Неметаллы 6 а группы. Р-Элементы VI группы. Химические свойства серы

13541 0

В 16 группу входят O, S, Se, Te, Po (табл. 1 и 2). Валентная оболочка элементов этой группы образована двумя электронами на s-орбитали и четырьмя - на р-орбитали (s 2 p 4). Слово «халькоген» происходит от двух греческих слов, означающих «медь» и «рожденный». Большинство медных руд состоит из соединений меди с кислородом и серой, а часть из них содержат также Se и Те . Важнейшие методы руды содержат соединения с серой, например, «халькозин» - сульфид меди(I) Cu 2 S , «халькопирит» - CuFeS 2 . Элементы, имеющие сродство к сере, называют халькофилами . К их числу относят Cu, Pb, Zn, Hg, As, Sb . Известны руды с этими металлами - «галенит» (свинцовый блеск PbS ), «сфалерит» (цинковая обманка ZnS ), «киноварь» (HgS ), «реальгар» (As 4 S 4), «стибнит» (Sb 2 S 3).

Таблица 1. Некоторые физические и химические свойства металлов 16 группы


Название

Относит, ат. масса

Электронная формула

Радиус, пм

Основные изотопы (%)

Кислород Oxygen [от греч. оху genes -образующий кислоты]

ковалентный (простая связь) 66

Сера Sulfur [санскрит, sulvere — сера, лат. Sulphurium]

атомный 104(S 8)

ковалентный 104

Селен Selenium [от греч. Selene - Луна]

3d 10 4s 2 4р 4

атомный 215,2 (серый)

ковалентный 117

Теллур Tellurium [от лат. tellus — земля]

4d 10 5s 2 5 Р 4

атомный 143,2,

ковалентный 137

128 Те (31,73)

Полоний Polonium [в честь Польши]

4f 14 5d 10 6s 2 6р 4

атомный 167,

ковалентный 153

210,211*,216,218 Po (следы)

Как правило, элементы 16 группы образуют соединения, в которых они имеют степень окисления -2, в особенности в соединениях с Н и реакционно-способными металлами. В окислах наиболее часто проявляют валентность +4 и +6. Как р-элементы других групп, при перемещении к нижней части группы обнаруживают постепенную смену неметаллических свойств на металлические: О и S — типичные неметаллы, Se и Те — полуметаллы, Ро — металл (высокорадиоактивный).

Таблица 2. Содержание в организме, токсическая (ТД) и летальная дозы (ЛД) металлов 16 группы


В земной коре (%)

В океане (%)

В человеческом организме

Среднее (при массе тела 70 кг)

Кровь (мг/л)

Входит в состав воды

нетоксичен в виде О 2 ,

токсичен в виде О,

нетоксичен

(0,15-1,8)х10 -11

(0,42-1,9) х10 -4

ТД 5 мг, ЛД нд

(0,7-1,9)х10 -11

ТД 0,25 мг, ЛД 2 г

Следы в урановых рудах

Кислород (О) — бесцветный газ, не имеющий запаха. Чрезвычайно реакционноспособен, образует окислы со всеми элементами, кроме благородных газов. В промышленности его используют при выплавке стали, резке металлов и в химических производствах. Кислородсодержащие соединения с Н, Si, Са, Al, F e составляют 49% массы земной коры, 89% массы мирового океана и, в виде двухатомных молекул О 2 , 21% земной атмосферы. Входит в состав многих сотен тысяч соединений, необходим для жизни, поскольку участвует в процессах дыхания живых организмов. Является важнейшим фактором химической и биологической эволюции на Земле. Нарушение процессов нейтрализации активных форм О 2 , образующихся при метаболизме, как полагают, ускоряет процессы старения организма.

Кислород имеет высокую электроотрицательность (3,5 по соответствующей шкале), что обеспечивает сильные окислительные свойства. Реакции образования оксидов высокоэкзотермичны, и могут сопровождаться возгоранием соединяющегося с О 2 элемента или образующегося соединения. Благодаря небольшому размеру атома в совокупности с высокой электроотрицательностью кислород способен стабилизировать атомы других элементов в состояниях с высокой степенью окисления, например, в Сl 2 O 7 2- или в Сr 2 O 7 2- . Оксиды металлических элементов обычно имеют основные свойства, а оксиды неметаллических — кислотные. Поэтому они могут соединяться друг с другом с образованием солей.

Существует классификация оксидов по составу: 1. Нормальные оксиды содержат связи только между элементом и кислородом, например, MgO , SO 3 , SiO 2 . 2. Пероксиды содержат связи не только между элементом и кислородом, но и между двумя атомами кислорода, например, Na 2 O 2 и Н 2 O 2 . Пероксиды являются сильными окислителями. 3. Смешанные оксиды представляют собой смесь двух оксидов, например, тетраоксид трисвинца (красный сурик) Рb 3 O 4 — смесь двух частей РbО и одной части РbO 2 .

Одним из аллотропов кислорода является трехатомный озон (O 3), который в природе образуется в верхних слоях атмосферы под действием ультрафиолетового излучения Солнца или в электрических разрядах при грозах. В лабораторных условиях озон получают в озонаторах, пропуская O 2 через слабый электрический разряд. В настоящее время озон используют для обеззараживания питьевой воды на водопроводных станциях, поскольку он является более сильным окислителем, чем обычный O 2 . Озон при попадании в организм поражает легкие, образуя перекисные метаболиты.

O 2 обладает выраженным сродством к электрону (142 кДж/моль). Это обеспечивает высокую способность к образованию анионного супероксид-иона *O 2 - , который является радикалом с высокой реакционной способностью. Эти свойства супероксид-ионов обусловливают их высокую токсичность. Гипероксия и избыток озона инициируют гомолитическое (когда обобществленные электроны при разрыве связи распределяются поровну между двумя атомами) расщепление химических связей у биомолекул. При этом образуются радикалы с неспаренным электроном. Например, при реакции ROOH с О 2- образуются углеродпероксидный *ROO - и водородпероксидный *НОО - радикалы. Супероксид-ион активно реагирует с органическими веществами вида RH, особенно с имеющими непредельные связи. Образующиеся органические радикалы инициируют цепной процесс окисления органических веществ. Накопленные органические пероксиды в норме разрушаются пероксидазами , а также антиоксидантами — токоферолом (витамин Е) и тиоловыми соединениями (глутатион, цистеин ).

В здоровом организме существует несколько уровней механизмов защиты от кислородных радикалов: цитохромоксидазы (почти не повреждаемые избытком кислорода), различные амины, γ-аминомасляная кислота и др.

Сера (S) — встречается в природе в самородном виде, а также в сульфидных рудах металлов (например, в пирите — «железный колчедан» — FeS 2 , цинковой обманке ZnS , галените PbS ), в природном газе H 2 S . Сера — ключевой элемент для химической промышленности. Имеет несколько аллотропных модификаций, наиболее устойчивы энантиотропы S 8 . Они состоят из ромбической лимонно-желтой α-серы и моноклинной медово-желтой β-серы . Среди других аллотропов известны черенковая, аморфная, коллоидная и пластическая сера. Морская вода содержит сульфат-ионы.

Атомы S имеют во внешней оболочке по 6 электронов и могут присоединять на свои полузаполненные Зр-орбитали еще по два электрона с образованием сульфидного иона S 2- . Атомы могут существовать в состояниях с валентностью -2, +2, +4, +6. Известно несколько оксидов, из которых наиболее значимы два: диоксид SO 2 и триоксид SO 3 .

Диоксид серы — плотный бесцветный газ с резким удушливым запахом, легко растворяющийся в воде с образованием слабой сернистой кислоты. Применяется в целлюлозной промышленности, для отбеливания тканей, как антисептик для длительного хранения овощей и фруктов. В атмосфере, окисляясь до триоксида, вызывает образование кислотных дождей. Его окисление катализируют содержащиеся в атмосфере следовые количества железа и марганца.

Триоксид является мощным окислителем, обладает выраженными кислотными свойствами. Реагирует с водой экзотермически, образуя сильную серную кислоту. Насыщенный раствор MgSO 4 *7H 2 O («английская соль») используют в медицине в качестве противовоспалительного средства.

Сера является одним из 6 органогенов (С, Н, N, О, S, Р ), составляющих основную массу органических молекул. Входит в состав биологических тканей всех живых существ в виде аминокислот цистеина, цистина и метионина. Как и фосфор, выполняет функцию переносчика функциональных групп и энергии. Наличие спаренных остатков цистеина обусловливает образование в белках дисульфидных связей (-S-S -), определяющих их пространственное строение. Сульфгидрильные («тиольные») группы (-SH ) молекулы цистеина входят в состав активных центров многих ферментов.

S легко отдает электроны атомам металлов, образуя координационные соединения с высокими константами устойчивости, например, в структурах с высоким содержанием кератина (волосы, ногти, перья, когти, копыта).

Три последних элемента 16 группы (Se, Те, Ро ) образуют 6-валентные фториды, хотя процесс окисления затруднен, особенно у элементов, расположенных ниже в Периодической системе. Обладают эффектом инертной пары — поведением элемента, словно два его валентных электрона отсутствуют. Селениды, теллуриды и полониды металлов почти всегда изоморфны с соответствующими сульфидами. Это объясняет их совместное с серой присутствие в природе.

Селен (Se) — встречается в некоторых сульфидных рудах. Его получают при электролитической очистке меди (как побочный продукт) в виде серебристой аллотропной модификации, кристаллическая структура которой состоит из геликоидальных (закрученных в одну сторону) цепей Se ∞ или в виде менее устойчивого красного аморфного порошка, состоящего из циклов Se 8 в форме короны. На воздухе селен горит. Ниже точки плавления (490°К) является полупроводником. Важным свойством Se является способность вырабатывать электрический ток на свету. Поэтому его используют в фотоэлектрических ячейках, фотокопировальных аппаратах, солнечных батареях и полупроводниках.

В оксидах чаще всего проявляет степень окисления +4 и +6. Оксидам соответствуют селенистая (H 2 SeO 3 ) и селеновая (H 2 SeO 4 ) кислоты. Как триоксид серы, SeO 3 является сильным окислителем, но из-за термодинамической неустойчивости селенаты в живых организмах восстанавливаются до селенитов, которые могут легко реагировать с сульфгидрильными группами биоорганических соединений. Кислоты двухосновны и образуют по два набора солей с ионами металлов.

Многие соединения Se очень токсичны, особенно H 2 Se . ПДК селеноводорода на порядок ниже, чем у такого известного яда, как синильная кислота HCN . Даже в очень низких концентрациях он вызывает головную боль и тошноту, а в высоких концентрациях — острое раздражение слизистых. Все селениды, многие органические соединения Se , растворимые селениты и селенаты при попадании на кожу вызывают экзему и местное воспаление. Интоксикация селенидами проявляется нарушениями обоняния и повышенным потоотделением; их выделение из организма происходит медленно. Сравнительно безвредными из соединений селена оказываются только сульфиды от Se 2 S до SeS 3 (Бэгналл, 1971). Сульфид SeS 2 используют в косметике. Избыток Se в почве вызывает у скота заболевание «алколоиз».

С органическими кислотами Se образует соли с валентностью +2. Известны только простые соли: метилтиосульфонаты Se(S 2 O 2 CH 3) 2 , диалкилди-тиокарбаматы Se(S 2 CNR 2) 2 и алкилксантогенаты Se(S 2 COR) 2 . Они легко разрушаются при нагревании. Известны также разнообразные углеродные соединения, от простых селенидов углерода CSe 2 и CSSe до насыщенных и ненасыщенных гетероциклических молекул типа селенантрена, циклоселенопропана и селенонафтена (рис. 1). Биологические реакции углеродных соединений Se изучены слабо.

Рис. 1.

