Эмульсия для чего применяется. Характеристика эмульсий. Как правильно пользоваться эмульсией для лица

Эмульсия - это смесь веществ. В ней один компонент состоит из мельчайших частиц, нерастворимых в другом. Этот ингредиент называется "дисперсной фазой". Другое вещество - дисперсная среда. В ней распределяется первая составляющая. "Эмульсия" - это термин, имеющий латинское происхождение. В переводе оно обозначает "выдаиваю, дою". Рассмотрим это понятие подробнее.

Общие сведения

Из любых двух жидкостей, которые не смешиваются и не реагируют химически, можно делать эмульсию. Одним из компонентов почти всегда является вода. Другое вещество состоит из слабополярных или нейтральных молекул (например жиры). Первая известная всем эмульсия - это молоко. Здесь частицы жира дисперсируются в воде. Размер мельчайших частиц дисперсной фазы составляет 1-50 мкм, поэтому эмульсии относятся к грубодисперсным системам. Низкоконцентрированные жидкости - неструктурированные. Смеси с высокой концентрацией - структурированные. По термодинамическим признакам нефтяная эмульсия - это нестабильная система. Размеры у капель фазы большие, и смесь будет неструктурированной.

Классификация

Тип получаемой эмульсии зависит от соотношения объемов фаз и их состава, от количества и природы эмульгатора, его химической активности, от способа и метода смешивания.

Химическое воздействие на эмульсию, давление, изменение состава может привести к инвертированию.

  1. Лиофильная эмульсия - это смесь, формирующаяся спонтанно, самопроизвольно. Она термодинамически считается устойчивой. Примером могут служить критически стабильные эмульсии при достижении предельной для смешивания фаз температуре. К этой же категории относят смазочные масла и жидкости для охлаждения.
  2. Лиофобная эмульсия - это смесь, образованная при механическом, акустическом или электрическом смешивании. Термодинамически они крайне неустойчивы. Такие смеси без эмульгаторов долго не существуют. Хорошие компоненты для них: ПАВ, высокомолекулярные, растворимые в воде вещества, твердые тела с высокой дисперсностью.

Получение

Есть две технологии производства эмульсии. Первый - путь мелкого дробления фракций. Второй - процесс пленкообразования с последующим разрывом на мелкие части. В первом варианте вещество медленно добавляется в дисперсную систему. При этом необходимо, осуществляя присоединение, постоянно на большой скорости перемешивать. В этом случае качество смеси будет зависеть от разных факторов. В частности, от скорости перемешивания, введения и объема диспергируемого вещества, его концентрации, температуры и кислотности среды. Второй метод - это процесс, при котором образуется пленка на поверхности другой фазы. Снизу нагнетается воздух. Пузырьки разрывают пленку на мелкие капли и перемешивают весь объем жидкости. В наше время начали вместо воздуха использовать вызывает дробление пленки на еще более мелкие части.

Разрушение смесей

С течением времени происходит самопроизвольный распад эмульсии. Бывают случаи, когда необходимо ускорить этот процесс и уменьшить концентрацию соединения. Данная необходимость актуальна, когда наличие высококонцентрированной эмульсии мешает процессу обработки материала или его правильному применению. Ускорить сам процесс уменьшения можно несколькими способами:


Применение

Спектр применения эмульсий в промышленности очень широк. В частности, соединения используют:

  1. При производстве маргарина и масла.
  2. В мыловарении.
  3. При изготовлении материалов из натурального каучука.
  4. В строительстве. Например, - это негорючее соединение.
  5. В сельском хозяйстве: пестициды - различные препараты, уничтожающие вредителей растений.
  6. Для медицинских целей: изготолвение различных лекарств, мазей, косметики.
  7. В живописи используют различные эмульсионные краски.
  8. Косметика для волос, эмульсии, защищающие поверхность волоса при окрашивании. Например, проявляющая эмульсия (это окислитель для краски).
  9. В используется смесь воды с нефтью, в которой диспергирование одной фазы жидкости в другую происходит мельчайшими капельками - глобулами.

Что представляет собой эмульсия каждый знает ещё с детства, просто сам по себе научный термин известен не всем. Так что же это такое — эмульсия?

Данное слово происходит от латинского «emulgeo», значение которого «доить» или «выдаивать». Это связано с тем, что самая распространённая эмульсия — обыкновенное молоко.

