Правило дерягина формулировка. Коллоидная химия: Учебное пособие. Антагонизм и синергизм в действии электролитов на процесс коагуляции

При изучении коагуляции золей возникло много теорий, с помощью которых пытались на качественном и количественном уровнях объяснить все наблюдаемые закономерности.

Так, в 1908 г. Г. Фрейндлих сформулировал основные положения адсорбционной теории коагуляции , наблюдаемой при внесении в золь электролитов. Согласно этой теории, агрегация коллоидных частиц происходит вследствие адсорбции противоионов поверхностью гранулы и уменьшения величины ее дзетта-потенциала. Однако эта теория имела ограниченное применение, т.к. учитывала только влияние электролитов и не могла объяснить те факты, в которых слипание частиц было связано лишь с изменениями в диффузном слое мицеллы, а величина ζ-потенциала гранулы оставалась неизменной.

Позже Г. Мюллером была разработана электростатистическая теория , которая уже исходила из того, что введение электролита в золь не изменяет общего заряда в двойном электрическом слое частицы, а вызывает сжатие (уменьшение размеров) диффузного слоя. Это и приводит к уменьшению устойчивости системы.

Адсорбционная, электростатическая и ряд других теорий коагуляции не могли объяснить всех наблюдаемых экспериментальных фактов, но они сыграли положительную роль в развитии представлений об устойчивости коллоидных систем. Их важнейшие положения вошли составной частью в современную теорию устойчивости, которая хорошо согласуется с поведением типичных лиофобных дисперсных систем.

Данная теория была разработана в 1937-1943 гг. независимо друг от друга Б.В. Дерягиным и Л.Д. Ландау в СССР и Э. Фервеем и Дж. Т. Овербеком в Голландии. В соответствии с первыми буквами фамилий авторов теория носит название ДЛФО.

Согласно данной теории, коллоидные частицы в растворе вследствие броуновского движения могут беспрепятственно сближаться друг с другом, пока не соприкоснутся своими жидкими диффузными оболочками или слоями. При этом между ними не возникает никаких сил взаимодействия. Для дальнейшего сближения частицы должны деформировать свои диффузные оболочки, чтобы произошло их взаимное перекрывание (или проникновение друг в друга). Но жидкости плохо сжимаются, и в ответ на деформацию с их стороны появляются так называемые силы расклинивающего давления , препятствующие осуществлению данного процесса. Причем чем больше размеры диффузного слоя, тем значительнее силы расклинивающего давления.

Борис Владимирович Дерягин (1902 – 1994) – русский физико-химик, профессор (1935), член-корреспондент АН СССР (1946), академик РАН (1992). Создал учение о поверхностных силах и их влиянии на расклинивающее давление и свойства тонких жидких пленок. Премия им. М. В. Ломоносова АН СССР (1958), Государственная премия СССР (1991). С 1936 по 1994 год возглавлял созданные им лабораторию и Отдел сорбционных процессов Института физической химии АН СССР. Много лет был главным редактором журнала «Коллоидная химия». В 1962 – 1973 гг. предполагал существование особой разновидности воды – поливоды. Потом сам себя опроверг, обнаружив критическое влияние примесей – силикатов.

Если столкнувшиеся частицы обладают достаточным запасом кинетической энергии для преодоления действия этих сил, то их диффузные слои перекроются, но в этот момент между ними и гранулами возникнут электростатические силы расталкивания (т.к. они имеют заряды одинакового знака) (рис. 68).

Рис. 68. Схема взаимодействия коллоидных частиц: а – агрегативно устойчивая система;б – перекрывание диффузных слоев; в – коагуляция

Лев Дави́дович Ланда́у (1908 – 1968), часто именуемый Дау – советский физик, академик АН СССР (избран в 1946). Лауреат Нобелевской, Ленинской и трёх Сталинских премий, Герой Социалистического Труда. Член академий наук Дании, Нидерландов, США, Франции, Лондонского физического общества и Лондонского королевского общества. Инициатор создания и соавтор Курса теоретической физики, выдержавшего многократные издания и переведённого на многие языки. Именем Ландау названа золотая медаль, вручающаяся с 1998 г. Отделением ядерной физики РАН.