При хроническом воздействии Se накапливается в печени и почках, а также в других органах: в заметных количествах в костях, волосах и ногтях, в минимальных — в головном мозге. Se входит в состав селенопротеинов, в частности, простетической группы глутатионпероксидазы , которая вместе с токоферолом (витамин Е) защищает клеточные мембраны от повреждения свободными радикалами. Высокоактивные свободнорадикальные соединения могут образовываться в ряде важных процессов, например, при активации фагоцитов или воздействии ионизирующего излучения.

Селепопротеипами являются такие важные ферменты, как дейодииаза , обеспечивающая гомеостаз тироксина и через кальцитонин — гомеостаз Са , селенопротеин N , регулирующий регенерацию миоцитов. По-видимому, селенопротеины играют существенную роль в противовирусной защите организма. Дефицит селена выявлен в некоторых районах Китая и проявляется эндемической кардиомиопатией («болезнь Кешана»). Антиокислительные свойства Se используют для профилактики рака.

Теллур (Те) — сопутствует другим металлам (например, золоту в минерале калаверите ); его получают из анодного шлама при очистке меди. Встречается в виде редкого минерала теллурита . Чистый металлический Те выглядит серебристо-белым, на воздухе горит, в любом виде токсичен. Пары имеют чесночный запах. В промышленности его используют в сплавах для улучшения их механических свойств, для получения химических реактивов, катализаторов, в электронике — в качестве полупроводника.

Полоний (Ро) — очень редкий и летучий радиоактивный серебристо-серый металл. Образуется при бомбардировке атомов висмута нейтронами. Его используют как источник тепла в космическом оборудовании и источник а-частиц для научных исследований. Чрезвычайно ядовит из-за большой энергии распада.

Медицинская бионеорганика. Г.К. Барашков

§8 Элементы VI А группы.

Кислород, сера, селен, теллур, полоний.

Элементы

Валентная электронная конфигурация

Атомный радиус,нм

Ионный радиус,нм

Потенциал ионизации,еВ

Температура пл. 0 С

Температура кип. 0 С

Плотность,г/м 3

Общие сведения элементов VI А группы:

Элементы VI А группы (кроме полония) называются халькогенидами. На внешнем электронном уровня этих элементов находятся шесть валентных электронов (ns 2 np 4),поэтому они в нормальном состоянии проявляют валентность 2, а в возбужденном -4 или 6 (кроме кислорода). Атом кислорода отличается от атомов других элементов подгруппы отсутствием d-подуровня во внешнем электронном слое, что обуславливает большие энергетические затраты на «распаривание» его электронов, некомпенсируемые энергией образования новых ковалентных связей. Поэтому ковалентность кислорода равна двум. Однако в некоторых случаях атом кислорода, обладающий неподеленными электронными парами, может выступать в качестве донора электронов и образовывать дополнительные ковалентные связи по донорно-акцепторному механизму.

Электроотрицательность этих элементов постепенно уменьшается в порядке О-S-Se-Те-Ро. Cтепень окисления от -2,+2,+4,+6 . Увеличивается радиус атома, что ослабляет неметаллические свойства элементов.

Элементы этой подгруппы образуют с водородом соединения вида H 2 R (H 2 О,H 2 S,H 2 Se,H 2 Те,H 2 Ро).Эти соединения растворяясь в воде, образуют кислоты. Кислотные свойства увеличиваются в направлении H 2 О→H 2 S→H 2 Se→H 2 Те→H 2 Ро. S,Se и Те образуют с кислородом соединения типа RO 2 и RO 3. Из этих оксидов образуются кислоты типа H 2 RO 3 и H 2 RO 4. С увеличением порядкового номера,силы кислот уменьшаются. Все они имеют окислительные свойства. Кислоты типа H 2 RO 3 проявляют и восстановительные свойства.

Кислород

Природные соединения и получения: Кислород - самый распространенный элемент земной коры. В свободном состоянии он находится в атмосферном воздухе (21%); в связанном виде входит в состав воды (88,9%), минералов, горных пород и всех веществ, из которых построены организмы растений и животных. Атмосферный воздух представляет собой смесь многих газов, основную часть которой составляют азот и кислород, и небольшое количество благородные газы, углекислый газ и водяные пары. Углекислый газ образуется в природе при горении дерева, угля и других видов топлива, дыхании животных, гниении. В некоторых местах земного шара CO 2 выделяется в воздух вследствие вулканической деятельности, а также из подземных источников.

Природный кислород состоит из трех стабильных изотопов: 8 16 О(99,75%), 8 17 О(0,04), 8 18 О(0,20). Искусственным путем были также получены изотопы 8 14 О, 8 15 О, 8 19 О.

Кислород был получен впервые в чистом виде К.В.Шееле в 1772 г., а затем в 1774 г. Д.Ю.Пристли, который выделил его из HgO. Однако Пристли не знал, что полученный им газ входит в состав воздуха. Только спустя несколько лет Лавуазье,подробно изучивший свойства этого газа, установил, что он является основной частью воздуха.

В лаборатории кислород получается следующими методами:

Э лектролизом воды. Чтобы увеличить электропроводность воды в нее добавляют раствор щелочи (обычно 30%-ый KOH) или сульфаты щелочных металлов:

В общем виде: 2H 2 О →2H 2 +О 2

На катоде: 4H 2 О+4e¯→ 2H 2 +4OH¯

На аноде: 4OH−4е→2H 2 О+О 2

- Разложением кислородосодержащих соединений:

Термическое разложение Бертолетовой соли под действием катализатора MnO 2.

KClO 3 →2KCl+3О 2

Термическое разложение перманганата калия

KMnO 4 →K 2 MnO 4 +MnO 2 +О 2.

Термическое разложение нитратов щелочных металлов:

2KNO 3 →2KNO 2 +О 2.

Разложением пероксидов:

2H 2 О 2 →2H 2 О+О 2.

2ВаО 2 →2ВаО+О 2.

Термическим разложением оксида ртути (II):

2HgO→2HgO+О 2.

Взаимодействием пероксидов щелочных металлов с оксидом углерода (IV):

2Na 2 О 2 +2CO 2 →2Na 2 CO 3 +О 2.

Термическим разложением хлорной извести в присутствии катализатора - солей кобальта:

2Ca(OCl)Cl →2CaCl 2 +О 2.

Окислением пероксида водорода перманганатом калия в кислой среде:

2KMnO 4 +H 2 SO 4 +5H 2 О 2 →K 2 SO 4 +2Mn SO 4 +8H 2 О+5О 2.

В промышленности: В настоящее время в промышленности кислород получают фракционной перегонкой жидкого воздуха. При слабом нагревании жидкого воздуха из него сначала отделяется азот (t кип (N 2)=-196ºC), затем выделяется кислород (t кип (О 2)=-183ºС).

Кислород полученный этим способом содержит примеси азота. Поэтому для получения чистого кислорода полученную смесь заново дистиллируют и в конечном итоге получается 99,5% кислород. Кроме того некоторое количество кислорода получают электролизом воды. Электролитом служит 30% раствор KOH.

Кислород обычно хранят в баллонах синего цвета под давлением 15МПа.

Физико-химические свойства: Кислород - газ без цвета, запаха, вкуса, немного тяжелее воздуха, слабо растворяется в воде. Кислород при давлении 0,1 МПа и температуре -183ºС переходит в жидкое состояние, при -219ºС замерзает. В жидком и твердом состоянии притягивается магнитом.

Согласно методу валентных связей строение молекулы кислорода, представленное схемой -:Ö::Ö:, не объясняет большую прочность молекулы, имеющей паромагнитные свойства, то есть неспаренные электроны в нормальном состоянии.

В результате связи электронов двух атомов образуется одна общая электронная пара, после этого неспаренный электрон в каждом атоме образует взаимную связь с неразделенной парой другого атома и между ними образуется трех электронная связь. В возбужденном состоянии молекула кислорода проявляет диамагнитные свойства, которым соответствует строение по схеме:Ö=Ö:,

Для заполнения электронного уровня в атоме кислорода не хватает двух электронов. Поэтому кислород в химических реакциях может легко присоединять два электрона и проявлять степень окисления -2. Кислород только в соединениях с более электроотрицательным элементом фтором проявляет степень окисления +1 и +2: О 2 F 2 ,ОF 2.

Кислород - сильный окислитель. Он не взаимодействует только с тяжелыми инертными газами (Kr,Xe,He,Rn), с золотом и платиной. Оксиды этих элементов образуются другими путями. Кислород входит в реакции горения, окисления как с простыми веществами так и со сложными. При взаимодействии неметаллов с кислородом образуются кислотные или соленеобразующие оксиды, а при взаимодействии металлов образуются амфотерные или смешанные оксиды Так, с фосфором кислород реагирует при температуре ~ 60 °С,

4P+5О 2 → 2Р 2 О 5

С металлами- оксиды соответствующих металлов

4Al + 3O 2 → 2Al 2 O 3

3Fe + 2O 2 → Fe 3 O 4

при нагревании щелочных металлов в сухом воздухе только литии образует оксид Li 2 O, а остальные-пероксиды и супероксиды:

2Na+O 2 →Na 2 O 2 K+O 2 →KO 2

С водородом кислород взаимодействует при 300 °С:

2Н 2 + О 2 = 2Н 2 О.

При взаимодействии с фтором он проявляет восстановительные свойства:

O 2 + F 2 = F 2 O 2 (в электрическом разряде),

с серой - при температуре около 250 °С:

S + О 2 = SO 2 .

С графитом кислород реагирует при 700 °С

С + О 2 = СО 2 .

Взаимодействие кислорода с азотом начинается лишь при 1200°С или в электрическом разряде:

N 2 + О 2 2NО - Q.

Кислород реагирует и со многими сложными соединениями, например, с оксидом азота (II) он реагирует уже при комнатной температуре:

2NО + О 2 = 2NО 2 .

При окислении сероводорода, при нагревании, образуется сера, или оксид серы (IV) в зависимости от соотношения между кислорода и сероводорода:

2Н 2 S + О 2 = 2S + 2Н 2 О

2Н 2 S + ЗО 2 = 2SО 2 + 2Н 2 О

В большинстве реакций окисления с участием кислорода выделяется тепло и свет - такие процессы называются горением.

Озон

Озон-O 3 -вторая аллотропная модификация элемента кислорода. Молекула O 3 имеет угловое строение (угол между связями 116º, длинна связи О=О, l=0,1278нм) При н.у. это газ синего цвета. Жидкий озон- темно-синего цвета. Он ядовит и взрывчат особенно в жидком и твердом состоянии). Озон образуется в атмосфере при грозовых разрядах, и имеет специфический запах свежести.

Обычно озон получают в озонаторах пропусканием тихого электрического разряда через кислород (реакция эндотермическая и сильно обратима; выход озона составляет 5%):

3О 2 2О 3 ΔН=-285 кДж. В лабораторных условиях озон получают при подкислении азотной кислотой персульфата

(NH 4) 2 S 2 O 8 →H 2 S 2 O 8 +2NH 4 +

H 2 S 2 O 8 →2SO 2 +O 3 +H 2 O

O 3 образуется с небольшим выходом в результате реакции:

3F 2 +H 2 O(г)→6HF+O 3

O 3 -сильнейший окислитель, окисляет все металлы,(кроме золота и платиновых металлов) и большинство неметаллов. Он переводит низшие оксиды в высшие, а сульфиды металлов- в их сульфаты. В реакциях с участием О 3 обычно образуется О 2 , например:

2Ag+O 3 →Ag 2 O+O 2

PbS+4O 3 →PbSO 4 +4O 2

NH 2 +3O 3 →HNO 2 +H 2 O

Pb(OH) 2 +O 3 →PbO 2 +H 2 O+O 2

При воздействии O 3 на щелочные металлы можно получить озониды- неустойчивые соединения, которые разлагаются:

2KO 3 →2KO 2 +O 2

Как сильный окислитель,озон убивает бактерии и потому применяется для дезинфекции воздуха. Устойчивый слой озона находится в атмосфере на высоте~22км. Этот озоновый слой защищает Землю от губительного для жизни чистого ультрафиолетового излучения.