Но научный термин выглядит для понимания немного сложнее. Эмульсия — это гомогенная дисперсионная система, состоящая из двух жидкостей, не способных смешаться до конца.

Если оценивать невооружённым глазом, то такая система не отличается от однородной жидкости, т.к. вся суть данного явления заключается в существовании микроскопических капель, распределённых в основной жидкости. В случае с молоком это капли молочного жира, равномерно распределённые в воде.

Виды эмульсий

Существуют различные критерии, по которым происходит распределение эмульсий на виды. Вот некоторые из основных критериев:

  • Состав жидких фаз;
  • Соотношение между жидкими фазами;
  • Способ эмульгирования;
  • Природа эмульгатора.

С опорой на эти и некоторые другие пункты учёные выделили два основных вида эмульсий:

Прямые эмульсии

Образовываются в ходе диспергирования в полярной воде неполярной жидкости. Самым ярким примером является подсолнечное масло в воде.

Более предпочтительными эмульгаторами для этого вида эмульсий являются всевозможные мыла. Они адсорбируются на поверхности капель, уменьшают поверхностное натяжение, а так же повышают механическую прочность.

Инвертные эмульсии

Такие эмульсии обратны прямым и относятся к типу «вода в масле».

Эмульгаторами для этого вида являются нерастворимые соли жирных кислот, к ярким примерам которых относятся кальциевые, алюминиевые и магниевые.

Способы получения эмульсий

Выделяют всего два пути получения эмульсий:

  • Дробление капель;
  • Образование и разрыв плёнок.

Первый путь представляет собой медленное добавление дисперсионной фазы к дисперсионной среде в присутствии при перемешивании эмульгатора.

Благодаря такому подходу образуется множество микроскопических капель, в дальнейшем не растворяющихся в основной среде и распределённых равномерно.

Количество и размеры капель зависят от скорости перемешивания, температуры, скорости введения дисперсионной фазы и др.

Путь образования и разрыва плёнок. Дисперсионная фаза, не способная смешаться с основной средой, образует на поверхности основной среды плёнку.

Данную плёнку разрывают пузырьками воздуха, выходящими из специальных отверстий на дне сосуда. В итоге происходит эмульгирование при интенсивном перемешивании.

Применение

В промышленности эмульсии распространены в огромных масштабах. К примеру неоднородные жидкие соединения применяются в:

  • Мыловарении;
  • Производстве масла;
  • Сельском хозяйстве (пестициды);
  • Строительстве (битумная эмульсия);
  • Живописи (проявляющая эмульсия);
  • Нефтяной промышленности.

И это далеко не полный список применения эмульсий. Присмотритесь, и вы увидите, что они окружают нас повсюду — чай, молоко, ванна с морской солью, всевозможные кремы — всё это эмульсии. И знание этого может быть применено вами повсеместно, стоит только немного пофантазировать.

Молоко является типичной природной эмульсией жира в воде - жировая фаза находится в плазме молока в виде мелких капель (шариков жира) более или менее правильной формы, окруженных защитной липопротеидной оболочкой. Нахождение жира в молоке в мелкодиспергированном виде играет важную роль в процессе его усвоения новорожденными, а также при технологической обработке молока.

Эмульсии по полярности дисперсной фазы и дисперсионной среды делят на прямые (масло в воде) и обратные (вода в масле). В зависимости от концентрации дисперсной фазы в системе различают разбавленные, концентрированные и высококонцентрированные эмульсии.

Разбавленные эмульсии по своим свойствам сходны с лиофобными коллоидными растворами. Их устойчивость обусловлена электрическим зарядом частиц (капелек). При потере устойчивости системы капельки самопроизвольно образуют агрегаты с последующим их слиянием (коалесценцией) друг с другом.

Размер и количество шариков жира в молоке непостоянны и зависят от породы животных, стадии лактации, кормовых рационов и других факторов. В 1 мл молока содержится от 1,5 до 3 млрд. шариков жира, их средний диаметр равен от 2 до 2,5 мкм с колебаниями от 0,1 до 10 мкм и более. Размеры шариков жира имеют практическое значение, так как определяют степень перехода жира в продукт при производстве сливок, масла, сыра, творога и т. д.

Физическая стабильность шариков жира в молоке и молочных продуктах, их поведение при отстое сливок и технологической обработке (гомогенизации, пастеризации и т. д.) в основном зависят от состава и свойств их оболочек.

