Закон больцмана для распределения частиц во внешнем потенциальном поле. Идеальный газ в силовом поле. Барометрическая формула. Закон равномерного распределения энергии по степеням свободы. Число степеней свободы. Средняя кинетическая энергия теплового дви

При выводе основного уравнения молекулярно-кинетической теории и закона распределения Максвелла предполагалось, что на молекулы не действуют никакие внешние силы. Поэтому можно было считать, что молекулы равномерно распределены по объему сосуда.

Фактически же молекулы любого газа всегда находятся в поле тяготения Земли. Если бы не было теплового движения молекул атмосферного воздуха, то все они упали бы на Землю. Если бы не было тяготения, то атмосферный воздух рассеялся бы по всей Вселенной. Таким образом, тяготение и тепловое движение приводят газ в состояние, при котором его давление и концентрация молекул зависят от высоты.

Формула зависимости атмосферного давления от высоты над уровнем Земли получила название барометрической формулы. Для вывода барометрической формулы введем некоторые допущения:

Ускорение свободного падения считаем практически постоянным и не зависящим от высоты, так как атмосферное давление становится пренебрежительно малым уже на высоте 100-200 км, гораздо меньшей по сравнению с радиусом Земли;

Температуру воздуха считаем не зависящей от высоты.

Атмосферное давление обусловлено весом вышележащих слоев газа. Выделим мысленно вертикальный столб воздуха (рис. 18.1) с площадью основания S .

Пусть на высоте h давление газа равно p , а на высоте (h+dh ) давление равно (p+dp ). Так как давление с увеличением высоты падает, то его приращение будет отрицательным (dp < 0).

Разность давлений p и (p+dp ) равна весу газа, заключенного в столбе высотой dh, деленной на площадь S, то есть

, (18.1)

где - плотность воздуха на высота h .

Заменив в этом уравнении плотность по формуле, полученной с помощью уравнения Клапейрона-Менделеева (14.1):

запишем выражение (18.1) в виде

. (18.2)

Полагая T=const (в соответствии с принятыми допущениями) и интегрируя уравнение (18.2) по высоте от 0 до h , получим

,

откуда находим

, (18.3)

где p 0 - давление на высоте h = 0.

Выражение (18.3) носит название барометрической формулы. Из нее следует, что давление газа убывает с ростом высоты тем быстрее, чем тяжелее газ (чем больше ) и чем ниже температура. На рис.18.2 изображены две зависимости вида (18.3), соответствующие двум газам с разными молярными массами  1 и  2 при T=const (давление p 0 для h=0 у обоих газов принято условно одинаковым).

Сравнение этих зависимостей показывает, что более тяжелые газы будут располагаться ближе к поверхности Земли (поэтому в нижних слоях атмосферы относительное количество кислорода больше, чем азота, а в верхних - наоборот). Выражение (18.3), преобразованное к виду

(18.4)

лежит в основе принципа работы авиационных высотомеров (альтиметров): измеряя с помощью барометра давление, эти приборы показывают значение высоты над уровнем моря.

Из формулы (18.3) можно получить соотношение между концентрациями газа на различной высоте, подставив в нее уравнение состояния газа в форме (15.26):

. (18.5)

Заменив отношение / R для однородного газа на отношение m/k (m - масса молекулы) и сократив обе части равенства на k Т , получим

, (18.6)

где n 0 - концентрация молекул газа при h =0.

Из выражения (18.6) следует, что чем тяжелее газ (больше m ) и чем меньше его температура Т , тем больше концентрация молекул у поверхности Земли по сравнению с концентрацией на некоторой высоте (преобладание тяготения Земли над тепловым движением молекул). И наоборот, чем легче газ и больше его температура, тем более тепловое движение молекул преобладает над тяготением и концентрация медленно убывает с ростом высоты.

На рис.18.3 изображены две зависимости вида (18.6) для некоторого одного газа при двух разных температурах (T 2 >T 1 ).

Сравнение этих зависимостей показывает, что чем меньше температура газа, тем большая неоднородность наблюдается в распределении концентрации молекул газа по высоте.