Чем больше ζ-потенциал гранул, тем сильнее взаимное отталкивание частиц.

В случае преодоления этих сил и сближения гранул на расстояние ≈ 10 –7 см и меньше (т.е. на расстояние, равное или меньшее размерам одной молекулы дисперсионной среды) между ними возникают так называемые Ван-дер-Ваальсовые силы притяжения, имеющие физическую природу. Они и вызывают сцепление (соединение) коллоидных частиц друг с другом.

Обычно в стабилизированном гидрофобном золе лишь небольшая доля так называемых активных частиц обладает достаточным запасом кинетической энергии, чтобы при соударении преодолеть действие всех вышеперечисленных сил. Поэтому такие коллоидные системы сохраняют свою устойчивость более или менее длительное время (в зависимости от степени своей стабилизации). При повышении температуры скорость и интенсивность броуновского движения возрастают. Это приводит к увеличению запаса кинетической энергии коллоидных частиц. Все большее их число переходит в разряд активных. В результате при соударении они чаще начнут слипаться друг с другом, а агрегативная устойчивость золя будет уменьшаться.

Любые другие внешние воздействия, оказываемые на золь и приводящие к уменьшению размеров диффузных слоев и величины ζ-потенциала, также будут способствовать протеканию процессов коагуляции.

Наименьшей устойчивостью обладают коллоидные системы, частички дисперсной фазы в которых не имеют двойного электрического слоя и защитной оболочки из молекул растворителя.

В данном случае электростатические силы расталкивания и силы расклинивающего давления между частицами не возникают и поэтому практически любое соударение их друг с другом приведет к взаимному сцеплению.

Физическая теория коагуляции ДЛФО обладает большим математическим аппаратом и позволяет осуществлять различные количественные расчеты, которые хорошо согласуются с наблюдаемыми экспериментальными фактами.

Дерягина правило

Правило Дерягина - правило, разработанное химиком Дерягиным Б. В. , касающееся технологии многих лекарственных форм.

Само правило звучит так: «Для получения тонко измельченного лекарственного вещества при его диспергировании рекомендуется добавлять растворитель в половинном количестве от массы измельчаемого лекарственного вещества .»

Объяснение правила: Частицы лекарственного вещества имеют трещины (щели Гриффитса), в которые проникает жидкость . Жидкость оказывает расклинивающее давление на частицу, которое превосходит стягивающие силы, что и способствует измельчению. Если измельчаемое вещество является набухающим, то его тщательно измельчают в сухом виде и лишь потом добавляют жидкость. После измельчения лекарственного вещества используют прием взмучивания с целью фракционирования частиц. Взмучивание состоит в том, что при смешивании твердого вещества с жидкостью, в 10-20 раз по объему превосходящей его массу, мелкие частицы находятся во взвешенном состоянии, а крупные оседают на дно. Этот эффект объясняется разной скоростью седиментации частиц разных размеров (закон Стокса). Взвесь наиболее измельченных частиц сливают, а осадок повторно измельчают и взмучивают с новой порцией жидкости до тех пор, пока весь осадок не перейдет в тонкую взвесь. ,

Применение в технологии

Источники информации

Wikimedia Foundation . 2010 .

Смотреть что такое "Дерягина правило" в других словарях:

    Правило Дерягина правило, разработанное химиком Б. В. Дерягиным, касающееся технологии многих лекарственных форм. Формулировка правила: Для получения тонко измельченного лекарственного вещества при его диспергировании… … Википедия

    Статья по тематике Индуизм История · Пантеон Направления … Википедия

    Педофилия … Википедия

    МКБ 10 F … Википедия

    Одна из составных частей общей структуры преступности, в которую входят деяния, связанные с физическим и психическим насилием над личностью или угрозой его применения. Насильственная преступность может пониматься в широком смысле при этом в неё… … Википедия

