов В.И. и др. Установки утилизации тепла и очистки дымовых газов паровых и водогрейных котлов.— М.: АКВА-ТЕРМ, июль 2001.

4. Плановский А.Н., Рамм В.М., Каган С.З. Процессы и аппараты химической технологии.— М.: Госхимиздат, 1962.—С.736-738.

Использование: энергетика, утилизация теплоты уходящих газов. Сущность изобретения: поток газов увлажняют путем его пропускания через пленку конденсата, сформированную на двухгранном дырчатом листе 4, где газы насыщаются водяными парами. В камере 2 над листом 4 происходит объемная конденсация водяных паров на пылевидных частицах и мельчайших капельках парогазового потока. Подготовленная парогазовая смесь охлаждается до температуры точки росы путем передачи тепла потока нагреваемой среды через стенку теплообменных элементов 8. Конденсат из потока выпадает на наклонные перегородки 5 с желобами 10 и далее поступает на лист 4 по сливной трубе 9. 1 ил.

Предлагаемое изобретение относится к области котельной техники, а более конкретно к сфере утилизации теплоты отходящих газов. Известен способ утилизации теплоты уходящих газов (СССР авт.св. N 1359556, МКИ F 22 В 33/18, 1986), являющийся ближайшим аналогом, при котором продукты сгорания последовательно принудительно увлажняются, сжимаются в компрессоре, охлаждаются до температуры ниже температуры точки росы совместно с конденсацией водяных паров при давлении выше атмосферного, сепарируются в сепараторе, расширяются с одновременным понижением температуры в турбодетандере и удаляются в атмосферу. Известен способ утилизации теплоты отходящих газов (ГДР, пат. N 156197, МКИ F 28 D 3/00, 1982) достигающийся противоточным движением в теплообменнике отходящих газов и промежуточной жидкой среды, нагревающейся до температуры больше температуры точки росы отходящих газов, которые охлаждаются до температуры ниже точки росы. Известен способ низкотемпературного нагрева с использованием высшей теплотворной способности топлива (ФРГ, заявка N OS 3151418, МКИ F 23 J 11/00, 1983), заключающийся в том, что в нагревательном устройстве сжигается топливо с образованием горячих газов, которые поступают в нагревательное устройство вперед и в сторону. На части тракта течения топливные газы направляются вниз с образованием конденсата. Топливные газы на выходе имеют температуру 40 45 o С. Известный способ позволяет производить охлаждение отходящих газов ниже температуры точки росы, что несколько повышает тепловую экономичность установки. Однако, при этом имеет место распыл конденсата через форсунки, что приводит к дополнительному расходу электроэнергии на собственные нужды и увеличивает содержание водных паров в продуктах сгорания. Включение в схему компрессора и турбодетандера, осуществляющих, соответственно, сжатие и расширение продуктов сгорания, не дает повышения экономичности, и, кроме того, приводит к дополнительному расходу электроэнергии, связанному с потерями в компрессоре и турбодетандере. Задачей изобретения является интенсификация теплообмена при глубокой утилизации теплоты уходящих газов. Поставленная задача решается благодаря тому, что увлажнение газового потока осуществляют путем его пропускания через пленку конденсата с насыщением потока водяными парами с последующей конденсацией последних, а также выпадением конденсата на упомянутую пленку и стеканием неиспарившейся части. Предлагаемый способ может быть реализован в устройстве, изображенном на чертеже, где: 1 сборник конденсата, 2 камера, 3 корпус, 4 двугранный неравносторонний наклонный дырчатый лист, 5 наклонные перегородки, 6 - суживающийся двумерный диффузор, 7 расширяющийся диффузор, 8 теплообменная поверхность, 9 сливная труба, 10 желоб, 11 сопрягаемая поверхность, 12 - сепаратор, 13 теплообменник перегрева, 14 дымосос, 15 дымовая труба, 16 гидрозатвор, 17 горизонтальная ось. Работа устройства по предлагаемому способу утилизации теплоты продуктов сгорания аналогична тепловой трубе атмосферного типа. Испарительная ее часть находится в нижней части камеры 2, из которой поднимается подготовленная парогазовая смесь, а конденсационная на теплообменных поверхностях 3, с которых по наклонным перегородкам 5 с желобами 10 через сливные трубы 9 конденсат стекает на двугранный неравносторонний дырчатый лист 4, а избыток - в сборник конденсата 1. Продукты сгорания, поступившие из теплообменника перегрева 13, барботируют пленку конденсата на двугранном неравностороннем наклонном дырчатом листе 4. Конденсат распыляется, нагревается и испаряется, а его излишек стекает в сборник конденсата 1. Дымовые газы насыщаются водяными парами при давлении, примерно равном атмосферному. Оно зависит от режима совместной работы вентилятора и дымососа 14. В камере 2 водяные пары находятся в пересыщенном состоянии, так как давление пара в газовой смеси больше давления насыщенного пара. Мельчайшие капельки, пылевидные частицы продуктов сгорания становятся центрами конденсации, на которых в камере 2 без теплообмена с окружающей средой идет процесс объемной конденсации водяных паров. Подготовленная парогазовая смесь конденсируется на теплообменных поверхностях 8. При температуре поверхности этих теплообменных элементов 8 существенно ниже температуры точки росы влагосодержание продуктов сгорания после утилизатора теплоты ниже исходного. Заключительной фазой этого непрерывного процесса является выпадение конденсата на наклонные перегородки 5 с жалобами 10 и его попадание на дырчатый лист 4 по сливной трубе 9. Подтверждением достижения поставленной задачи служит следующее: 1. Величина коэффициента теплопередачи увеличилась до 180 250 Вт/м 2 o C, что резко снижает площадь теплообменной поверхности и соответственно уменьшает массогабаритные показатели. 2. Уменьшение в 2,5 3 раза начального влагосодержания водяных паров в уходящих газах снижает интенсивность коррозионных процессов газового тракта и дымовой трубы. 3. Колебание нагрузки парогенератора не влияет на снижение эффективности котельной установки.