При взаимодействии озона с раствором иодида калия выделяется йод, тогда как с кислородом эта реакция не идет:

2КI + О 3 + Н 2 О = I 2 + 2КОН + О 2 .

Реакция часто используется как качественная для обнаружения ионов I - или озона. Для этого в раствор добавляют крахмал, который дает характерный синий комплекс с выделившимся йодом, причем качественная еще и потому, что озон не окисляет ионы Сl - и Br - .

Вода

Физические и химические свойства воды: Чистая вода представляет собой есцветную, без вкуса, запаха, прозрачную жидкость. Плотность воды при переходе ее из твердого состояния в жидкое не уменьшается, как почти у всех других веществ, а возрастает.

Вода-вещество привычное и необычное. Нет на земле вещества, более важного для нас, чем обыкновенная вода, и в то же время не существует другого вещества, в свойствах которого было бы столько противоречий и аномалий, сколько в ее свойствах.

Почти ¾ поверхности нашей планеты занято океанами и морями. Твердой водой- снегом и льдом- покрыто 20% суши. От воды зависит климат планеты. Геофизики утверждают, что Земля давно бы остыла и превратилась в безжизненный кусок камня, если бы не вода. У нее очень большая теплоемкость. Нагреваясь, она поглощает тепло, остывая, отдает его. Земная вода и поглощает и возвращает очень много тепла, тем самым выравнивает климат. От космического холода предохраняют Землю те молекулы, которые рассеяны в атмосфере- в облаках и в виде паров.

Вода по физическим свойствам существенно отличается от других растворителей: При 4ºС вода имеет максимальную плотность, и лишь при дальнейшем нагревании ее плотность уменьшается. Если бы при понижении температуры и при переходе из жидкого состояния в твердое вода изменялась аналогично другим веществам, то при приближении зимы поверхностные слои природных вод охладилась бы до 0ºС и опускались на дно до тех пор, пока вся масса водоема не приобрела бы температуру 0ºС. Вода замерзала бы, льдины погружались на дно, и водоем промерзал бы на всю глубину. Многие формы жизни в воде были бы невозможны. В действительности охлажденный слой, обладающий меньшей плотностью, остается на поверхности, замерзает и тем самым защищает лежащие ниже слои от охлаждения.

Вода обладает аномально высокой теплоемкости (4,18 Дж/г∙К), поэтому в ночное время, а также при переходе от лета к зиме, вода остывает медленно. А днем, или при переходе от зимы к лету, так же медленно нагревается, являясь, таким образом регулятором температуры на земном шаре.

Вода при обычном состоянии является жидкостью, в то время как H 2 S,H 2 Se,H 2 Te- газы. Температуры кристаллизации и испарения воды значительно выше соответствующих температур указанных соединений.

Вода обладает очень высокой диэлектрической проницаемостью (78.5 при 298К).

Вода- хороший растворитель полярных жидкостей и соединений с ионными связями, образует кристаллогидраты со многими химическими соединениями.

Долгое время необычные свойства воды были загадкой для ученых. Они в основном обусловлены следующими причинами:

Полярный характер молекул;

Наличие не поделенных электронных пар у атома кислорода;

Водородные связи.

Связь между атомами водорода и кислорода полярная, что приводит к асимметрии в распределении электронных зарядов и, следовательно, к полярности молекулы. Длина связи составляет 96 нм, а угол между связями ~ 105º.

Наличие неподеленных пар электронов у кислорода и смещение обобществленных электронных пар от атомов водорода к кислороду обуславливают образование водородных связей. Энергия связи равна 25 кДж/моль. Атом кислорода в молекуле воды находится в состоянии sp 3 -гибридизации. Поэтому валентный угол НОН близок к тетраэдическому углу (109,5º).

Молекулярная масса парообразной воды равна 18 и отвечает ее простейшей формуле. Однако молекулярная масса жидкости оказывается более высокой. Это свидетельствует о том, что в жидкой фазе происходит ассоциация молекул, т.е. соединение их в более сложные агрегаты, вследствие образования между молекулами водородных связей.

В твердой воде (лед) атом кислорода каждой молекулы участвует в образовании двух водородных связей с соседними молекулами воды.

Структура льда принадлежит к наименее плотным структурам, в ней существуют пустоты, размеры которых несколько превышают размеры молекулы воды. При плавлении льда его структура разрушается, но и в жидкой фазе сохраняются водородные связи, образуются ассоциаты, однако они существуют короткое время: постоянно происходит разрушение одних и образование других агрегатов. В пустотах таких «ледяных» агрегатов могут размещаться одиночные молекулы воды, при этом упаковка молекул воды становится плотной. Именно поэтому при плавлении льда объем, занимаемый водой, уменьшается, а ее плотность возрастает. При нагревании воды часть теплоты затрачивается на разрыв водородных связей. Этим объясняется высокая теплоемкость воды. Водородные связи между молекулами воды полностью разрываются только при переходе воды в пар.

На Земле на 6800 атомов протия приходится один атом дейтерия, а в межзвездочном пространстве один атом дейтерия приходится уже на 200 атомов протия.

Вода- весьма реакционноспособное вещество.

Вода реагирует со многими металлами с выделением водорода:

2Na + 2H 2 O = H 2 + 2NaOH (бурно)

2K + 2H 2 O = H 2 + 2KOH (бурно)

3Fe + 4H 2 O = 4H 2 + Fe 3 O 4 (только при нагревании)

Не все, а только достаточно активные металлы могут участвовать в окислительно-восстановительных реакциях этого типа. Наиболее легко реагируют щелочные и щелочноземельные металлы.

Из неметаллов с водой реагируют, например, углерод и его водородное соединение (метан). Эти вещества гораздо менее активны, чем металлы, но все же способны реагировать с водой при высокой температуре:

C + H 2 O ® H 2 + CO

CH 4 + 2H 2 O ® 4H 2 + CO 2

Вода разлагается на водород и кислород при действии электрического тока. Это также окислительно-восстановительная реакция, где вода является одновременно и окислителем, и восстановителем:

2H 2 O 2H 2 + O 2

Вода реагирует со многими оксидами неметаллов . В отличие от предыдущих, эти реакции не окислительно-восстановительные, а реакции соединения:

P 2 O 5 +3H 2 O→2H 3 PO 4 ; N 2 O 5 +H 2 O→2HNO 3

Оксиды щелочных и щелоочно-земельных металлов вступают в реакции соединения с водой с образованием соответствующих щелочей:

CaO+H 2 O→Ca(OH) 2

Не все оксиды металлов способны реагировать с водой. Часть из них практически не растворима в воде и поэтому с водой не реагирует. Это ZnO, TiO 2 , Cr 2 O 3 , из которых приготовляют, например, стойкие к воде краски. Оксиды железа также не растворимы в воде и не реагируют с ней. Многие соединения металлов с неметаллами легко взаимодействуют с водой с образованием соответствующих гидроксидов металлов и водородных соединений неметаллов:

PCl 3 +3H 2 O → H 3 PO 3 + 3HCl

Al 2 S 3 +6H 2 O→2Al(OH) 3 +3H 2 S

Ca 3 P2+6H 2 O→3Ca(OH) 2 +2PH 3

Na 3 N+3H 2 O→3NaOH+NH 3

KH+H 2 O→KOH+H 2

Вода образует многочисленные соединения, в которых ее молекула полностью сохраняется. Это так называемые гидраты . Если гидрат кристаллический, то он называется кристаллогидратом , например:

CuSO 4 +5 H 2 O→CuSO 4 . 5H 2 O

H 2 SO 4 + H 2 O = H 2 SO 4 . H 2 O (гидрат серной кислоты)

NaOH + H 2 O = NaOH . H 2 O (гидрат едкого натра)

Соединения, связывающие воду в гидраты и кристаллогидраты, используют в качестве осушителей. С их помощью, например, удаляют водяные пары из влажного атмосферного воздуха.

Особая реакция воды- фотосинтез - синтез растениями крахмала (C 6 H 10 O 5) n и других подобных соединений (углеводов), происходящая с выделением кислорода:

6n CO 2 + 5n H 2 O = (C 6 H 10 O 5) n + 6n O 2 (при действии света)

Вода обладает каталитической активностью. В отсутствии следов влаги практически не протекают обычные реакции, например, не окисляется натрий, белый фосфор, хлор не взаимодействует с металлами, фторводород не разрезает стекло.

Пероксид водорода

Пероксид водорода H 2 O 2 - соединение водорода c кислородом, содержащее рекордное количество кислорода - 94% по массе. В молекулах Н 2 О 2 содержатся пероксидные группы -О-О-которые во многом определяют свойства этого соединения.

Из-за несимметричного распределения связей Н-О молекула Н 2 О 2 сильно полярна. Между молекулами Н 2 О 2 возникает довольно прочная водородная связь, приводящая к их ассоциации. Поэтому в обычных условиях пероксид водорода- сиропообразная жидкость бледно-голубого цвета (плотность 1,44) с довольно высокой температурой кипения (150ºС). При хранении Н 2 О 2 разлагается.

Селен получают из отходов сернокислотного, целлюлозно-бумажного производства и анодных шламов электролитического рафинирования меди. В шламах селен присутствует вместе с серой, теллуром, тяжелыми и благородными металлами. Для извлечения селена шламы фильтруют и подвергают либо окислительному обжигу (около 700 °С), либо нагреванию с концентрированной серной кислотой. Образующийся летучий SeO 2 улавливают в скрубберах и электрофильтрах. Из растворов технический селен осаждают сернистым газом. Применяют также спекание шлама с содой с последующим выщелачиванием селената натрия водой и выделением из раствора селена. Для получения селена высокой чистоты, используемого в качестве полупроводникового материала, черновой селен рафинируют методами перегонки в вакууме, перекристаллизации и другими.

Физические и химические свойства селена. Конфигурация внешней электронной оболочки атома Se 4s 2 4p 4 ; у двух p-электронов спины спарены, а у остальных двух - не спарены, поэтому атомы селена способны образовывать молекулы Se 2 или цепочки атомов Se n . Цепи атомов селена могут замыкаться в кольцевые молекулы Se 8 . Разнообразие молекулярного строения обусловливает существование селена в различных аллотропических модификациях: аморфной (порошкообразный, коллоидный, стекловидный) и кристаллической (моноклинный α- и β-формы и гексагональный γ-формы). Аморфный (красный) порошкообразный и коллоидный селен (плотность 4,25 г/см 3 при 25 °С) получают при восстановлении из раствора селенистой кислоты H 2 SeO 3 , быстрым охлаждением паров селена и другими способами. Стекловидный (черный) селен (плотность 4,28 г/см 3 при 25 °С) получают при нагревании любой модификации селена выше 220 °С с последующим быстрым охлаждением. Стекловидный селен обладает стеклянным блеском, хрупок. Термодинамически наиболее устойчив гексагональный (серый) селен. Он получается из других форм селена нагреванием до плавления с медленным охлаждением до 180-210 °С и выдержкой при этой температуре. Решетка его построена из расположенных параллельно спиральных цепочек атомов. Атомы внутри цепей связаны ковалентно. Все модификации селена обладают фотоэлектрическими свойствами. Гексагональный селен вплоть до температуры плавления - примесный полупроводник с дырочной проводимостью. Селен - диамагнетик (пары его парамагнитны).