    Эксгибиционизм (лат. exhibeo выставлять, показывать) форма отклоняющегося сексуального поведения, когда сексуальное удовлетворение достигается путём демонстрации половых органов незнакомым лицам, обычно противоположного пола, а также в публичных… … Википедия

    Борис Владимирович Дерягин Дата рождения: 9 августа 1902(1902 08 09) Место рождения: Москва Дата смерти: 16 мая 1994(1994 05 16) (91 год) … Википедия

    Это имеющие негативную эмоциональную окраску представления личности (ощущения неудовлетворённости, страха, греха), связанные с половыми отношениями, оказывающие существенное, а иногда и определяющее влияние как на половую жизнь, так и в целом на… … Википедия

    - (от лат. coagulatio свертывание, сгущение), объединение частиц дисперсной фазы в агрегаты вследствие сцепления (адгезии) частиц при их соударениях. Соударения происходят в результате броуновского движения, а также седиментации, перемещения частиц … Химическая энциклопедия

Правило Дерягина - правило, разработанное химиком Б. В. Дерягиным , касающееся технологии многих лекарственных форм.

Формулировка правила:

Для получения тонко измельченного лекарственного вещества при его диспергировании рекомендуется добавлять растворитель в половинном количестве от массы измельчаемого лекарственного вещества.

Объяснение правила

Частицы лекарственного вещества имеют трещины (щели Гриффитса), в которые проникает жидкость . Жидкость оказывает расклинивающее давление на частицу, которое превосходит стягивающие силы, что и способствует измельчению. Если измельчаемое вещество является набухающим, то его тщательно измельчают в сухом виде и лишь потом добавляют жидкость. После измельчения лекарственного вещества используют прием взмучивания с целью фракционирования частиц. Взмучивание состоит в том, что при смешивании твердого вещества с жидкостью, в 10-20 раз по объему превосходящей его массу, мелкие частицы находятся во взвешенном состоянии, а крупные оседают на дно. Этот эффект объясняется разной скоростью седиментации частиц разных размеров (закон Стокса). Взвесь наиболее измельченных частиц сливают, а осадок повторно измельчают и взмучивают с новой порцией жидкости до тех пор, пока весь осадок не перейдет в тонкую взвесь.

Применение в технологии

Bismuthi subnitratis ana 3,0

Aquae destillatae 200 ml

M.D.S. Протирать кожу лица

Значение рецепта: в подставку отмеривают 200 мл очищенной воды. В ступке измельчают 3 г крахмала и 3 г основного нитрата висмута с 3 мл воды (по правилу Дерягина), затем добавляют 60-90 мл воды, смесь взмучивают и оставляют на несколько минут. Осторожно сливают тонкую взвесь с осадка во