Формула изобретения

Способ утилизации теплоты уходящих газов, заключающийся в том, что поток газов увлажняют и охлаждают до температуры точки росы путем передачи тепла потока нагреваемой среде через стенку, отличающийся тем, что увлажнение газового потока осуществляют путем его пропускания через пленку конденсата с насыщением потока водяными парами с последующей конденсацией последних, а также выпадением конденсата на упомянутую пленку и стеканием неиспарившейся его части.

Методы утилизации тепла. Дымовые газы, покидающие рабочее пространство печей, имеют весьма высокую температуру и поэтому уносят с собой значитель­ное количество тепла. В мартеновских печах, например, из рабо­чего пространства с дымовыми газами уносится около 80 % всего тепла поданного в рабочее пространство, в нагревательных печах около 60 %. Из рабочего пространства печей дымовые газы уносят с собой тем больше тепла, чем выше их температура и чем ниже коэффициент использования тепла в печи. В связи с этим целесообразно обеспечивать утилизацию тепла отходящих ды­мовых газов, которая может быть выполнена принципиально двумя методами: с возвратом части тепла, отобранного у дымовых газов, обратно в печь и без возврата этого тепла в печь. Для осуществления первого метода необходимо тепло, отобранное у дыма, передать идущим в печь газу и воздуху (или только воздуху)-Для достижения этой цели широко используют теплообменники рекуперативного и регенеративного типов, применение которых позволяет повысить к. п. д. печного агрегата, увеличу температуру горения и сэкономить топливо. При втором методе утилизации тепло отходящих дымовых газов используется в теплосиловых котельных и турбинных установках, чем достигается существенная экономия топлива.

В отдельных случаях оба описанных метода утилизации тепла отходящих дымовых газов используются одновременна Это делается тогда, когда температура дымовых газов поеле теплообменников регенеративного или рекуперативного типа остается достаточно высокой и целесообразна дальнейшая утилизация тепла в теплосиловых установках. Так, например, в мартенсвских печах температура дымовых газов после регенераторов вставляет 750-800 °С, поэтому их повторно используют в котлах-утилизаторах.

Рассмотрим подробнее вопрос утилизации тепла отходящих дымовых газов с возвратом части их тепла в печь.

Следует прежде всего отметить, что единица тепла, отобранная у дыма и вносимая в печь воздухом или газом (единица физического тепла), оказывается значительно ценнее единиц тепла, полученной в печи в результате сгорания топлива (единицы химического тепла), так как тепло подогретого воздуха (газа) не влечет за собой потерь тепла с дымовыми газами. Ценность еди- ницы физического тепла тем больше, чем ниже коэффициент ис- пользования топлива и чем выше температура отходящих дымовых газов.