Оболочка шариков жира состоит из липидов и белков. Эти компоненты, ориентированные определенным образом на поверхности шариков, стабилизируют жировую эмульсию молока. В липидной фракции оболочки содержатся фосфолипиды (фосфатидилхолин фосфатидилэтаноламин, сфингомиелин и др.) высокоплавкие триглицериды, цереброзиды, холестерин, каротины, витамин А и др. Белковые компоненты оболочки по растворимости в воде (разбавленных солевых растворах) делятся на две фракции. Одна фракция структурных белков плохо растворима в воде, содержит около 14 % азота, по аминокислотному составу отличается от белков молока (содержит меньше лизина, валина, лейцина, глютаминовой и аспарагиновой кислот и больше аргинина).

B другую водорастворимую белковую фракцию входят гликопротеид с высоким (около 18 %) содержанием углеводов и разнообразные ферменты.

К ферментам оболочки шариков жира относятся ксантин-оксидаза, щелочная и кислая фосфатазы, холинэстераза и др.

В оболочке шариков жира помимо липидов и белков обнаружены минеральные элементы: Сu, Fe, Mo, Zn, Ca, Mg, Se, Na и К. Выяснено, что с оболочкой связано от 5 до 25 % нативной меди молока и от 28 до 59 % нативного железа (содержание Сu в 1 г оболочки составляет от 5 до 25 мкг, Fе - от 70 до 150 мкг).

По данным электронно-микроскопических исследований, оболочка шарика жира состоит из двух слоев различного состава - внутреннего тонкого, плотно прилегающего к кристаллическому слою высокоплавких триглицеридов жировой глобулы, и внешнего рыхлого (диффузного), легко десорбируемого при технологической обработке молока.

Внутренний слой (мембрана, матрикс) имеет толщину от 5 до 10 нм, образуется из плазматической мембраны секреторной клетки молочной железы в процессе выведения секрета.

Эмульсия шариков жира в молоке достаточно устойчива. Охлаждение молока, механическое воздействие насосов, мешалок, нагревание до относительно высоких температур незначительно изменяют состав, физико-химические свойства оболочек шариков жира, не нарушая при этом стабильности жировой эмульсии.

При технологической обработке молока в первую очередь изменяется внешний слой оболочки. Известно, что в свежевыдоенном молоке оболочки имеют неровную, шероховатую поверхность и довольно большую толщину внешнего слоя. После перемешивания, встряхивания и хранения молока оболочки шариков жира становятся более гладкими и тонкими. Эти изменения обусловлены десорбцией липопротеидных мицелл из оболочек в плазму. Одновременно с десорбцией мицелл происходит сорбция белков и других компонентов плазмы молока на поверхности мембраны шариков жира. Процессы десорбции - сорбции при перемешивании, охлаждении могут вызвать некоторые изменения состава и поверхностных свойств оболочек, что приводит к снижению их прочности и частичному разрыву. В процессе тепловой обработки молока наблюдается не только значительная перестройка структурных компонентов оболочки, но и частичная денатурация (конформационная перестройка) мембранных белков, что способствует дальнейшему снижению стабильности оболочек шариков жира.

Оболочки могут быть сравнительно быстро разрушены в результате специального механического воздействия, применяемого, например, при получении сливочного масла, а также действия химических веществ (концентрированных кислот, щелочей, амилового спирта).

Стабильность жировой эмульсии молока можно объяснить следующими факторами. Первым важным фактором устойчивости разбавленных эмульсий, стабилизированных эмульгатором, является, как известно, возникновение на поверхности капелек жира электрического заряда.

Оболочки шариков жира содержат на поверхности полярные группы фосфатные группы фосфатидилхолина и других фосфолипидов, карбоксильные группы, аминогруппы, СООН-группы сиаловой кислоты белковых и углеводных компонентов. На поверхности шариков создается суммарный отрицательный заряд (их изоэлектрическое состояние наступает при рН молока около 4,5). К отрицательно заряженным группам присоединяются катионы Са2+, Mg2+ и др. В результате образуется двойной электрический слой, аналогичный слою, который возникает на поверхности частиц типичных гидрофобных коллоидов. Таким образом, на границе раздела фаз между шариками жира действуют электростатические силы отталкивания, превышающие силы притяжения (энергетический барьер). Дополнительное стабилизирующее действие оказывает гидратная оболочка, образующаяся вокруг полярных групп мембранных компонентов.