Элементарный акт коагуляции происходит в результате «ближнего взаимодействия» частиц. Осадки получаются плотными и необратимыми, так как энергия притяжения намного превышает энергию отталкивания. Здесь имеется непосредственный контакт между частицами, на рас- стояниях, соответствующих первому минимуму, идет образование кон- денсационно-кристаллизационных структур или грубых дисперсий. 2. Если высота барьера велика, а глубина второго минимума мала, частицы не могут преодолеть барьера и расходятся без взаимодействия. Это – случай «агрегативно устойчивой системы». Нарушить эту устойчивость можно двумя путями. а) Повышение кинетической энергии частиц приводит к увеличе- нию числа столкновений. Если энергия быстрых частиц превысит по- тенциальный барьер, то частицы могут слипнуться. Поэтому повыше- ние температуры может привести к коагуляции системы. б) Потенциальный барьер может быть уменьшен при добавлении в систему электролитов. При этом ДЭС сжимается за счет сжатия диф- фузной части, в результате чего частицы подходят друг к другу на меньшие расстояния, где усиливаются силы притяжения. Рис.4.3 Схема влияния электролита на коагуляциию: h2 < h1 3. Если глубина второго минимума достаточно велика то, незави- симо от высоты барьера, происходит так называемое «дальнее взаимо- действие» двух частиц, отвечающее второму минимуму. Вторичный минимум на участке ВС отвечает притяжению частиц через прослойку среды. Возникает взаимодействие на дальних расстоя- ниях, осадки получаются рыхлыми и обратимыми, так как минимум не глубокий. Второму минимуму соответствует явление флокуляции или образо- вание коагуляционных структур. Интерес к этим системам в последнее время велик: фиксация час- тиц во втором минимуме при достаточной концентрации дисперсной фазы может привести к превращении. Золя в полностью структуриро- ванную систему. Реальные твердые тела, составляющие основу материальной куль- туры человечества (строительные материалы, деревянные изделия, оде- жда, бумага, полимеры) – в подавляющем большинстве являются струк- турированными дисперсными системами. Вывод: Рассмотренный классический вариант теории Дерягина-Ландау да- ет хорошее согласие с экспериментальными данными. Но может быть самым главным ее достижением является обоснование правила Шульце- Гарди, которое справедливо считается краеугольным камнем для про- верки теорий устойчивости. const g = 6 – «закон шестой степени» Дерягина, устанавливающий Z зависимость порога коагуляции от заряда иона-коагулятора. 4.7 Зависимость скорости коагуляции от концентрации электролита. Медленная и быстрая коагуляция Медленная коагуляция – это когда электролита введено в таком количестве, что небольшой барьер отталкивания сохраняется (DU), здесь не все сталкивающие частицы коагулируют. Скорость ее зависит от концентрации электролита. Быстрая коагуляция – имеет место при полном исчезновении энергетического барьера, здесь каждое столкновение частиц приводит к коагуляции. Скорость быстрой коагуляции u – не зависит от концен- трации электролита. Рис.4.4 Зависимость скорости коагуляции от концентрации электролита При небольших количествах электролита скорость коагуляции близка к нулю (участок I). Затем скорость растет при увеличении количества электролита (участок II). Коагуляция на участке II является медленной и зависит от концентрации электролита. На участке III скорость достигает максимальное значение и уже не зависит от количества прибавляемого электролита. Такая коагуляция называется быстрой и соответствует полному исчезновению потенци- ального барьера коагуляции DU . Начало участка III отвечает порогу быстрой коагуляции g б, здесь величина x -потенциала падает до нуля. Порогу быстрой коагуляции на основании теории ДЛФО можно дать строгое определение: Порог быстрой коагуляции – это количество электролита, необхо- димое для снижения энергетического барьера до нуля. 4.8 Изменение агрегативной устойчивости при помощи электролитов. Концентрационная и нейтрализационная коагуляция Одним из способов изменения агрегативной устойчивости золей является введение электролитов. Электролиты в состоянии изменить структуру ДЭС и его диффуз- ный слой, снизить или увеличить x -потенциал и электростатическое от- талкивание, т.