Произведение mgh в уравнении (18.6) представляет собой потенциальную энергию W n одной молекулы в поле тяготения Земли. Следовательно, распределение молекул по высоте является вместе с тем и распределением их по значениям

потенциальной энергии:

. (18.7)

Австрийский физик Л. Больцман доказал, что формула (18.7) справедлива для любой совокупности одинаковых частиц, находящихся в состоянии хаотического теплового движения в потенциальном поле любой природы. В связи с этим функцию (18.7) называют распределением Больцмана. Таким образом, распределение (18.6) является частным случаем более общего распределения (18.7). Между распределением Максвелла (17.6) и Больцмана (18.7) имеется большое сходство: и в том и в другом распределении в показателе степени экспоненты стоит отношение энергии молекулы (в одном случае потенциальной, а в другом кинетической) к величине кТ , определяющей среднюю кинетическую энергию теплового хаотического движения.

Распределения (17.6) и (18.7) могут быть объединены в одно распределение Максвелла-Больцмана , согласно которому число молекул, компоненты скоростей которых лежат в пределах от
до ,а координаты в пределах от
до равно

где
.

Из формулы (18.8) следует, что
определяется полной энергий молекулы
.

Таким образом, в состоянии с постоянной температурой скорости молекул в каждой точке пространства распределены по закону Максвелла. Влияние силового поля сказывается только на изменении концентрации молекул от точки к точке.

Найдем закон изменения давления газа в зависимости от высоты над уровнем моря, полагая, что газ идеальный, темпера­тура его постоянна и не изменяется с высотой, ускорение свобод­ного падения не зависит от высоты. Последние два предположе­ния справедливы при относительно небольших изменениях высоты.

Выделим мысленно, на высоте Н над уровнем моря ци­линдрический слой, высота которого dh , а основание равно S (рис. 8).

где = m 0 gn S h - сила притяжения молекул объема S h к Земле;

= p S - сила давле­ния на высоте h ;

= (р + dp ) S - сила давления на высоте h + dh .

Все силы направлены по одной прямой, поэтому

F T + F 2 F 1 = 0.

сокращая на S

и учитывая, что
, получим


Разделяя переменные и принимая во внимание, что = const .


(1.2)



- Барометрическая формула (1.2)



;

т.к.
, то


На основе барометрической формулы разработаны приборы- алтиметры- приборы для определения высоты.

    1. Закон Больцмана

Пользуясь барометрической формулой

Учитывая, что

р = nkT,

р 0 = n 0 kT,

где п и п 0 - концентрации молекул соответственно на высоте h и h 0



(1. 2 )

Полученное распределение Больцмана справедливо для по­ля тяготения. Однако оно справедливо и для газа, находящегося в любом дру­гом потенциальном поле. При этом величина m 0 gh заменяется на W П - потенциальную энергию молекулы в произвольном силовом поле.


(1. 2 )

Если kT  W п , имеет место почти равномерное распределение частиц по энергиям (распределение Максвела ).

При kT  W п , n n 0 , т.е. имеет место резкое изменение концентрации молекул в силовом поле: число молекул с небольшими энергиями (на низких энергетических уровнях) значительно превышает число молекул на более высоких энергетических уровнях.

Распределение Больцмана, описываемое функцией (1.37) называется нормальным распределением. В 1905 г. Эйнштейн предсказал существование систем с инверсной заселенностью энергетических уровней. В 1960 г впервые такое распределение использовано практически- в лазерах.

Для характеристики инверсных систем в физике ввели понятие Т 0.

Распределение Максвелла-Больцмана, описывающие распределение молекул по скоростям в силовом поле.


(1.2)

  1. Основы термодинамики

    1. Общие понятия термодинамики

Термодинамика – раздел физики, в котором изучаются физические превращения различных видов энергии, теплоты и работы. (Теория тепловых явлений, в которой не учитывается атомно-молекулярное строение тел).

Совокупность макроскопических тел, которые взаимодействуют и обмениваются энергией как между собой, так и с другими телами называется термодинамической системой .

Если взаимодействие с телами не входящими в систему отсутствует, то система называется изолированной.

Совокупность физических величин, характеризующих свойства термодинамической системы, называется термодинамическими параметрами .

Любые изменения, происходящие в термодинамической системе, называют термодинамическим процессом .

Произвольная термодинамическая система обладает полной энергией Е, складывающейся из:

а) кинетической энергии Е к механического движения системы как целого;

б) потенциальной энергии системы Е п во внешних силовых полях (гравитационном, электромагнитном);

в) внутренней энергии U . Внутренняя энергия макроскопического тела равна сумме потенциальных энергий взаимодействия частиц, составляющих тело, и кинетических энергий их беспорядочного теплового движения.