На воздухе селен устойчив; кислород, вода, соляная и разбавленная серная кислоты на него не действуют, хорошо растворим в концентрированной азотной кислоте и царской водке, в щелочах растворяется диспропорционируя:

Se + 4HNO 3 → H 2 SeO 3 + 4NO 2 + H 2 O

3Se + 6KOH → K 2 SeO 3 + 2K 2 Se + 3H 2 O

Селен в соединениях имеет степени окисления -2, + 2, + 4, +6. С кислородом селен образует ряд оксидов: SeO, Se 2 O 3 , SeO 2 , SeO 3 . Два последних являются ангидридами селенистой H 2 SeO 3 и селеновой H 2 SeО 4 кислот (соли -селениты и селенаты). Наиболее устойчив SeO 2 . SeO 2 и H 2 SeO 3 с сильными окислителями проявляют восстановительные свойства:

3H 2 SeO 3 + HClO 3 → 3H 2 SeO 4 + HCl

С галогенами селен дает соединения SeF 6 , SeF 4 , SeCl 4 , SeBr 4 , Se 2 Cl 2 и другие. Сера и теллур образуют непрерывный ряд твердых растворов с селеном. С азотом селен дает Se 4 N 4 , с углеродом -CSe 2 . Известны соединения с фосфором Р 2 Sе 3 , Р 4 Sе 3 , P 2 Se 5 . Водород взаимодействует с селеном при t>=200 °С, образуя H 2 Se; раствор H 2 Se в воде называется селеноводородной кислотой. При взаимодействии с металлами селен образует селениды. Получены многочисленные комплексные соединения селена. Все соединения селена ядовиты.

Применение селена . Благодаря дешевизне и надежности селен используется в преобразовательной технике в выпрямительных полупроводниковых диодах, а также для фотоэлектрических приборов (гексагональный), электрофотографических копировальных устройств (аморфный селен), синтеза различных селенидов, в качестве люминофоров в телевидении, оптических и сигнальных приборах, терморезисторах и т. п. селен широко применяется для обесцвечивания зеленого стекла и получения рубиновых стекол; в металлургии - для придания литой стали мелкозернистой структуры, улучшения механических свойств нержавеющих сталей; в химической промышленности - в качестве катализатора; используется селен также в фармацевтической промышленности и других отраслях.

8.4 Теллур

Природные соединения и получение. Основные. источники теллура-шламы электролитического рафинирования меди и шламы сернокислотного производства, а также щелочные дроссы рафинирования свинца. При переработке сернокислотных шламов методом обжига (см. Селен)теллур остается в огарке, который выщелачивают соляной кислотой. Из солянокислого раствора пропусканием SO 2 осаждают Se, после чего р-р разбавляют до содержания кислоты 10-12% и при нагревании действием SO 2 осаждают теллур.

При спекании шламов с содой и последующим выщелачивании теллур переходит в р-р и при нейтрализации осаждается в виде ТеО 2 . Теллур получают либо прямым восстановлением ТеО 2 углем, либо осаждением при действии SO 2 на солянокислые растворы ТеО 2 . При переработке шламов сульфидным методом (выщелачивание раствором Na 2 S) теллур выделяют из раствора (после осаждения Se аэрацией) действием сухого Na 2 S 2 O 3:

Na 2 TeS 3 + 2Na 2 SO 3 → Те + 2Na 2 S 2 O 3 + Na 2 S

При переработке медеэлектролитных шламов теллур в основном переходит в содовые шлаки, получающиеся при переплавке остатков на золото-серебряный сплав ("металл Дорэ"). При использовании сульфатизации часть теллура переходит в сульфатные растворы вместе с Си. Из них теллур осаждают действием металлической меди:

Н 2 ТеО 3 + 4H 2 SO 4 + 6Сu → Те + Си 2 Те + 4CuSO 4 + 6Н 2 О

Из содовых шлаков теллур извлекают после растворения в воде либо нейтрализацией с осаждением ТеО 2 (его очищают переосаждением из сульфидных или кислых растворов, растворяют в щелочи и выделяют теллур электролизом), либо прямо из содового раствора электролизом осаждают черновой теллур. Его восстанавливают А1 в щелочном растворе:

6Те + 2А1 + SNaOH → 3Na 2 Te 2 + 2NaAlO 2 + 4Н 2 О. Затем теллур осаждают аэрацией:

2Na 2 Te 2 + 2Н 2 О + О 2 → 4Те + 4NaOH

Для получения теллура высокой чистоты используют его летучие соединения, в частности ТеСl 4 , который очищают дистилляцией или ректификацией и экстракцией из солянокислого раствора. После гидролиза хлорида ТеО 2 восстанавливают Н 2 . Иногда для очистки используют также Н 2 Те. На завершающих стадиях очистки применяют вакуумную сублимацию, дистилляцию или ректификацию теллура, а также зонную плавку или направленную кристаллизацию.

Физические и химические свойства. Теллур-серебристо-серое вещество с металлическим блеском, в тонких слоях на просвет-красно-коричневого цвета, в парах-золотисто-желтый. Расплав теллура выше ~ 700 °С обладает металлической проводимостью. Теллур диамагнитен, магн. восприимчивость — 0,31·10 -9 . Твердость по Моосу 2,3, по Бринеллю 180-270 МПа; сопротивление разрыву 10,8 МПа. Теллур хрупок, при нагревании становится пластичным.

Для теллура нормальный электродный потенциал 0,56 В. Теллур, даже дисперсный, устойчив на воздухе, но при нагревании горит (пламя голубое с зеленым ореолом) с образованием ТеО 2 . Кристаллический теллур реагирует с водой выше 100°С, аморфный-выше 50 °С. Концентрированные растворы щелочей растворяют теллур с образованием теллуридов и теллуритов. Соляная кислота и разбавленная H 2 SO 4 на теллур не действуют, конц. H 2 SO 4 растворяет его, образующиеся красные растворы содержат катион. HNO 3 окисляет теллур до теллуристой кислоты Н 2 ТеО 3 (соли-теллуриты):

Te + HNO 3 → H 2 TeO 3 + 4NO 2 + H 2 O

Сильными окислителями (HСlО 3 , КМnО 4 и др.) окисляется до теллуровой кислоты Н 2 ТеО 4 (соли-теллураты):

4Te + 3HClO 4 + 4H 2 O → 4H 2 TeO 4 + 3HCl

Te + 3H 2 O 2 → H 2 TeO 4 + 2H 2 O

Теллур растворяется в растворах сульфидов и полисульфидов щелочных металлов (с образованием тиотеллуридов и тио-теллуритов). Реагирует с растворами солей Ag. В CS 2 не растворяется. С Сl 2 , F 2 и Вr 2 реагирует при комнатной т-ре, с I 2 -при нагревании, сплавляется с S, P (соединений при этом не образует), As (давая As 2 Te 3), с Si (с образованием Si 2 Te 3 и SiTe), с Se (образуя при кристаллизации твердые растворы). С бором и углеродом непосредственно не взаимодействует, с СО при нагревании образует газообразный нестойкий карбонил ТеСО. При сплавлении с металлами получают теллуриды.

Теллуроводород Н 2 Те-бесцветный газ с неприятным запахом; в жидком состоянии зеленовато-желтый, кристаллический-лимонно-желтый; т. кип. — 2°С, т. пл. — 51 °С; плотн. 5,81 г/л; для газа; а в сухом воздухе при комнатной температуре медленно разлагается, во влажном окисляется до теллура; при нагревании на воздухе горит, давая ТеО 2 ; растворимость в воде 0,1 М, водный раствор-слабая кислота, К 1 2·10 -3 ; сильный восстановитель; получают взаимодействием Аl 2 Те 3 с соляной кислотой, а также электролизом раствора H 2 SO 4 с теллуровым катодом при 0°С; применяют для получения теллура высокой чистоты.

Гексафторид ТеF 6 -бесцветный газ; т. пл. — 37,8°С, т. возг. -38,6°С; плотн. 10,7 г/л; в сухом воздухе устойчив, не действует на стекло; в воде растворяется, постепенно гидролизуясь с образованием фторотеллуровых кислот ТеF n (ОН) 6-n , где n — от 1 до 4, и в конечном счете теллуровой кислоты; с фторидами металлов образует соединения, напр. Ag и Ba; получают фторированием теллура при нагревании. Тетрафторид TeF 4 -кристаллы ромбической сингонии; т. пл. 129,6°С, т. кип. 194°С (с разложением); плотность 4,22 г/см 3 ; очень гигроскопичен, легко гидролизуется; с фторидами щелочных металлов образует пентафторотеллураты M; получают действием SeF 4 на ТеО 2 . Фториды теллурафторирующие агенты.

Тетрахлорид ТеС1 4 -желтые кристаллы; т. пл. 224°С, т. кип. 381,8°С; плотн. 3,01 г/см 3 ; ур-ние температурной зависимости давления пара gp (мм рт. ст.) = 8,791 — - 3941/T (497 - 653); очень гигроскопичен, водой гидролизуется; в концентрированной НС1 раств., образуя хлоротел-луровую кислоту Н 2 ТеС1 6 ; из солянокислых растворов экстрагируется трибутилфосфатом и другими органическими растворителями; с хлоридами щелочных металлов образует гекса- М 2 [ТеСl 6 ] и пентахлортел-лураты М[ТеС1 5 ], с хлоридами Al, Fe(III), Zr и другие комплексы с катионами, например, ТеС1 3 ; получают хлорированием теллура; ТеСl 4 -исходное вещество для получения теллура высокой чистоты. Коричневый дихлорид ТеС1 2 устойчив в парах и может быть сконденсирован в жидкость. Получены также два кристаллических низших хлорида-серебристо-серый Те 2 Сl 3 и метастабильный черный с металлическим блеском Те 2 Сl.

Осаждением из водных р-ров можно получить сульфиды TeS 2 и TeS 3 , разлагающиеся при нагревании; известны TeS 7 и Te 7 S 10 . Тиотеллураты (напр., Na 2 TeS 3) могут быть получены растворением теллура в растворе полисульфидов щелочных металлов или сере -в растворах полителлуридов, а также сплавлением. Тиотеллураты-промежуточные продукты в некоторых процессах извлечения теллура.

Применение. Важнейшая область применения теллура—синтез разложения теллуридов, обладающих полупроводниковыми свойствами. Теллур используют также в металлургии для легирования чугуна и стали, Рb, Сu (для повышения их механической и химической стойкости). Теллур и его соединения применяют в производстве катализаторов, спец. стекол, инсектицидов, гербицидов и т.п.

Полоний

Природные соединения и получение полония. Радиоактивный химический элемент VI группы периодической системы, аналог теллура. Атомный номер 84. Не имеет стабильных изотопов. Известно 27 радиоактивных изотопов полония с массовыми числами от 192 до 218, из них семь (с массовыми числами от 210 до 218) встречаются в природе в очень малых количествах как члены радиоактивных рядов урана, тория и актиния, остальные изотопы получены искусственно. Наиболее долгоживущие изотопы полония - искусственно полученные 209 Ро (t 1/2 = 102 года) и 208 Ро (t 1/2 = 2,9 года), а также содержащийся в радиево-урановых рудах 210 Ро (t 1/2 = 138,4 сут). Содержание в земной коре 210 Ро составляет всего 2·10 -14 %; в 1 т природного урана содержится 0,34 г радия и доли миллиграмма полония-210. Самый короткоживущий из известных изотопов полония - 21З Ро (t 1/2 = 3·10 -7 с). Самые легкие изотопы полония - чистые альфа-излучатели, более тяжелые одновременно испускают альфа- и гамма-лучи. Некоторые изотопы распадаются путем электронного захвата, а самые тяжелые проявляют также очень слабую бета-активность. Разные изотопы полония имеют исторические названия, принятые еще в начале 20 в., когда их получали в результате цепочки распадов из «родительского элемента»: RaF (210 Po), AcC" (211 Po), ThC" (212 Po), RaC" (214 Po), AcA (215 Po), ThA (216 Po), RaA (218 Po).