Среди всех структурных компонентов оболочки шариков жира особенно важны для стабилизации жировой эмульсии молока гликопротеиды и фосфолипиды. Так, после обработки оболочек протеиназами, разрушающими гликопротеиды, стабильность, эмульсии снижается, а после удаления полярных групп фосфолипидов с помощью фосфолипазы С она резко падает и наступает коалесценция шариков жира.

Вторым фактором устойчивости эмульсий является создание на границе раздела фаз структурно-механического барьера. Исследование структурно-механических свойств оболочек шариков жира показало, что они обладают повышенной структурной вязкостью, механической прочностью и упругостью, а следовательно, могут служить структурно-механическим барьером, препятствующим слиянию шариков.

Таким образом, стабильность жировой эмульсии молока обусловливается термодинамическим (наличие двойного электрического слоя и гидратной оболочки) и структурно-механическим факторами. Структурно-механический фактор является наиболее сильным фактором стабилизации концентрированных эмульсий, к которым принадлежат, например, высокожирные сливки.

Следовательно, для обеспечения устойчивости жировой эмульсии молока и сливок в процессе выработки молочных продуктов необходимо стремиться сохранить неповрежденными оболочки шариков жира и не снижать степень их гидратации. Для этой цели необходимо сокращать до минимума механические воздействия на дисперсную фазу молока при транспортировке, хранении и обработке, избегать его вспенивания, правильно проводить тепловую обработку (длительная выдержка при высоких температурах может вызвать значительную денатурацию структурных белков оболочки и нарушение ее целостности), а также широко применять дополнительное диспергирование жира путем гомогенизации.

Если при выработке большинства молочных продуктов перед инженером-технологом стоит задача предотвратить агрегирование и коалесценцию шариков жира, то при получении масла перед ним стоит обратная задача -- разрушить (деэмульгировать) стабильную жировую эмульсию и выделить из нее дисперсную фазу.

Эмульсия представляет собой, так называемую гомогенную дисперсионную систему, которая состоит из двух несмешивающихся жидкостей. Ее внешний вид не имеет практически никаких отличий от обычной однородной жидкости. Эмульсия характеризируется наличием маленьких капель дисперсионной фазы, распределенных в дисперсионной среде. Самым простым и знакомым всем примером данной системы считается молоко, в котором молочные жировые капельки равномерно распределяются в воде.

Виды эмульсий

Все эмульсии можно поделить на несколько разновидностей. Главными факторами для этого являются способы эмульгирования, составы жидких фаз и соотношение между ними, а также природа самого эмульгатора. Эмульсии делятся на четыре вида: прямые, обратные, лиофильные, лиофобные.

Прямые эмульсии образовываются из неполярной жидкости, которая диспергируется в полярной среде. Например, растительное масло в воде. Обратные эмульсии представляют собой воду в масле. Лиофильный тип может образовываться самопроизвольно и характеризируется термодинамической устойчивостью. Для лиофобных эмульсий не свойственная термодинамическая устойчивость, поэтому они не могут образовываться самостоятельно.

Методы получения эмульсий

Эмульсию того или иного типа можно получить двумя способами: образование пленки или дробление капелек.

Первый метод заключается в том, что на поверхности дисперсной среды образовывается тоненькая пленка из жидкости, которая не смешивается с ней. Затем ее разрывают многочисленные пузырьки воздуха. Таким образом происходит перемешивание с эмульгированием.

Вариант с дроблением капель основан на том, что к дисперсионной среде медленно добавляют дисперсионную фазу, при перемешивании присутствует эмульгатор, влияющий на размеры и количество множества образовавшихся капелек.

Применение эмульсий

Различные отрасли промышленности широко используют разные виды эмульсий: строительство, автомобилестроение, сельское хозяйство, пищевая промышленность и многие другие. Как правило, эмульсии прямого типа используют в том случае, если необходимо защитить тот или иной предмет от разрушения и улучшить его механическую прочность. Например, смазочно-охлаждающая жидкость лиофильного типа adrana d 407 может быть использована для обработки стали.