Для нормальной работы печи следует каждый час в рабочее пространство подавать необходимое количество тепла. В Э то ко­личество тепла входит не только тепло топлива Q х, но и тепло подогретого воздуха или газа Q Ф, т. е. Q Σ = Q х + Q ф

Ясно, что при Q Σ = сопst увеличение Q ф позволит Уменьшить Q х. Иными словами, утилизация тепла отходящих дымовых газов позволяет достичь экономии топлива, которая зависит от степени утилизации тепла дымовых газов

R = Н в / Н д

где Н в и Н д - соответственно энтальпия подогретого воздуха и отходящих из рабочего пространства дымовых газов, кВт или

кДж/период.

Степень утилизации тепла может быть также названа КРД рекуператора (регенератора), %

кпд р = (Н в / Н д) 100%.

Зная величину степени утилизации тепла, можно Определить экономию топлива по следующему выражению:

где Н " д и Н д - соответственно энтальпия дымовых газов при темпе­ратуре горения и покидающих печь.

Снижение расхода топлива в результате использования тепла отходящих дымовых газов обычно дает значительный экономи­ческий эффект и является одним из путей снижения затрат на на­грев металла в промышленных печах.

Кроме экономии топлива, применение подогрева воздуха (газа) сопровождается увеличением калориметрической темпера­туры горения Т к, что может являться основной целью рекупера­ции при отоплении печей топливом с низкой теплотой сгорания.

Повышение Q Ф при приводит к увеличению тем­пературы горения. Если необходимо обеспечить определенную величину Т к, то повышение температуры подогрева воздуха (газа), приводит к уменьшению величины , т. е. к снижению доли в то­пливной смеси газа с высокой теплотой сгорания.

Поскольку утилизация тепла позволяет значительно экономить топливо, целесообразно стремиться кмаксимально возможной, экономически оправданной степени утилизации. Однако необхо­димо сразу заметить, что утилизация не может быть полной, т. е. всегда R < 1. Это объясняется тем, что увеличение поверхности нагрева рационально только до определенных пределов, после которых оно уже приводит кочень незначительному выигрышу в экономии тепла.

Характеристика теплообменных устройств. Как уже указывалось, утилизацию тепла отходящих дымовых газов с возвратом их в печь можно осуществить в теплообменных устройствах регенеративного и рекуперативного типов. Регенера­тивные теплообменники работают при нестационарном тепловом состоянии, рекуперативные - при стационарном.

Теплообменники регенеративного типа имеют следующие основ­ные недостатки:

1) не могут обеспечить постоянную температуру подогрева воз­духа или газа, которая падает по мере остывания кирпичей на­садки, что ограничивает возможность применения автоматического регулирования печи;

2) прекращение питания печи теплом при перекидке клапанов;

3) при подогреве топлива имеет место вынос газа через ды­мовую трубу, величина которого достигает 5-6 % полного рас­хода;

4) весьма большие объем и масса регенераторов;

5) неудобно расположены - располагают керамические реге­нераторы всегда под печами. Исключение составляют только кау­перы, помещаемые около доменных печей.

Однако, несмотря на очень серьезные недостатки, регенератив­ные теплообменники иногда еще применяют на высокотемператур­ных печах (мартеновских и доменных печах, в нагревательных колодцах). Это объясняется тем, что регенераторы могут работать при весьма высокой температуре дымовых газов (1500-1600 °С). При такой температуре рекуператоры работать устойчиво пока не могут.

Рекуперативный принцип утилизации тепла отходящих дымо­вых газов более прогрессивен и совершенен. Рекуператоры обе­спечивают постоянную температуру подогрева воздуха или газа и не требуют никаких перекидных устройств - это обеспечивает более ровный ход печи и большую возможность для автоматизации и контроля ее тепловой работы. В рекуператорах отсутствует вы­нос газа в дымовую трубу, они меньшего объема и массы. Однако рекуператорам свойственны и некоторые недостатки, основными из которых являются низкая огнестойкость (металлических реку­ператоров) и низкая газоплотность (керамических рекуператоров).

Общая характеристика теплообмена в рекуператорах. Рассмотрим общую характеристику теплообмена в рекуператоре. Рекуператор представляет собой теплообменный аппа­рат, работающий в условиях стационарного теплового состояния, когда тепло постоянно передается от остывающих дымовых газов к нагревающемуся воздуху (газу) через разделительную стенку.