е. способны вызвать или предотвратить коагуляцию. Воз- можны концентрационная и нейтрализационная коагуляция электроли- тами. Причина их одна и та же – снижение x -потенциала, ослабление электростатического отталкивания. Однако механизм снижения x - потенциала различный. Рис.4.5 Падение потенциала в ДЭС до (кривая 1) и после (кривая 2) введения электролита в процессе концентрационной (а) и нейтрализационной (б) коагуляции j1 и j 2 , x1 и x 2 – значения полного и электрокинетического по- тенциалов, соответственно, до и после введения электролитов; 3 и 4 – направления адсорбции ионов электролита; х – расстояние от твердой поверхности в глубь жидкости. 1. Концентрационная коагуляция наблюдается при больших заря- дах поверхности, когда j0 ³ 100 мВ, и проводится она в основном ин- дифферентными электролитами. Эти электролиты способствуют сжа- тию диффузной части ДЭС, снижению x -потенциала (x 2 < x1), но не изменяют полный потенциал j0 . Благодаря этому (сжатию ДЭС) частицы сближаются и межмоле- кулярные силы притяжения начинают превалировать, что и вызывает слияние частиц. Правило Шульце-Гарди подтвердили теоретически Б.В. Дерягин и Л.Д. Ландау, представив расклинивающее давление как суммарный эф- фект сил отталкивания и притяжения, что позволило им вывести урав- нение, связывающее порог коагуляции с зарядом иона-коагулятора. B * e (kб T) 5 Cкр = g = , (1) A2 e 6 Z 6 где B * – константа; e – диэлектрическая постоянная; kб – константа Больцмана; T – абсолютная температура; A – постоянная Ван-дер- Ваальса; e – заряд электрона; Z – заряд иона-коагулятора. Это уравнение (4) хорошо описывает зависимость порога коагуля- ции от заряда иона-коагулятора для сильно заряженных поверхностей и соответствует эмпирическому правилу Шульце-Гарди. В уравнение (1) не входит потенциал поверхности. Таким образом, правило Шульце-Гарди справедливо в случае концентрационной коагу- ляции. 2. Нейтрализационная коагуляция происходит при малых потен- циалах поверхности (j0 £ 100 м В) под действием неиндифферентных, т.е. родственных электролитов. Особенно эффективны электролиты, со- держащие ионы большого заряда и большого радиуса, то есть хорошо адсорбирующиеся. При введении таких электролитов идет частичная нейтрализация полного потенциала поверхности при адсорбции противоионов, что приводит к снижению не только полного потенциала j0 , но и j " и x - потенциала, а также к сжатию диффузной части ДЭС. Для случая нейтрализационной коагуляции при j0 £ 100 м В авторы теории ДЛФО нашли выражение для порога коагуляции: " x 4 Cкр = g = k 2 . (2) Z Из уравнения (2) следует, что для нейтрализационной коагуляции критическая концентрация зависит от x -потенциала и, следовательно, от полного потенциала поверхности j0 . Из уравнения (2) также следует: при малых j0 порог коагуляции обратно пропорционален Z 2 коагулирующего иона. Этот случай соответствует эмпирическому правилу Эйлерса- Корфа, которое оказывается справедливым для слабо заряженных по- верхностей. В реальных системах одновременно могут действовать оба меха- низма коагуляции, поэтому зависимость порога коагуляции от заряда иона-коагулятора оказывается промежуточной. 4.9 Особые явления при коагуляции. Явление неправильных рядов Коагулирующая сила ионов зависит не только от заряда и радиуса коагулирующих ионов, но и от их специфической адсорбции. Кроме того, многовалентные ионы могут вызвать перезарядку по- верхности и привести к чередованию зон устойчивого и неустойчивого состояния системы. Это явление получило название явления неправиль- ных рядов. Суть: при добавлении электролитов вначале наблюдается ус- тойчивость золя, затем – коагуляция. Далее – вновь устойчивость, и, на- конец, при избытке электролита – опять коагуляция. Это объясняется тем, что многовалентные ионы (Fe3+, Al3+, Th4+) перезаряжают частицы и переводят систему из неустойчивого в устой- чивое состояние. Введение электролита AlCl3 в золь сернистого мышь- яка, имеющего первоначально отрицательный заряд. Рис.4.6 Схема неправильных рядов На рис. 4.6 можно выделить две зоны устойчивого состояния (0-1, 2-3) и две зоны коагуляции (1-2, 3-4). Зона 0-1 – электролита добавлено недостаточно, устойчивое со- стояние. Зона 1-2 – электролита добавлено достаточно, x = xкр. Идет коагу- ляция. Далее начинается перезарядка поверхности, x -потенциал приоб- ретает противоположное значение. При достижении x > + xкр вновь на- ступает устойчивое состояние (участок 2-3). На участке 3-4 вновь идет коагуляция системы по схеме концен- трированной коагуляции. В отличие от участка 1-2, где коагуляция идет ионами Al3+, в зоне 3-4 коагуляция проводится ионами Cl–, так как заряд частиц стал поло- жительным. 