Е = Е к + Е п + U

В термодинамике внутренняя энергия U определяется как однозначная функция его макроскопических параметров, например Т и V , т.е. в каждом состоянии система обладает вполне определенной внутренней энергией.

При переходе системы из одного состояния в другое изменение внутренней энергии определяется только разностью значений внутренних энергий в этих состояниях и не зависит от пути перехода.

Барометрическая формула зависимость давления или плотности газа от высоты в поле тяжести. Для идеального газа имеющего постоянную температуру T и находящегося в однородном поле тяжести во всех точках его объёма ускорение свободного падения g одинаково барометрическая формула имеет следующий вид: где p давление газа в слое расположенном на высоте h p0 давление на нулевом уровне h = h0 M молярная масса газа R газовая постоянная T абсолютная температура. Из барометрической формулы следует что концентрация молекул n или...

45.Барометрическая формула. Закон Больцмана для распределения частиц во внешнем потенциальном поле.

Барометрическая формула — зависимость давления или плотности газа от высоты в поле тяжести. Для идеального газа , имеющего постоянную температуру T и находящегося в однородном поле тяжести (во всех точках его объёма ускорение свободного падения g одинаково), барометрическая формула имеет следующий вид:

где p — давление газа в слое, расположенном на высоте h , p 0 — давление на нулевом уровне (h = h 0 ), M — молярная масса газа, R — газовая постоянная , T — абсолютная температура . Из барометрической формулы следует, что концентрация молекул n (или плотность газа) убывает с высотой по тому же закону:

где M — молярная масса газа, R — газовая постоянная.

Барометрическая формула показывает, что плотность газа уменьшается с высотой по экспоненциальному закону. Величина , определяющая быстроту спада плотности, представляет собой отношение потенциальной энергии частиц к их средней кинетической энергии, пропорциональной kT . Чем выше температура T , тем медленнее убывает плотность с высотой. С другой стороны, возрастание силы тяжести mg (при неизменной температуре) приводит к значительно большему уплотнению нижних слоев и увеличению перепада (градиента) плотности. Действующая на частицы сила тяжести mg может изменяться за счёт двух величин: ускорения g и массы частиц m .

Следовательно, в смеси газов, находящейся в поле тяжести, молекулы различной массы по-разному распределяются по высоте.

Пусть идеальный газ находится в поле консервативных сил в условиях теплового равновесия. При этом концентрация газа будет различной в точках с различной потенциальной энергией, что необходимо для соблюдения условий механического равновесия. Так, число молекул в единичном объеме n убывает с удалением от поверхности Земли, и давление, в силу соотношения P = nkT , падает.

Если известно число молекул в единичном объеме, то известно и давление, и наоборот. Давление и плотность пропорциональны друг другу, поскольку температура в нашем случае постоянна. Давление с уменьшением высоты должно возрастать, потому что нижнему слою приходится выдерживать вес всех расположенных сверху атомов.

Исходя из основного уравнения молекулярно-кинетической теории: P = nkT , заменим P и P 0 в барометрической формуле (2.4.1) на n и n 0 и получим распределение Больцмана для молярной массы газа:

(2.5.1)

где n 0 и n - число молекул в единичном объёме на высоте h = 0 и h .

Так как а , то (2.5.1) можно представить в виде

(2.5.2)

С уменьшением температуры число молекул на высотах, отличных от нуля, убывает. При T = 0 тепловое движение прекращается, все молекулы расположились бы на земной поверхности. При высоких температурах, наоборот, молекулы оказываются распределёнными по высоте почти равномерно, а плотность молекул медленно убывает с высотой. Так как mgh – это потенциальная энергия U , то на разных высотах U = mgh – различна. Следовательно, (2.5.2) характеризует распределение частиц по значениям потенциальной энергии:

(2.5.3)

– это закон распределения частиц по потенциальным энергиям – распределение Больцмана. Здесь n 0 – число молекул в единице объёма там, где U = 0.

На рисунке 2.11 показана зависимость концентрации различных газов от высоты. Видно, что число более тяжелых молекул с высотой убывает быстрее, чем легких.


Рис. 2.11

Из (2.5.3) можно получить, что отношение концентраций молекул в точках с U 1 и i>U 2 равно:

(2.5.4)

Больцман доказал, что соотношение (2.5.3) справедливо не только в потенциальном поле сил гравитации, но и в любом потенциальном поле, для совокупности любых одинаковых частиц, находящихся в состоянии хаотического теплового движения.