Полное количество тепла, переданного в рекуператоре, опре­деляют по уравнению

Q = К Δt ср F ,

где К - суммарный коэффициент теплопередачи от дыма к воз­духу (газу), характеризующий общий уровень тепло­передачи в рекуператоре, Вт/(м 2 -К);

Δt ср - средняя (по всей поверхности нагрева) разность темпе­ратур между дымовыми газами и воздухом (газом), К;

F - поверхность нагрева, через которую происходит пе­редача тепла от дымовых газов к воздуху (газу), м 2 .

Теплопередача в рекуператорахвключает в себя три основные ступени передачи тепла: а) от дымовых газов к стенкам рекупера­тивных элементов; б) через разделительную стенку; в) от стенки к нагреваемому воздуху или газу.

На дымовой стороне рекуператора тепло от дымовых газов к стенке передается не только конвекцией, но и излучением. Сле­довательно, локальный коэффициент теплоотдачи на дымовой стороне равен

где - коэффициент теплоотдачи от дымовых газов к стенке

конвекцией, Вт/(м 2 ·°С);

Коэффициент теплоотдачи от дымовых газов к стенке

путем излучения, Вт/(м 2 ·°С).

Передача тепла через разделительную стенку зависит от теп­лового сопротивления стенки и состояния ее поверх­ности.

На воздушной стороне рекуператора при нагреве воздуха тепло от стенки к воздуху передается только конвекцией, при нагреве газа - конвекцией и излучением. Таким образом, при нагреве воздуха теплоотдача определяется локальным коэффи­циентом теплоотдачи конвекцией ; если нагревается газ, то коэффициент теплоотдачи

Все отмеченные локальные коэффициенты теплоотдачи объеди­нены в суммарном коэффициенте теплопередачи

, Вт/(м 2 ·°С).

В трубчатых рекуператорах суммарный коэффициент тепло­передачи следует определять для цилиндрической стенки (линей­ный коэффициент теплопередачи)

, Вт/(м·°С)

Коэффициент К называется коэффициентом теплопередачи трубы. Если же необходимо отнести количество тепла к площади внутренней или наружной поверхности трубы, то суммарные коэффициенты теплопередачи можно определить следующим об­разом:

,

где a 1 - коэффициент теплоотдачи на внутренней стороне

трубы, Вт/(м 2 ·°С);

a 2 - то же, на наружной стороне трубы, Вт/(м 2 ·°С);

r 1 и r 2 - соответственно радиусы внутренней и наружной

поверхностей трубы, м. В металлических рекуператорах можно пренебречь величиной теплового сопротивления стенки , и тогда суммарный коэффи­циент теплопередачи можно записать в следующем виде:

Вт/(м 2 ·°С)

Все локальные коэффициенты теплоотдачи, необходимые для определения величины К, можно получить на основании законов теплоотдачи конвекцией и излучением.

Поскольку между воздушной и дымовой сторонами рекупера­тора всегда есть перепад давлений, наличие неплотностей в реку­перативной насадке приводит к утечке воздуха, достигающей иногда 40-50%. Прососы резко снижают эффективность рекуперативных установок; чем больше прососанного воздуха, тем меньше доля тепла, полезно использованного в керамическом рекуператоре (см. ниже):

Утечка, % 0 25 60

Конечная температура дымовых газов,

°С 660 615 570

Температура подогрева воздуха, °С 895 820 770

КПД рекуператора (без учета по-

терь), % 100 84 73,5

Утечка воздуха влияет на величину локальных коэффициентов теплоотдачи, причем воздух, попавший в дымовые газы, не только

Рис. 4. Схемы движения газовых сред в теплообменниках рекуперативного типа

снижает их температуру, но и уменьшает процентное содержание С0 2 и Н 2 0, вследствие чего ухудшается излучательная способ­ность газов.

Как при абсолютно газоплотном рекуператоре, так и при утечке локальные коэффициенты теплоотдачи меняются по поверхности нагрева, поэтому при расчете рекуператоров определяют отдельно величины локальных коэффициентов теплоотдачи для верха и низа и затем уже по усредненному значению находят суммарный коэффициент теплопередачи.

ЛИТЕРАТУРА

  1. Б.А.Арутюнов, В.И. Миткалинный, С.Б. Старк. Металлургическая теплотехника, т.1, М, Металлургия, 1974, с.672
  2. В.А.Кривандин и др. Металлургическая теплотехника, М, Металлургия, 1986, с.591
  3. В.А.Кривандин, Б.Л. Марков. Металлургические печи, М, Металлургия, 1977, с.463
  4. В.А.Кривандин, А.В.Егоров. Тепловая работа и конструкции печей черной металлургии, М, Металлургия, 1989, с.463