Полоний-210 синтезируют путем облучения нейтронами природного висмута (он содержит только 208 Bi) в ядерных реакторах (промежуточно образуется бета-активный изотоп висмута-210): 208 Bi + n→ 210 Bi → 210 Po + e. При облучении висмута ускоренными протонами образуется полоний-208, его отделяют от висмута возгонкой в вакууме - как это делала М.Кюри. В СССР методику выделения полония разработала Зинаида Васильевна Ершова (1905-1995). В 1937 она была командирована в Париж в Институт радия в лабораторию М.Кюри (руководимую в то время Ирэн Жолио-Кюри). В результате этой командировки коллеги стали называть ее «русской мадам Кюри». Под научным руководством З.В.Ершовой в стране было создано постоянно действующее, экологически чистое производство полония, что позволило реализовать отечественную программу запуска луноходов, в которых полоний использовали в качестве источника тепла.

Долгоживущие изотопы полония пока не получили заметного практического применения из-за сложности их синтеза. Для их получения можно использовать ядерные реакции

207 Pb + 4 He ® 208 Po + 3n,

208 Bi + 1 H ® 208 Po + 2n,

208 Bi + 2 D ® 208 Po + 3n,

208 Bi + 2 D ® 208 Po + 2n,

где 4 Не - альфа-частицы, 1 Н - ускоренные протоны, 2 D - ускоренные дейтроны (ядра дейтерия).

Свойства полония. Уже теллур частично проявляет металлические свойства, полоний же - мягкий серебристо-белый металл. Из-за сильной радиоактивности светится в темноте и сильно нагревается, поэтому нужен непрерывный отвод тепла. Температура плавления полония 254° С (чуть выше, чем у олова), температура кипения 962° С, поэтому уже при небольшом нагревании полоний возгоняется. Плотность полония почти такая же, как у меди - 9,4 г/см 3 . В химических исследованиях применяется только полоний-210, более долгоживущие изотопы практически не используются ввиду трудности их получения при одинаковых химических свойствах.

Химические свойства металлического полония близки к свойствам его ближайшего аналога - теллура, он проявляет степени окисления -2, +2, +4, +6. На воздухе полоний медленно окисляется (быстро при нагревании до 250° С) с образованием красного диоксида РоО 2 (при охлаждении он становится желтым в результате перестройки кристаллической решетки). Сероводород из растворов солей полония осаждает черный сульфид PoS.

Сильная радиоактивность полония отражается на свойствах его соединений. Так, в разбавленной соляной кислоте полоний медленно растворяется с образованием розовых растворов (цвет ионов Ро 2+):

Po + 2HCl ® PoCl 2 + H 2 ,

однако под действием собственной радиации дихлорид превращается в желтый PoCl 4 . Разбавленная азотная кислота пассивирует полоний, а концентрированная быстро его растворяет:

Po + 8HNO 3 → Po(NO 3) 4 + 4NO 2 + 4H 2 O

С неметаллами VI группы полоний роднит реакция с водородом с образованием летучего гидрида РоН 2 (т.пл. -35° С, т.кип. +35° С, легко разлагается), реакция с металлами (при нагревании) с образованием твердых полонидов черного цвета (Na 2 Po, MgPo, CaPo, ZnPo, HgPo, PtPo и др.) и реакция с расплавленными щелочами с образованием полонидов:

3Po + 6NaOH ® 2Na 2 Po + Na 2 PoO 3 + H 2 O.

С хлором полоний реагирует при нагревании с образованием ярко-желтых кристаллов PoCl 4 , с бромом получаются красные кристаллы PoBr 4 , с иодом уже при 40° С полоний реагирует с образованием черного летучего иодида PoI 4 . Известен и белый тетрафторид полония PoF 4 . При нагревании тетрагалогениды разлагаются с образованием более стабильных дигалогенидов:

PoCl 4 ® PoCl 2 + Cl 2 .

В растворах полоний существует в виде катионов Ро 2+ , Ро 4+ , анионов РоО 3 2- , РоО 4 2- , также разнообразных комплексных ионов, например, PoCl 6 2- .

Применение полония. Полоний-210 испускает альфа-лучи с энергией 5,3 МэВ, которые в твердом веществе тормозятся, проходя всего тысячные доли миллиметра и отдавая при этом свою энергию. Время его жизни позволяет использовать полоний как источник энергии в атомных батареях космических кораблей: для получения мощности 1 кВт достаточно всего 7,5 г полония. В этом отношении он превосходит другие компактные «атомные» источники энергии. Такой источник энергии работал, например, на «Луноходе-2», обогревая аппаратуру во время долгой лунной ночи. Конечно, мощность полониевых источников энергии со временем убывает - вдвое каждые 4,5 месяца, однако более долгоживущие изотопы полония слишком дороги. Полоний удобно применять и для исследования воздействия альфа-излучения на различные вещества. Как альфа-излучатель, полоний в смеси с бериллием применяют для изготовления компактных источников нейтронов:

9 Be + 4 He ® 12 C + n.

Вместо бериллия в таких источниках можно использовать бор. Сообщалось, что в 2004 инспекторы международного агентства по атомной энергии (МАГАТЭ) обнаружили в Иране программу по производству полония. Это привело к подозрению, что он может быть использован в бериллиевом источнике для «запуска» с помощью нейтронов цепной ядерной реакции в уране, приводящей к ядерному взрыву.

Полоний при попадании в организм можно считать одним из самых ядовитых веществ: для 210 Ро предельно допустимое содержание в воздухе составляет всего 40 миллиардных долей микрограмма в 1 м 3 воздуха, т.е. полоний в 4 триллиона раз токсичнее синильной кислоты. Вред наносят испускаемые полонием альфа-частицы (и в меньшей мере также гамма-лучи), которые разрушают ткани и вызывают злокачественные опухоли. Атомы полония могут образоваться в легких человека в результате распада в них газообразного радона. Кроме того, металлический полоний способен легко образовывать мельчайшие частицы аэрозолей. Поэтому все работы с полонием проводят дистанционно в герметичных боксах.

Открытие полония. Существование элемента с порядковым номером 84 было предсказано Д.И.Менделеевым в 1889 - он назвал его двителлуром (на санскрите - «второй» теллур) и предположил, что его атомная масса будет близка к 212. Конечно, Менделеев не мог предвидеть, что этот элемент окажется неустойчивым. Полоний - первый радиоактивный элемент, открытый в 1898 супругами Кюри в поисках источника сильной радиоактивности некоторых минералов. Когда оказалось, что урановая смоляная руда излучает сильнее, чем чистый уран, Мария Кюри решила выделить из этого соединения химическим путем новый радиоактивный химический элемент. До этого было известно только два слабо радиоактивных химических элемента - уран и торий. Кюри начала с традиционного качественного химического анализа минерала по стандартной схеме, которая была предложена немецким химиком-аналитиком К.Р.Фрезениусом (1818-1897) еще в 1841 и по которой многие поколения студентов в течение почти полутора веков определяли катионы так называемым «сероводородным методом». Вначале у нее было около 100 г минерала; затем американские геологи подарили Пьеру Кюри еще 500 г. Проводя систематический анализ, М.Кюри каждый раз проверяла отдельные фракции (осадки и растворы) на радиоактивность с помощью чувствительного электрометра, изобретенного ее мужем. Неактивные фракции отбрасывались, активные анализировались дальше. Ей помогал один из руководителей химического практикума в Школе физики и промышленной химии Густав Бемон.

Прежде всего, Кюри растворила минерал в азотной кислоте, выпарила раствор досуха, остаток растворила в воде и пропустила через раствор ток сероводорода. При этом выпал осадок сульфидов металлов; в соответствии с методикой Фрезениуса, этот осадок мог содержать нерастворимые сульфиды свинца, висмута, меди, мышьяка, сурьмы и ряда других металлов. Осадок был радиоактивным, несмотря на то, что уран и торий остались в растворе. Она обработала черный осадок сульфидом аммония, чтобы отделить мышьяк и сурьму - они в этих условиях образуют растворимые тиосоли, например, (NH 4) 3 AsS 4 и (NH 4) 3 SbS 3 . Раствор не обнаружил радиоактивности и был отброшен. В осадке остались сульфиды свинца, висмута и меди.

Не растворившуюся в сульфиде аммония часть осадка Кюри снова растворила в азотной кислоте, добавила к раствору серную кислоту и выпарила его на пламени горелки до появления густых белых паров SO 3 . В этих условиях летучая азотная кислота полностью удаляется, а нитраты металлов превращаются в сульфаты. После охлаждения смеси и добавления холодной воды в осадке оказался нерастворимый сульфат свинца PbSO 4 - радиоактивности в нем не было. Осадок она выбросила, а к отфильтрованному раствору добавила крепкий раствор аммиака. При этом снова выпал осадок, на этот раз - белого цвета; он содержал смесь основного сульфата висмута (BiO) 2 SO 4 и гидроксида висмута Bi(OH) 3 . В растворе же остался комплексный аммиакат меди SO 4 ярко-синего цвета. Белый осадок, в отличие от раствора, оказался сильно радиоактивным. Поскольку свинец и медь были уже отделены, в белом осадке был висмут и примесь нового элемента.

Кюри снова перевела белый осадок в темно-коричневый сульфид Bi 2 S 3 , высушила его и нагрела в вакуумированной ампуле. Сульфид висмута при этом не изменился (он устойчив к нагреву и лишь при 685° С плавится), однако из осадка выделились какие-то пары, которые осели в виде черной пленки на холодной части ампулы. Пленка была радиоактивной и, очевидно, содержала новый химический элемент - аналог висмута в периодической таблице. Это был полоний - первый после урана и тория открытый радиоактивный элемент, вписанный в периодическую таблицу (в том же 1898 году были открыты радий, а также группа благородных газов - неон, криптон и ксенон). Как потом выяснилось, полоний при нагревании легко возгоняется - его летучесть примерно такая же, как у цинка.

Супруги Кюри не спешили назвать черный налет на стекле новым элементом. Одной радиоактивности было мало. Коллега и друг Кюри французский химик Эжен Анатоль Демарсе (1852-1903), специалист в области спектрального анализа (в 1901 он открыл европий), исследовал спектр испускания черного налета и не обнаружил в нем новых линий, которые могли бы свидетельствовать о присутствии нового элемента. Спектральный анализ - один из самых чувствительных методов, позволяющий обнаруживать многие вещества в микроскопических, невидимых глазом количествах. Тем не менее, в статье, опубликованной 18 июля 1898 супруги Кюри написали: «Мы думаем, что вещество, выделенное нами из урановой смолки, содержит не известный пока металл, являющийся по аналитическим свойствам аналогом висмута. Если существование нового металла будет подтверждено, мы предлагаем назвать его полонием, по родине одного из нас» (Polonia на латыни - Польша). Это единственный случай, когда еще не идентифицированный новый химический элемент уже получил название. Однако получить весовые количества полония не удалось - его в урановой руде было слишком мало (позднее полоний был получен искусственно). И прославил супругов Кюри не этот элемент, а радий.

Халькогены(образующие руды) – это p-элементы, структура внешней оболочки, кот. ns 2 np 4 где n – № периода. На внешней оболочке эти элементы имеют по 6 электронов, два из кот. неспарены. Поэт. проявляют валентность 2, но атомы халькогенов, кроме кислорода могут переходить в возб. состояние, увеличивая число неспаренных электронов до 4,6. S 3 ↓ ↓ + квант света = S 3

Аналогично для селена и теллура. Т. о. есть валентности 4,6. Атомы кислорода не могут переходить в возбужденное состояние из-за отсутствия свободных орбиталей на внешней электронной оболочке. Поэтому кислород не может проявлять валентность равную № группы. В большинстве соединений кислород проявляет валентность 2, но учитывая 2 механизма ковалентной связи, для него максимальная ковалентность 4. В некоторых соединениях бывает валентность 3, степени окисления +2, -2. О +2 ≡ О -2 .