А также другие работы, которые могут Вас заинтересовать

42675. Изучение конструкции и поверки измерительного преобразователя давления типа "Сапфир – 22ДИ" 35.5 KB
Березники 2003 Цель работы ознакомиться с принципом действия и конструкцией измерительного преобразователя типа Сапфир22ДИ; выполнить проверку измерительного преобразователя типа Сапфир22ДИ; приобрести навыки в определении давления при помощи измерительных преобразователей типа Сапфир. Стенды предназначены для проведения лабораторных работ по поверке автоматического миллиамперметра КСУ2 в комплекте с преобразователем давления Сапфир22ДИ. На втором стенде установлены автоматический миллиамперметр КСУ2 клеммы Миллиамперметр...
42676. Изучение конструкции и поверки вторичного прибора РП160 40.5 KB
Цель работы ознакомление с работой измерительной системы измерения температуры в комплекте пирометр сопротивления заменён магазином сопротивления нормирующий преобразователь НПСЛ вторичный прибор РП160. Порядок проведения работы: Ознакомились со схемой подключения магазина сопротивления нормирующего преобразователя вторичного прибора; Установили магазином сопротивления сопротивление 4171 атм. соответствующее температуре 50С значение температуры считали по шкале прибора РП160; Рассчитали значение...
42677. Изучение и исследование термоэлектрического метода измерения температур 96 KB
При этом студенты овладевают методикой поверки автоматического потенциометра КСП4 в комплекте с образцовым потенциометром УПИП60М градуировки шкалы. магазин сопротивлений R4 R10 и клеммы для подключения образцового потенциометра УПИП60М. Поверка автоматического потенциометра КСП4. Для поверки градуировки шкалы автоматического потенциометра КСП4 собирают схему по рисунку.
42678. Изучение работы жидкостного U – образного манометра и комплекта приборов для измерения давления пневматической ветви ГСП 403.5 KB
Березники 2007 Цель работы в процессе выполнения лабораторной работы студенты закрепляют знания по разделу Измерение давления и Дистанционная передача сигнала измерительной информации теоретического курса Технические измерения и приборы. Студенты знакомятся с принципом действия устройством преобразователя измерительного разности давления пневматического 13ДД11 в комплекте с вторичным прибором РПВ4. Стенд предназначен для выполнения лабораторной работы по изучению работы измерительного преобразователя разности давления...
42680. 278 KB
Ознакомиться c основными процедурами, предшествующим установлению ресурса ВС; методами схематизации процессов нагружения. Оформить отчет №1 по лабораторной работе в виде рукописного конспекта, с необходимыми иллюстрациями. В отчете дайте развернутые ответы на все вопросы, которые приведены ниже.
42681. Исследование процесса испытания конструкционных материалов при случайном режиме нагружения 40 KB
Ознакомиться c гипотезами накопления повреждений; Стандартизированными спектрами нагружения используемых при изучении усталостных характеристик летательных аппаратов. ВОПРОСЫ В чем заключается смысл концепции линейного накопления повреждений при усталости Основные недостатки линейной гипотезы накопления повреждений В чем заключается смысл модифицированных гипотез...
42682. Автоматические системы контроля технического состояния самолета. Деформационный рельеф плакированных сплавов как показатель истории нагруженности 1.63 MB
Ознакомиться с проблемами концентрации напряжения и коэффициентами которые определяют ее; принципами построения автоматизированной системой контроля технического состояния самолета; деформационным рельефом который является показателем поврежденности конструкции самолета. На распечатанном рисунке самолета А380 формат А2 нанести примеры применения систем контроля целостности конструкции. ВОПРОСЫ В чем...
42683. Основные приемы работы в СУБД Microsoft Access 292 KB
Основные приемы работы в СУБД Microsoft ccess Приложение ccess является программой входящий в пакет Microsoft Office и предназначено для работы с базами данных. База данных. В общем смысле термин база данных можно применить к любой совокупности связанной информации объединенной вместе по определенному признаку организованных по определенным правилам предусматривающим общие принципы описании хранения и манипулирования данными которые относятся к определенной предметной области. Система управления базами данных СУБД прикладное...