Как отмечает редакция сайт, характерные свойства эмульсий позволяют им быть незаменимым компонентом производства.
Подпишитесь на наш канал в Яндекс.Дзен

Эмульсией называется коллоидная высокодисперсная система, в которой дисперсная фаза и дисперсионная среда являются несмешивающимися жидкостями в присутствии эмульгатора , препятствующего их расслаиванию. Эмульгатор представляет собой поверхностно-активное вещество (ПАВ), необходимое для образования стабильной эмульсии. Он создает защитные оболочки вокруг частиц дисперсной фазы, в результате чего они не слипаются между собой.

Виды водных эмульсий:

Эмульсия анионоактивная,

Эмульсия катионоактивная,

Эмульсия прямая,

Эмульсия обратная.

Эмульсией анионоактивной называется эмульсия, приготовленная с применением в качестве эмульгатора анионоактивных веществ, имеющих щелочные полярные группы: рН таких эмульсий колеблется в пределах 9…13.

Эмульсией катионоактивной называется эмульсия, приготовленная с применением в качестве эмульгатора катионоактивных веществ, имеющих кислотные полярные группы: рН таких эмульсий колеблется в пределах 2…6.

Эмульсия прямая – это эмульсия, в которой органическая жидкость является дисперсной фазой и в виде мельчайших капелек распределена в дисперсионной среде – воде.

«Масло в воде»

Эмульсия обратная – это эмульсия, в которой диспергирована на мельчайшие капельки вода, а дисперсионной средой служит органическая жидкость «Вода в масле».

Главной задачей эмульгатора является стабилизация элементов дисперсной фазы в эмульсии. Эмульгаторы должны удовлетворять следующим требованиям:

Хорошо и быстро растворяться в дисперсионной среде;

Обеспечивать получение устойчивых во времени эмульсий;

Не допускать образование обратных эмульсий.

Битумные эмульсии

Битумные эмульсии – дисперсные системы, которые состоят из битума, воды и эмульгатора , придающего системе устойчивость. Битум в такой системе может выступать как в виде дисперсной фазы, так и дисперсионной среды. В первом случае он образует прямую эмульсию, во втором – обратную эмульсию.

Битумные дорожные эмульсии (ГОСТ 18659) относятся к эмульсиям прямого типа, в которых битум распределен в виде капель. Содержание битума определяется целевым назначением эмульсии и обычно составляет 30-70% по массе. Цвет битумных эмульсий – коричневый, от светлого (при невысоком содержании битума) до темного в зависимости от степени дисперсности входящего в них битума. Важным показателем является устойчивость эмульсий при хранении. Катионные эмульсии необходимо хранить и применять при температуре не ниже 5 о С. Замораживание эмульсии недопустимо, поскольку при последующем оттаивании она разрушается необратимо. Максимальная температура, при которой можно хранить и применять битумную эмульсию, не должна превышать 85 о С.

Эмульсии достаточно устойчивы в объеме, но обладают высокой чувствительностью при соприкосновении с поверхностью различных материалов. При нанесении на поверхность или при смешении с каменными материалами эмульсия распадается на составные части – битум и воду. Битумные эмульсии по скорости распада подразделяются на:

Быстрораспадающиеся (в течение нескольких минут)

Среднераспадающиеся (в течение нескольких часов)

Медленнораспадающиеся (в течение нескольких суток)

Необходимая скорость распада эмульсий определяется технологией применения. Быстрораспадающиеся эмульсии используют для поверхностной обработки, грунтовки и устройства щебеночного покрытия методом пропитки. Среднераспадающиеся эмульсии применяют для приготовления черного щебня, устройства поверхностной обработки, проведения ямочного ремонта и укладки слоев дорожной одежды по методу пропитки. Медленнораспадающиеся эмульсии используются для устройства слоев дорожной одежды из минеральных наполнителей (щебня, гравия, песка), обработанных способом смешения на дороге, а также для плотных щебеночных, гравийных и песчано-гравийных смесей, приготовленных в установке, и для укрепления грунтов.

Прямые битумные эмульсии в зависимости от типа эмульгатора делятся на 4 вида:

Анионные (ЭБА 1,2,3);

Катионные (ЭБК 1,2,3);

Неионные;

Пасты (эмульгаторы - минеральные порошки).

Неионные эмульсии применяются очень редко, в случаях, когда требуется исключительная стабильность эмульсий, в первую очередь для холодных асфальтобетонных смесей, содержащих большое количество мелкодисперсного заполнителя. В основном в дорожном строительстве используют анионоактивные и катионоактивные битумные эмульсии.