В эту подгруппу кроме кислорода входит радиоактивный полоний. До завершения внешней электронной оболочки атомам всех халькогенов не хватает по 2 электрона, принимая их, они приобретают найменшую степень окисления -2, характерную для всех элементов 6А группы. О 0 + 2е =О -2 оксид-ион, S 0 + 2е = S -2 сульфид-ион.

Кроме этого атомы могут отдавать 2е,4е,6е(кроме кислорода), приобретая положительные степени окисления. S 0 - 2е = S +2 , S 0 - 4е = S +4 , S 0 - 6е = S +6 .Нечетные степени окисления не устойчивы. У серы есть промежуточные степени окисления -1,-0,5. [О 2 ] -2 степень окисления -1, [О 2 ] -1 степень окисления -0,5 условно. Для О 2 степени окисления: -2,-1 в пероксидах; 0; +1;+2 во фторидах; +4 в О 3 - О +4 О -2 О -2 .

Для остальных: -2,-1 в персульфидах; 0; +2 ; +4,+6.

В подгруппе сверху вниз неметалл.(окислительные) способность уменьшается, мет.(восст.) – увеличивается, энер. иониз., сродство к е, ЭО –уменьшаются, увеличивается радиус атома.

О 2 – газ без цвета и запаха, 21% по объёму в воздухе, молекула 2 атомна, связь ковалентная неполярная, есть неспареные электроны, по методу МО парамагнитна.

Сера, селен, теллур – твердые в-ва с различными аллотропными модификациями.

Соединения с водородом. H 2 O – жидкость – аномалия, причина водородные связи, аномально высокая t пл. и t кип. из-за водородных связей. Остальные H 2 S, H 2 Sе, H 2 Те- газы, растворимы в воде, р-ры- это слабые кислоты- слабые электролиты. В ряду H 2 S, H 2 Sе, H 2 Те t пл. и t кип. Увеличивается т. к. усложняется структура электронных оболочек анионов.

Устойчивость соединений падает, полярность молекулы уменьшается, длинна связи увеличивается, энергия связи уменьшается, кислотные св-ва уменьшаются, восстановительные св-ва возрастают, увеличивается радиус.

Соединения с кислородом. Элемент О 2 – образует оксиды, для оксидов остальных элементов характерны кислотные св-ва.

SО 2 - H 2 SО 3 сернистая к-та SеО 2 - H 2 SеО 3 селенистая к-та

ТеО 2 - H 2 ТеО 3 теллуристая к-та. Сверху вниз сила кислот уменьшается.

SО 3 - H 2 SО 4 серная к-та SеО 3 - H 2 SеО 4 селеновая к-та

ТеО 3 - H 2 ТеО 4 теллуровая к-та. Сверху вниз сила кислот уменьшается.

В ряду H 2 SО 3 - H 2 SО 4. Сила кислот увеличивается.

Серная кислота – одна из самых важных минеральных кислот. Ее химические особенности. Получение и практическое применение. H 2 SO 4 - тяжелая бесцветная жидкость, обладает сильными гидроскопическими свойствами. Очень интенсивно поглощает влагу, поэтому применяется как дегидротирующее средство, применяется для осушения газов. Смешивается с водой в любом соотношении. Техника безопасности с H 2 SO 4 (к) : нельзя вливать воду в кислоту, H 2 SO 4 обугливает орг. Вещества, вызывает ожоги. Если концентрация кислоты 70% и выше то к-та конц. Если меньше – разбавленная. В молекуле H 2 SO 4 находится два окислителя Н + и S +6 . Ок-восст. потенциал S +6 больше чем Н + . Ок-восст. свойства H 2 SO 4 должна проявлять за счет S +6 , но в разб. виде H 2 SO 4 – сильный электролит и находится в растворе в виде ионов - H 3 O + и SO 4 2- . H 2 SO 4 (р) проявляет за счет H 3 O + . В конц. виде H 2 SO 4 - слабый электролит, в р-ре будет в молекулярном виде, поэтому проявляет ок.-восст. свойства за счет S +6 H 2 SO 4 (р) проявляет всеобщие свойства кислот: 1) с осн. и амфотерными оксидами CaO+H 2 SO 4 =CaSO 4 + H 2 O ZnO+ H 2 SO 4 =ZnSO 4 + H 2 O 2) со щелочами, нерастворимыми основаниями 2KOH+ H 2 SO 4 =K 2 SO 4 + H 2 O Cu(OH) 2 + H 2 SO 4 =CuSO 4 + 2H 2 O 3) с солями, если образуется осадок или газ K 2 CO 3 + H 2 SO 4 =K 2 SO 4 + CO 2 +H 2 O 4) с аммиаком или его водным раствором 2NH 3 + H 2 SO 4 =(NH 4) 2 SO 4 NH 3 *H 2 O+ H 2 SO 4 =NH 4 SO 4 +H 2 O H 2 SO 4 (к) – это кислота окислитель (S +6), продукты восстановления, зависят от двух факторов: 1) от активности восстановителя 2) от концентрации кислоты. Свойства: 1) окисляет щел. и щел.-зем. металлы. 8Na+5 H 2 SO 4 (к)=4Na 2 SO 4 +H 2 S+4 H 2 O 2) окисляет остальные металлы с Е 0 =(-)(до H 2), продукт восст.-я зависит от конц-ии кис-лоты Zn+ 2H 2 SO 4 (к)=ZnSO 4 + SO 2 +2 H 2 O 3Zn+4H 2 SO 4 (к)(80%)= 3ZnSO 4 +S+4H 2 O 4Zn+ 5H 2 SO 4 (к)(70%)=4ZnSO 4 + H 2 S+4H 2 O 3) Al , Cr, Fe пассивируют H 2 SO 4 (к)(покрываются оксидной пленкой которая мешает дальнейшему окислению) 4) Окисляет металлы с Е 0 =(+)(после H 2) Cu+2 H 2 SO 4 (к)= CuSO 4 + SO 2 +2 H 2 O 5) Pt, Au не взаимодействуют. 6) Окисляет неметаллы (С,F,S) C+ 2H 2 SO 4 (к)= CO 2 + 2SO 2 +2 H 2 O 7) Окисляет сложные вещества

Получение. В промышленности:1) контактный 2)нейтрозный способы. Контактный, 3 стадии:

1) Обжиг пирита 4FeS 2 + 11 O 2 = t 2Fe 2 O 3 +8SO 2

2) Окисление SO 2 в SO 3 2 SО 2 + O 2 =2SO 3

3) Растворение SO 3 в H 2 SO 4 (к) nSO 3 +H 2 SO 4 (к)= (H 2 SO 4 * nSO 3)- олеум. Олеум растворяют водой и получают H 2 SO 4 SO 3 + H 2 O= H 2 SO 4 Серная кислота применяется в различных органических синтезах, в народном хозяйстве, главный продукт химической промышленности.

Лекция 2

ТЕМА : ЭЛЕМЕНТЫ ГРУППЫ VI B

Вопросы, изучаемые на лекции:

  1. Общая характеристика d – элементов VI группы.
  2. Нахождение в природе и получение хрома, молибдена и вольфрама.
  3. Физические свойства металлов.
  4. Химические свойства хрома, молибдена и вольфрама.
  5. Важнейшие соединения элементов подгруппы хрома: а) соединения

Э (П); б) соединения Э (Ш); в) соединения Э ( VI ).

  1. Пероксид хрома.

Побочная подгруппа VI группы представлена следующими элементами: С r , Mo и W . Все они являются d -элементами, так как у них застраивается электронами d -подуровень предвнешнего уровня. Валентными электронами этих элементов являются электроны внешнего S -подуровня и предвнешнего d -подуровня - всего 6 электронов.

Электронная конфигурация внешнего уровня и предвнешнего d -подуровня: С r – 3 d 5 4 S 1 ; Мо – 4 d 5 5 S 1 ; W – 5 d 4 6 S 2 .

d –элементы 6 группы занимают 4 место в своей декаде d –элементов, поэтому d –подуровень должен содержать 4 электрона, а на внешнем уровне должны находиться два s –электрона, как это и наблюдается для вольфрама. Для хрома и молибдена имеет место «проскок» одного s –электрона с внешнего уровня на предвнешний d –подуровень, в результате чего каждая d – орбиталь будет занята одним электроном, что соответствует наиболее устойчивому состоянию атома.

│││││ │ (n –1) d → ││││││ (n – 1) d

nS │↓│ nS ││

Таблица 3

Основные параметры атомов элементов VI В группы

Радиус атома r а , нм

Радиус иона

r Э 6+ , нм

Е Э о → Э + , эВ

Ar

химическая

активность

С r

0,127

0,035

6,76

│умень-

│шается

0,137

0,065

7,10

0,140

0,065

7,98

Анализируя эти данные, можно сказать, что наблюдается общая для всех d -элементов закономерность: радиусы атомов сверху вниз в подгруппе увеличиваются, но незначительно. Поскольку масса атомов в том же ряду сильно возрастает, то это приводит к уплотнению электронных оболочек у молибдена и особенно у вольфрама. Вырвать электрон из такой уплотненной структуры труднее, поэтому энергия ионизации при переходе от хрома к вольфраму возрастает, вследствие чего химическая активность элементов сверху вниз в подгруппе уменьшается. Ввиду того, что молибден и вольфрам имеют примерно одинаковый атомный и ионный радиусы, по свойствам они ближе друг к другу, чем к хрому.

В соединениях хром и его аналоги проявляют степени окисления (С.О.) 0, +1, +2, +3, +4, +5 и +6. Максимальная С.О. соответствует числу валентных электронов. Характерные С.О. хрома +3 и в меньшей мере +6 и +2. У молибдена и вольфрама, как и у других 4 d - и 5 d - элементов, наиболее характерна высшая С.О., то есть +6. Таким образом, для элементов подгруппы Cr наблюдается общая для d – элементов закономерность: повышение в группе сверху вниз устойчивой С.О. Поэтому окислительная способность соединений, где элементы проявляют высшую С.О., равную +6, сверху вниз в подгруппе уменьшается, так как устойчивость соединений в этом ряду увеличивается. Например, в ряду кислот:

Н 2 С rO 4 │ устойчивость Cr +6 │ окислительная способность

Н 2 МоО 4 │увеличивается Мо +6 │ уменьшается

Н 2 W О 4 │ W +6 │

↓ ↓

Для Cr , Mo , W наиболее типичны координационные числа 6 и 4. Известны также производные, в которых к.ч. Мо и W достигает 8.

Примеры: [ Cr (OH ) 4 ] - [ Cr (H 2 O ) 6 ] 3+

3- 2-

При этом в образовании связей могут участвовать d -орбитали предвнешнего уровня, а также S - и р-орбитали внешнего уровня.

Характер связи элементов подгруппы С r в соединениях определяется во многом С.О. элемента. Для Cr , Mo , W при низких С.О. (+1, +2) характерны ионные связи, а при высоких С.О. – ковалентные связи. В соответствии с этим С r +2 О – основной оксид, С r 2 +3 О 3 – амфотерный, а С r +6 О 3 – кислотный. Аналогично С r (OH ) 2 – основание, С r (OH ) 3 – амфотерный гидроксид, Н 2 С r О 4 – кислота.