При выводе основного уравнения молекулярно-кинетической теории предполагалось, что если на молекулы газа не действуют внешние силы, то молекулы равномерно распределены по объему. Однако молекулы любого газа находятся в потенциальном поле тяготения Земли. Тяготение, с одной стороны, и тепловое движение молекул, с другой, приводят к некоторому стационарному состоянию газа, при котором концентрация молекул газа и его давление с высотой убывают. Выведем закон изменения давления газа с высотой, предполагая при этом, что поле тяготения однородно, температура постоянна и масса всех молекул одинакова. Если атмосферное давление на высоте hравно р, то на высотеh+dhоно равно р +dp(рис.1.2). Приdh> 0,dр < 0, т.к. давление с высотой убывает. Разность давлений р и (р +dр) равна гидростатическому давлению столба газа авсd, заключенного в объеме цилиндра высотойdhи площадью с основанием равным единице. Это запишется в следующем виде:p- (p+dp) =gρdh, -dp=gρdhилиdp= ‑gρdh, гдеρ– плотность газа на высотеh. Воспользуемся уравнением состояния идеального газа рV=mRT/Mи выразим плотностьρ=m/V=pM/RT. Подставим это выражение в формулу дляdр:

dp= -pMgdh/RTилиdp/p= -Mgdh/RT

Интегрирование данного уравнения дает следующий результат:
Здесь С – константа и в данном случае удобно обозначить постоянную интегрирования черезlnC. Потенцируя полученное выражение, находим, что


При условии h=0 получим, что С=р 0 , где р 0 -давление на высотеh=0.

Д
анное выражение называется барометрической формулой. Она позволяет найти атмосферное давление в зависимости от высоты, или высоту, если известно давление.

Зависимость давления от высоты демонстрирует рисунок 1.3. Прибор для определения высоты над уровнем моря называется высотомером или альтиметром. Он представляет собой барометр, проградуированный в значениях высоты.

1. 5. Закон Больцмана о распределении частиц во внешнем потенциальном поле. @

Если воспользоваться выражением р = nkT, то можно привести барометрическую формулу к виду:

з
десьn– концентрация молекул на высотеh,n 0 – то же у поверхности Земли. Так как М =m 0 N A , гдеm 0 – масса одной молекулы, аR=kN A , то мы получим П =m 0 gh– это потенциальная энергия одной молекулы в поле тяготения. ПосколькуkT~‹ε пост ›, то концентрация молекул на определенной высоте зависит от соотношения П и ‹ε пост ›

Полученное выражение называется распределением Больцмана для внешнего потенциального поля. Из него следует, что при постоянной температуре плотность газа (с которой связана концентрация) больше там, где меньше потенциальная энергия его молекул.

1. 6. Распределение Максвелла молекул идеального газа по скоростям. @

При выводе основного уравнения молекулярно-кинетической теории отмечалось, что молекулы имеют различные скорости. В результате многократных соударений скорость каждой молекулы меняется со временем по модулю и по направлению. Из-за хаотичности теплового движения молекул все направления являются равновероятными, а средняя квадратичная скорость остается постоянной. Мы можем записать

Постоянство ‹υ кв › объясняется тем, что в газе устанавливается стационарное, не меняющееся со временем распределение молекул по скоростям, которое подчиняется определенному статистическому закону. Этот закон теоретически был выведен Д.К.Максвеллом. Он рассчитал функциюf(), называемую функцией распределения молекул по скоростям. Если разбить диапазон всех возможных скоростей молекул на малые интервалы, равныеd, то на каждый интервал скорости будет приходиться некоторое число молекулdN(), имеющих скорость, заключенную в этом интервале (Рис.1.4.).

Функция f(v) определяет относительное число молекул, скорости которых лежат в интервале от  до + d. Это число - dN()/N= f()d.Применяя методы теории вероятностей, Максвелл нашел вид для функции f()

Данное выражение - это закон о распределении молекул идеального газа по скоростям.Конкретный вид функции зависит от рода газа, массы его молекул и температуры (рис.1.5). Функция f()=0 при =0 и достигает максимума при некотором значении  в, а затем асимптотически стремится к нулю. Кривая несимметрична относительно максимума. Относительное число молекул dN()/N, скорости которых лежат в интервале d и равное f()d, находится как площадь заштрихованной полоски основанием dv и высотой f(), показанной на рис.1.4. Вся площадь, ограниченная кривой f() и осью абсцисс равна единице, потому что, если просуммировать все доли молекул, имеющих всевозможные значения скорости, то получается единица. Как показано на рис.1.5, с ростом температуры кривая распределения смещается вправо, т.е. растет число быстрых молекул, но площадь под кривой остается постоянной, т.к. N = const.