. Наиболее применяемыми в последнее время стали эмульсии катионного типа, с электроположительным зарядом капель битума (рис.2). В качестве катионных эмульгаторов используются аминные соединения типа моноамина RNH 2 или диамина R-NH-R 1 -NH 2 . Аминные соединения нерастворимы в воде, и в растворимую форму их переводят взаимодействием с соляной кислотой, в результате чего образуются водорастворимые хлористые соединения типа хлорамина R-NH 3 Cl. Показатель рН катионных эмульсий составляет от 1 до 6 за счет избытка соляной кислоты.

Катионоактивные битумные эмульсии (ЭБК) подразделяются на три класса:

- быстрораспадающаяся эмульсия ЭБК-1;

- среднераспадающаяся эмульсия ЭБК-2;

- медленнораспадающася эмульсия ЭБК-3 .

Эмульсии ЭБК представляют собой суспензии , состоящие из битума, воды, эмульгаторов, соляной кислоты и хлористого кальция, применяемого в качестве стабилизатора – вещества, влияющего на стабильность эмульгатора.

Анионоактивные битумные эмульсии . Анионоактивные битумные эмульсии (ЭБА) с электроотрицательным зарядом капель битума (рис.3) используются реже , так как они менее стабильны и хуже осаждаются на поверхности каменного материала, особенно с кислотным характером.

В качестве анионных эмульгаторов используются: асидол-мылонафт, кубовые остатки нефтепереработки, контакт Петрова, госсиполовая смола (хлопковый гудрон), жировой гудрон, таловое масло и др. В состав анионных эмульгаторов входят жирные кислоты общей формулой RCOOH.

Эмульгаторы являются нерастворимыми веществами, и в раствор их переводят при химическом взаимодействии с гидроксидом натрия, в результате чего образуются водорастворимые натриевые соли данных кислот. Показатель рН таких эмульсий составляет от 9 до 13, и, как правило, они содержат избыточное количество гидроксида натрия.

Рисунок 2 - Катионоактивная битумная эмульсия

Рисунок 3 - Анионоактивная битумная эмульсия

Эмульсия, стабильная при хранении и транспортировке, при нанесении на минеральный заполнитель или на поверхность дорожного покрытия, должна необратимо разрушаться с требуемой скоростью. Скорость разрушения эмульсий регулируется типом и количеством эмульгатора. Однако на скорость разрушения влияют и другие факторы, такие как природа минерального заполнителя, температура и другие климатические условия. Когда эмульсия наносится на поверхность минерального заполнителя, электрические заряды поверхности минерала быстро поглощают определенное число ионов эмульгатора до уровня, при котором начинается разрушение эмульсии. Битум, высвобождаемый в процессе разрушения катионной эмульсии и имеющий на своей поверхности положительные заряды, хорошо прилипает к поверхности минерала с отрицательными зарядами.

На скорость разрушения и адгезию битумных эмульсий оказывает большое влияние минеральный состав заполнителя. Заполнители можно характеризовать как имеющие щелочной и кислотный характер поверхности. Примером заполнителя со щелочным характером поверхности может служить известняк, примером заполнителей с кислым характером поверхности – гранит и кварцит. Эмульсии по-разному ведут себя на заполнителях различной природы (табл. 3)

Таблица 3 - Поведение битумных эмульсий на заполнителях различной природы

Эмульсия

Заполнитель

Результаты

скорость разрушения

анионная

кислотный

медленная

анионная

щелочной

катионная

кислотный

очень высокая

катионная

щелочной

На стабильность эмульсий оказывает влияние температура. При повышении температуры ускоряется испарение воды из эмульсии, что приводит к уменьшению объема дисперсионной среды (воды), повышается концентрация битума и битумные капли начинают соединяться друг с другом. В ходе этого процесса некоторая часть водной фазы может оказаться внутри битума, в результате чего образуется обратная эмульсия. Помимо температуры, на скорость распада эмульсий влияют такие погодные факторы, как относительная влажность и скорость ветра. При понижении влажности воздуха будет также происходить ускоренное испарение воды из эмульсии, что может привести к превращению ее в обратную. Разрушение эмульсий может быть ускорено воздействием механических сил, например, вибрацией катков или сильными порывами ветра.