Нахождение в природе и получение хрома, молибдена и вольфрама

Содержание хрома в земной коре составляет 0,02% (масс), молибдена – 10 -3 % (масс), вольфрам – 7 ∙ 10 -3 % (масс). Основной рудой хрома является хромистый железняк Fe (CrO 2 ) 2 (хромит). Молибден встречается в виде минерала молибденита Мо S 2 (молибденовый блеск), а также молибдатов: РвМоО 4 (вульфенит) и М gMoO 4 . Важнейшие вольфрамовые руды – вольфрамит (смесь FeWO 4 и М nWO 4 ), шеелит Са WO 4 и стольцит Рв WO 4 .

Для получения чистого хрома сначала получают оксид Cr 2 O 3 , который затем восстанавливают алюмотермическим способом:

Cr 2 O 3 + 2Al → Al 2 O 3 + 2Cr.

Для целей металлургии хром получают в виде сплава с железом (феррохром). Для этого хромистый железняк восстанавливают углем в электрической печи.

Fe(CrO 2 ) 2 + 4C → Fe + 2Cr + 4CO.

Молибден и вольфрам получают, переводя перечисленные выше минералы в оксиды, из которых металл восстанавливают водородом при высоких температурах:

2 Мо S 2 + 7O 2 → 2MoO 3 + 4SO 2

MoO 3 + 3H 2 → Mo + 3H 2 O.

Физические свойства металлов

В виде простых веществ хром, молибден и вольфрам – серовато-белые блестящие металлы. Все они тугоплавки, а вольфрам является самым тугоплавким из металлов (Т пл. = 3380 о С).

Электропроводность металлов при переходе от хрома к вольфраму в целом увеличивается и составляет для молибдена и вольфрама приблизительно 30% электропроводности серебра. На свойства металлов в большой степени влияют примеси. Так, технический хром – один из самых твердых металлов, в то время как чистый хром пластичен.

Химические свойства хрома, молибдена и вольфрама

Химическая активность в ряду Cr – Mo – W заметно понижается. При обычных условиях все три металла заметно взаимодействуют лишь со фтором:

Ме + 3F 2 → MeF 6 (CrF 3 ).

В обычных условиях эти металлы устойчивы к кислороду воздуха и воде.

В ряду стандартных электродных потенциалов металлов хром стоит до водорода между цинком и железом, молибден также до водорода, но недалеко от него, а вольфрам находится после водорода. Поэтому хром вытесняет водород из разбавленных НС l и Н 2 SO 4 .

С r + 2 HCl → CrCl 2 + H 2

Cr + H 2 SO 4 → CrSO 4 + H 2

В концентрированных H 2 SO 4 и Н NO 3 на холоду хром пассивируется. При нагревании хром медленно растворяется в этих кислотах

2Cr + 6H 2 SO 4 конц . → Сr 2 (SO 4 ) 3 + 3SO 2 + 6H 2 O.

Соляная кислота и разбавленная Н 2 SO 4 на Мо и W не действуют. Молибден растворяется лишь в горячей конц. Н 2 SO 4 . Вольфрам растворяется только в горячей смеси плавиковой и азотной кислот

Э о + 2Н N +5 O 3 + 8 HF → H 2 [Э +6 F 8 ] + 2 N +2 O + 4 H 2 O , где Э = Мо, W .

При высокой температуре, особенно в мелкораздробленном состоянии, С r , Mo , W довольно легко окисляются многими неметаллами:

│ O 2 → Cr 2 O 3

│ t o

│ S → CrS

│ t o

Сr + │ Cl 2 → CrCl 3

│ t o

│ N 2 → c плавы

│ t o

│ C → c плавы

При этом в случае хрома образуются чаще всего соединения с наиболее устойчивой С.О. хрома (+3). При взаимодействии Мо и W с неметаллами, как правило, образуются соединения, в которых С.О. элемента равна +6.

Общим для элементов подгруппы хрома является отсутствие взаимодействия с водородом.

Важнейшие соединения элементов подгруппы хрома

I .Соединения Э (П), то есть С.О. = +2.

1.Черный оксид хрома (П) С rO получить очень трудно. Он образуется при окислении амальгамы хрома (то есть оксидной пленки нет) воздухом при обычных условиях: С r + ½ O 2 → CrO .

При нагревании окисление продолжается до С r 2 O 3 .

CrO – неустойчивое соединение основного характера:

С rO + 2HCl → CrCl 2 + H 2 O.

2.Гидроксид хрома (П) С r (OH ) 2 – нерастворимое в воде желтое вещество, которое получают подщелачиванием растворов солей хрома (П):

С rCl 2 + 2NaOH → Cr(OH) 2 ↓ + 2NaCl.

Гидроксид хрома (П) имеет основной характер, то есть взаимодействует только с кислотами и не растворяется в растворах щелочей:

С r (OH ) 2 + 2 HCl ↔ CrCl 2 + 2 H 2 O .

С r (OH ) 2 является слабым основанием.

С r (П) образует ряд комплексов. Для хрома в С.О. +2 характерно координационное число 6. Например, в водных растворах ион С r 2+ гидратируется, образуя аквакомплексы синего цвета [ Cr (H 2 O ) 6 ] 2+ . Галогениды хрома (П) поглощают газообразный аммиак, образуя аммиакаты:

Cr Cl 2 + 6NH 3 → Cl 2 .

П. Соединения Э (Ш), то есть С.О. = +3

У хрома С.О. +3 в соединениях является наиболее устойчивой.

  1. Оксид хрома (Ш) С r 2 O 3 получают:

а) при накаливании порошка металлического хрома на воздухе:

4Cr + 3O 2 → 2Cr 2 O 3

б) прокаливанием оксида хрома ( VI ) или бихромата аммония:

t o t o

4CrO 3 → 2Cr 2 O 3 + 3O 2 (NH 4 ) 2 Cr 2 O 7 → Cr 2 O 3 + N 2 + 4H 2 O;

в) при нагревании гидроксида хрома (Ш):

2 С r(OH) 3 → Cr 2 O 3 + 3H 2 O.

Аморфный оксид Cr 2 O 3 – темно-зеленый порошок. Кристаллическая модификация Cr 2 O 3 – черный порошок. Он отличается высокой тугоплавкостью, химически инертен. В воде, кислотах и растворах щелочей не растворяется . Однако, при сплавлении оксида Cr (Ш) со щелочами и основными оксидами образуются соли метахромистой кислоты:

t o t o

Cr 2 О 3 + 2КОН → 2К Cr О 2 + Н 2 О; Cr 2 О 3 + СаО → Са (Cr О 2 ) 2 .

При сплавлении Cr 2 О 3 с дисульфатом калия образуется сульфат хрома (Ш).

3К 2 S 2 O 7 = 3K 2 SO 4 + 3SO 3 ;

Cr 2 О 3 + 3SO 3 = Cr 2 (SO 4 ) 3

─────────────────────────

Cr 2 О 3 + 3K 2 S 2 O 7 = Cr 2 (SO 4 ) 3 + 3K 2 SO 4 .

Эти реакции показывают амфотерный характер Cr 2 О 3 .

  1. Гидроксид хрома (Ш) Cr (ОН) 3 осаждают из растворов солей хрома (Ш) щелочами в виде объемистого студенистого серовато-зеленоватого осадка, нерастворимого в воде.

С r +3 + 3 OH - → Cr (OH ) 3 ↓;

CrCl 3 + 3NaOH → Cr(OH) 3 ↓ + 3NaCl.

Гидроксид хрома Cr (OH ) 3 имеет амфотерный характер и свежеполученный гидроксид хрома (Ш) легко растворяется в кислотах и в растворах щелочей.

Cr (OH ) 3 + 3НС l ↔ CrCl 3 + 3 H 2 O

Cr(OH) 3 + NaOH ↔ Na .

Основные и особенно кислотные свойства гидроксида хрома (Ш) выражены слабо. Поэтому соли Cr +3 подвергаются в растворах значительному гидролизу, а растворимые хромиты при отсутствии избытка щелочи гидролизованы практически нацело.

Cr 3+ + HOH ↔ Cr(OH) 2+ + H + ;

3- + HOH ↔ 2- + OH - .

Квасцы. Cr (Ш), как и А l (Ш), образует с активными металлами и NH 4 + двойные соли – квасцы. Пример : КС r (SO 4 ) 2 ∙12 H 2 O и (NH 4 )Cr (SO 4 ) 2 ∙12 H 2 O. Они образуются при взаимодействии растворов М 2 +1 SO 4 и Cr 2 (SO 4 ) 3 . В растворе эти соли диссоциируют:

К Cr(SO 4 ) 2 ↔ К + + Cr 3+ + 2 SO 4 2- .

Cr 3+ + Н 2 О ↔ Cr (OH ) 2+ + Н + - кислая среда.

Cr (Ш) как и Cr (П) - активный комплексообразователь . Координационное число Cr (Ш) равно 6 и 4.

Примеры: аквакомплекс [ Cr (H 2 O ) 6 ] 3+ - сине-фиолетовый цвет;

гидроксокомплекс [ Cr (OH ) 6 ] 3- - изумрудно-зеленый цвет;

аминокомплекс [ Cr (NH 3 ) 6 ] 3+ - фиолетовый цвет.

Ш. Соединения Э (VI ), то есть С.О. = +6

Соединения, в которых С.О. элемента равна +6, наиболее характерна для Мо, W и в меньшей степени для Cr .

  1. оксиды ЭО 3 (Cr О 3 , МоО 3 и W О 3 ).

МоО 3 и W О 3 образуются при накаливании металлов на воздухе:

t o

2Э + 3О 2 → 2ЭО 3.

Cr О 3 может быть получен лишь косвенным путем, так как при нагревании Cr в воздухе образуется Cr 2 О 3 .

Cr О 3 осаждается при добавлении избытка концентрированной H 2 SO 4 к насыщенному раствору хромата:

К 2 Cr О 4 + H 2 SO 4 конц. = Cr О 3 ↓ + К 2 SO 4 + Н 2 О

МоО 3 – бесцветные кристаллы;

W О 3 – светло-желтые кристаллы;

Cr О 3 – темно-красные кристаллы.

МоО 3 и W О 3 устойчивы и при нагревании в газовую фазу переходят без разложения. При нагревании Cr О 3 легко разлагается, выделяя О 2 .

t o

4 Cr О 3 → 2 Cr 2 О 3 + 3О 2 .

Cr О 3 легко растворяется в воде, образуя хромовую кислоту

Cr О 3 + Н 2 О → Н 2 Cr О 4 .

МоО 3 и W О 3 в воде не растворяются. Кислотная природа этих оксидов проявляется при растворении в растворах щелочей:

ЭО 3 + 2КОН → К 2 ЭО 4 + Н 2 О.

При этом образуются соли соответственно хромовой, молибденовой и вольфрамовой кислот.

  1. Гидроксиды Э (VI ) - H 2 ЭО 4

Н 2 Cr О 4 , Н 2 МоО 4 , Н 2 W О 4 .

Хромовую кислоту получают, растворяя Cr О 3 в Н 2 О. Молибденовую и вольфрамовую кислоты получают косвенным путем - подкислением растворов их солей:

(NH 4 ) 2 M о O 4 + 2HNO 3 → H 2 M о O 4 ↓ + 2NH 4 NO 3 .

Сила кислот в ряду Н 2 С rO 4 – Н 2 МоО 4 - Н 2 WO 4 – убывает.

Хромовая кислота Н 2 С rO 4 – кислота средней силы (К 1 = 2∙10 -1 , К 2 =3∙10 -7 ), в свободном состоянии не выделена.

H 2 MoO 4 выделена в свободном виде. Это - белый порошок, почти не растворим в воде. Константы первой ступени кислотной и основной диссоциации H 2 MoO 4 имеют порядок соответственно 10 -2 и 10 -13 .

3.Соли.