Скорость  в, при которой функция f() достигает максимума, называется наиболее вероятной скоростью. Из условия равенства нулю первой производной функцииf(v) ′ = 0 следует, что

Н
а рисунке 1.4. отмечена еще одна характеристика – средняя арифметическая скорость молекулы. Она определяется по формуле:

Опыт, проведенный немецким физиком О.Штерном, экспериментально подтвердил справедливость распределения Максвелла (рисунок 1.5.). Прибор Штерна состоит из двух коаксиальных цилиндров. Вдоль оси внутреннего цилиндра со щелью проходит платиновая проволока, покрытая слоем серебра. Если пропустить по проволоке ток,она нагревается и серебро испаряется. Атомы серебра, вылетая через щель, попадают на внутреннюю поверхность второго цилиндра. Если прибор будет вращаться, то атомы серебра осядут не против щели, а сместятся от точки О на некоторое расстояние. Исследование количество осадка позволяет оценить распределение молекул по скоростям. Оказалось, что распределение соответствует максвелловскому.

Полученная в § 92 барометрическая формула

(см. (92.4)) дает зависимость давления от высоты над поверхностью Земли для воображаемой изотермической атмосферы. Заменим в показателе экспоненты отношение равным ему отношением ( - масса молекулы, k - постоянная Больцмана). Кроме того, подставим в соответствии с (86.7) вместо выражение а вместо - выражение Сократив затем обе части равенства на придем к формуле

(100.2)

Здесь - концентрация молекул (т. е. число их в единице объема) на высоте - концентрация молекул на высоте

Из формулы (100.2) следует, что с понижением температуры число частиц на высотах, отличных от нуля, убывает, обращаясь в нуль при (рис. 100.1). При абсолютном нуле все молекулы расположились бы на земной поверхности.

При высоких температурах, напротив, слабо убывает с высотой, так что молекулы оказываются распределенными по высоте почти равномерно.

Этот факт имеет простое физическое объяснение. Каждое конкретное распределение молекул по высоте устанавливается в результате действия двух тенденций: 1) притяжение молекул к Земле (характеризуемое силой ) стремится расположить их на поверхности Земли; 2) тепловое движение (характеризуемое величиной ) стремится разбросать молекулы равномерно по всем высотам. Чем больше и меньше Т, тем сильнее преобладает первая тенденция, и молекулы сгущаются у поверхности Земли. В пределе при тепловое движение совсем прекращается, и под влиянием притяжения молекулы располагаются на земной поверхности. При высоких температурах превалирует тепловое движение, и плотность молекул медленно убывает с высотой.

На разной высоте молекула обладает различным запасом по тенциальной энергии:

Следовательно, распределение молекул по высоте является вместе с тем и распределением их по значениям потенциальной энергии. С учетом (100.3) формулу (100.2) можно записать следующим образом:

где - плотность молекул в том месте пространства, где потенциальная энергия молекулы имеет значение - плотность молекул в том месте, где потенциальная энергия молекулы равна нулю.

Из (100.4) следует, что молекулы располагаются с большей плотностью там, где меньше их потенциальная энергия, и, наоборот, с меньшей плотностью - в местах, где их потенциальная энергия больше.

В соответствии с (100.4) отношение в точках, где потенциальная энергия молекулы имеет значения равно

Больцман доказал, что распределение (100.4) справедливо не только в случае потенциального поля сил земного тяготения, но и в любом потенциальном поле сил для совокупности любых одинаковых частиц, находящихся в состоянии хаотического теплового движения. В соответствии с этим распределение (100.4) называют распределением Больцмана.

В то время как закон Максвелла дает распределение частиц по значениям кинетической энергии, закон Больцмана дает распределение частиц по значениям потенциальной энергии. Для обоих распределений характерно наличие экспоненциального множителя, в показателе которого стоит отношение кинетической или соответственно потенциальной энергии одной молекулы к величине, определяющей среднюю энергию теплового движения молекулы.

Согласно формуле (100.4) количество молекул, попадающих в пределы объема расположенного в точке с координатами х, у, z, равно

Мы получили еще одно выражение закона распределения Больцмана.

Распределения Максвелла и Больцмана можно объединить в один закон Максвелла - Больцмана, согласно которому число молекул, компоненты скорости которых лежат в пределах от до а координаты в пределах от х, у, z до равно