Большинство солей кислот Н 2 ЭО 4 малорастворимы в Н 2 О. Хорошо растворяются лишь соли Na + и К + . Хроматы окрашены в желтый цвет иона С rO 4 2- , молибдаты и вольфраматы - бесцветны. Все соли хромовых кислот ядовиты.

При подкислении раствора хромата образуется гидрохромат, который очень неустойчив и, выделяя воду, превращается в бихромат:

2 С rO 4 2- + 2Н + ↔ 2Н С rO 4 - ↔ С r 2 О 7 2- + Н 2 О.

При этом желтая окраска раствора сменяется на оранжевую, характерную для иона С r 2 О 7 2- . Это равновесие очень подвижно. Его можно сместить изменением рН среды: прибавление к раствору кислот (ионов Н + ) смещает равновесие в сторону образования дихромата, а прибавление щелочи - влево (за счет связывания ионов Н + ). Таким образом, в присутствии избытка ионов ОН - в растворе практически существуют только ионы С rO 4 2- , а при избытке ионов водорода - ионы С r 2 О 7 2- .

2 С rO 4 + H 2 SO 4 → К 2 С r 2 О 7 + К 2 SO 4 + Н 2 О;

К 2 С r 2 О 7 + 2КОН → 2К 2 С rO 4 + Н 2 О.

Двухромовая кислота Н 2 С r 2 О 7 значительно сильнее хромовой, К 2 = 2∙10 -2 . В свободном виде также не выделена.

Соединения Cr (VI ) - сильные окислители , переходят в окислительно-восстановительных реакциях в производные С r (III ). Наиболее сильно окислительные свойства Cr (VI ) выражены в кислой среде.

К 2 С r 2 О 7 + 6КJ + 7 H 2 SO 4 → Cr 2 (SO 4 ) 3 + 3J 2 + 4K 2 SO 4 + 7H 2 O.

При этом оранжевый цвет раствора бихромата калия сменяется на зеленый или зеленовато-фиолетовый цвет растворов Cr 3+ .

В противоположность хрому, окислительные свойства производных Мо(VI ) и W (VI ) даже в кислой среде проявляются лишь при взаимодействии с наиболее сильными восстановителями, например с водородом в момент выделения.

Пероксид хрома

При обработке кислого раствора хромата или дихромата пероксидом водорода образуется пероксид хрома С rO (O 2 ) 2 или С rO 5 .

С r 2 О 7 2- + 4Н 2 О 2 + 2Н + = 2 CrO (O 2 ) 2 + 5 H 2 O .

CrO (O 2 ) 2 – голубого цвета, в водном растворе нестоек и распадается на кислород и аквакомплексы [ Cr (H 2 O ) 6 ] 3+ .

Пероксид хрома устойчив в эфире и образует пероксо-комплекс

CrO (O 2 ) 2 L , где L – эфир, пиридин и др. Эти комплексы имеют форму пентагональной пирамиды с атомом кислорода в вершине:

Пероксид хрома в своем составе содержит две пероксидные группы (-О-О-), за счет которых проявляет окислительные свойства.

Кислород в своих соединениях проявляет, как правило, валентность равную двум. Но в принципе он может быть и четырех валентен, так как на внешнем слое кислород имеет 2 неспаренных электрона и 2 неподеленные электронные пары. Но поскольку атом кислорода имеет маленькой размер, то максимальная валентность кислорода равна трем, так как вокруг него может разместиться только три атома водорода.

Файлы: 1 файл

Общая характеристика элементов VI A подгруппы

К главной подгруппе VI группы периодической системы относятся кислород, сера, селен, теллур и полоний. Неметаллические свойства у элементов VI-А группы выражены менее ярко, чем у галогенов. Валентными уних являются электроны ns2 np4

Так как атомы элементов VI-А группы содержат на внешнем слое шесть электронов, то они стремятся к заполнению электронами внешнего энергетического уровня и для них характерно образование анионов Э2-.К образованию катионов атомы рассматриваемых элементов (кроме полония) несклонны. Кислород и сера – типичные неметаллы, причем кислород относится к самым электроотрицательным элементам (на втором месте после фтора). Полоний – металл серебристо-белого цвета, напоминающий по физическим свойствам свинец, а по электрохимическим свойствам – благородные металлы. Селен и теллур занимают промежуточное положение между металлами и неметаллами, они являются полупроводниками. По химическим свойствам они стоят ближе к неметаллам. Кислород, серу, селен и теллур объединяют в группу "халькогенов", что в переводе с греческого языка означает "порождающие руды". Эти элементы входят в состав многочисленных руд. От кислорода к теллуру содержание элементов на Земле резко падает. Полоний не имеет стабильных изотопов и встречается в урановых и ториевых рудах, как один из продуктов распада радиоактивного урана.

По своим свойствам кислород и сера резко отличаются друг от друга, т.к. электронные оболочки предыдущего энергетического уровня построены у них различно. Теллур и полоний имеют одинаковое строение внешнего энергетического уровня (валентного слоя) и предпоследнего энергетического уровня, поэтому они в большей степени схожи по своим свойствам.

Кислород в своих соединениях проявляет, как правило, валентность равную двум. Но в принципе он может быть и четырех валентен, так как на внешнем слое кислород имеет 2 неспаренных электрона и 2 неподеленные электронные пары. Но поскольку атом кислорода имеет маленькой размер, то максимальная валентность кислорода равна трем, так как вокруг него может разместиться только три атома водорода.

Кислород и его соединения

Свойства кислорода. Кислород О2 – газ без цвета, запаха и вкуса. Плохо растворим в воде: при 20оС в 100 объемах воды растворяется около 3 объемов кислорода. Жидкий кислород имеет светло-голубой цвет, он притягивается магнитом, так как его молекулы парамагнитны, имеют два неспаренных электрона. Энергия связи в молекуле О2 равна 493 кДж/моль, длина связи 0,1207 нм, порядок связи в молекуле равен двум. В природе кислород существует в виде трех изотопов16О, 17О, 18О и в виде двух аллотропных модификаций кислорода О2 и озона О3. В воздухе кислорода в свободном состоянии содержится около 21%.

Получение кислорода. В лаборатории кислород получают разложением соединений, богатых кислородом: а) 2 KClO3 = 2 KCl + 3 O2 (катализатор – MnO2) б) 2 KMnO4 = O2 + K2MnO4 + MnO2 в) Н2О2 = 2 Н2О + О2 (катализатор – MnO2) г) электролизом водных растворов кислородсодержащих кислот и щелочей с инертным анодом. В промышленности кислород получают разделением жидкого воздуха в ректификационных колоннах.

ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА

Термодинамика – наука о взаимопревращениях различных форм энергии и законах этих превращений. Термодинамика базируется только на экспериментально обнаруженных объективных закономерностях, выраженных в двух основных началах термодинамики.

Термодинамика изучает:

1. Переходы энергии из одной формы в другую, от одной части системы к другой;

2. Энергетические эффекты, сопровождающие различные физические и химические процессы и зависимость их от условий протекания данных процессов;

3. Возможность, направление и пределы самопроизвольного протекания процессов в рассматриваемых условиях.

Необходимо отметить, что классическая термодинамика имеет следующие ограничения:

1. Термодинамика не рассматривает внутреннее строение тел и механизм протекающих в них процессов;

2. Классическая термодинамика изучает только макроскопические системы;

3. В термодинамике отсутствует понятие "время".

ОСНОВНЫЕ ПОНЯТИЯ ТЕРМОДИНАМИКИ

Термодинамическая система – тело или группа тел, находящихся во взаимодействии, мысленно или реально обособленные от окружающей среды.

Гомогенная система – система, внутри которой нет поверхностей, разделяющих отличающиеся по свойствам части системы (фазы).

Гетерогенная система – система, внутри которой присутствуют поверхности, разделяющие отличающиеся по свойствам части системы.

Фаза – совокупность гомогенных частей гетерогенной системы, одинаковых по физическим и химическим свойствам, отделённая от других частей системы видимыми поверхностями раздела.

Изолированная система – система, которая не обменивается с окружающей средой ни веществом, ни энергией.

Закрытая система – система, которая обменивается с окружающей средой энергией, но не обменивается веществом.

Открытая система – система, которая обменивается с окружающей средой и веществом, и энергией.

Компонентами системы называются индивидуальные вещества, которые, будучи взяты в наименьшем количестве, достаточны для описания (образования) всех фаз системы. выделение компонентов обусловлено конкретным содержанием системы и зависит от тех химических реакций, которые протекают внутри системы и при ее взаимодействии с внешней средой.В сложных минеральных системах в качестве компонентов обычно выступают окислы или элементы.

Параметрами называются величины, при помощи которых может быть описано состояние системы. Фундаментальные параметры систем: температура (Т), энтропия (S), давление (р), объем (V), массы компонентов (m a ...m k) и их химические потенциалы (μ a ...μ k).

Экстенсивными называются парам етры, обладающие свойством аддитивности (слагаемости), т. е. экстенсивные параметры зависят от массы или числа частиц системы. К экстенсивным параметрам относятся объем, энтропия и массы компонентов. Экстенсивные параметры иногда называют параметрами емкости. Интенсивными параметрами, или параметрами напряженности, называются такие, которые не зависят от массы или числа частиц системы. К ним относятся температура, давление и химические потенциалы компонентов.

Существует примечательное свойство термодинамических параметров, которое можно назвать свойством симметричности и сопряженности. Свойство симметричности состоит в том, что любой термодинамический процесс в системе характеризуется парой параметров, один из которых интенсивный, другой - экстенсивный.

Первое начало термодинамики представляет собой закон сохранения энергии, один из всеобщих законов природы:Энергия неуничтожаема и несотворяема; она может только переходить из одной формы в другую в эквивалентных соотношениях.

Первое начало термодинамики представляет собой постулат

Полная энергия изолированной системы постоянна;

Невозможен вечный двигатель первого рода (двигатель, совершающий работу без затраты энергии).

Первое начало термодинамики устанавливает соотношение между теплотой Q, работой А и изменением внутренней энергии системы ΔU: Уравнение 1является математической записью 1-го начала термодинамики для конечного, уравнение 2 – для бесконечно малого изменения состояния системы.

Внутренняя энергия является функцией состояния; это означает, что изменение внутренней энергии ΔU не зависит от пути перехода системы из состояния 1 в состояние 2 и равно разности величин внутренней энергии U 2 и U 1 в этих состояниях:

Изохорическийй процесс (V = const; ΔV = 0).поглощение или выделение тепла связано только с выделением Е

Изотермический процесс (Т = const).это процесс квазистатического расширения или сжатия вещества, находящегося в контакте с тепловым резервуаром.

Изобарический процесс (Р = const).

Адиабатический процесс (Q = 0).Это процесс квазистатического расширения или сжатия газа в сосуде с теплонепроницаемыми оттенками. А=- U

ВНУТРЕННЯЯ ЭНЕРГИЯ термодинамич. ф-ция состояния системы, ее энергия, определяемая внутр. состоянием. Внутренняя энергия складывается в осн. из кинетич. энергии движения частиц (атомов, молекул, ионов, элект ронов) и энергии взаимод. между ними (внутри- и межмолекулярной).

При изотермическом процессевнутренняя энергия идеального газа не меняется. Все переданное газу количество теплоты идет на совершение работы:Q = A

Изменение внутренней энергии при изобарном процессе:ΔU=3/2 ·v·R·ΔT.

изменение внутренней энергии при адиабатном:Q=m·C p D·T/m.

Энтальпия-величина, пропорциональна кол-ву в-ва и измеряется в [КДж/моль] Н<0-экзотермический, Н>0 эндотермический.

При взаимодействии газообр. в-в образуется Н2О, которая может находится в различных состояниях.

Стандартное состояние энтальпий Т=298К, Р=101,325кПа