4.10 Коагуляция смесью электролитов В промышленных условиях для коагуляции используют не один электролит, а смесь нескольких электролитов. Коагулирующее действие смесью двух электролитов часто бывает неаддитивным. Иногда требуется электролита в смеси больше, чем одного из них – это явление антагонизма. Если же смесь электролитов эффективнее одного электролита, то проявляется явление синергизма, их в смеси надо меньше, чем каждого в отдельности. При аддитивном действии электролиты коагулируют независимо друг от друга. Для характеристики смеси двух электролитов удобно пользоваться графиком зависимости порога коагуля- ции g 1 от порога коагуляции g 2 . При аддитивном действии зависи- мость g 1 – g 2 – линейна. Синергизм характеризуется кри- вой 2, если первый электролит берется в количестве g 1 / 2 , то второй – в коли- честве g 2 < g 2 / 2 . Рис.4.7 График зависимости порога коагуляции: 1 – аддитивное действие; 2 – синергетическое действие; 3 – антагонистическое действие Синергизм электролитов широко используют на практике для коа- гуляции больших количеств дисперсных систем. 4.11 Применение коагулянтов и флокулянтов в процессах очистки воды Явление коагуляции тесно связано с проблемой удаления загрязне- ний из водных сред. В основе многих методов очистки от в.д.с – загрязнений лежит яв- ление потери системой агрегативной устойчивости путем объединения частиц под внесением специально вводимых реагентов: коагулянтов и флокулянтов. Это укрупнение частиц приводит к потере седиментационной ус- тойчивости системы и образованию осадков. В настоящее время подбор реагентов для коагуляции основывается преимущественно на эмпирических исследованиях. Чаще всего коагулирование загрязнений воды производится элек- тролитами, которые содержат многозарядные ионы (Al3+, Fe3+). Ранее процесс осветления воды объясняли нейтрализацией много- валентными катионами, заряженных, как правило, отрицательно, частиц природных вод. Однако коагуляция эти ионами связана с процессами их гидролиза, в результате которого возникают полиядерные аквагидро- комплексы, обладающие более сильной коагулирующей способностью, чем ионы. Сам процесс коагуляции подобен процессу флокуляции ВМС. В процессах водоочистки постепенно расширяется применение по- лимерных флокулянтов (ВМС): длинная молекула полимера адсорбиру- ется двумя концами на двух разных частицах дисперсной фазы и соеди- няет их «мостиком». Получается рыхлый агрегат – флоккула. Здесь час- тицы не имеют непосредственного контакта между собой. Флокулянты бывают природными и синтетическими, неионоген- ными и ионогенными. В последнем случае флокуляция возможна не только по механизму мостикообразования, но и путем нейтрализации заряда частиц противоположно заряженными ионами полиэлектролита. На празднике часто эффективным оказывается совместное приме- нение коагулянтов и флокулянтов. 4.12 Кинетика коагуляции Процесс коагуляции протекает во времени. Отсюда вытекает пред- ставление о скорости коагуляции. Скорость коагуляции – это измене- ние частичной концентрации в единице объема в единицу времени. Раз- личают быструю коагуляцию, когда каждое столкновение частиц при- водит к их слипанию и медленную коагуляцию, если не все столкновения частиц являются эффективными. Термины «быстрая» и «медленная» коагуляции условны и не связаны со скоростью процесса. При опреде- ленных условиях быстрая коагуляция может протекать очень медленно и, наоборот, медленная коагуляция может идти весьма быстро. Теория кинетики быстрой коагуляции предложена С. Смолуховским. Скорость процесса уменьшения общего числа частиц (n) во времени он рассматривает как скорость реакции второго порядка, поскольку слипание частиц происходит при столкновении двух частиц, dn = k × n2 . (3) dt После интегрирования этого уравнения получим 1æ1 1 ö k= ç - ÷ (4) t è n n0 ø или n0 n= , (5) 1+ kn0t где n0 – общее число частиц в единице объема золя до коагуляции, n – число частиц к моменту времени t, k – константа скорости процесса коагуляции, которая вычисляется по уравнению (5.5). Константа k свя- зана с коэффициентом диффузии частиц D и с расстоянием d, на кото- ром действуют силы притяжения между частицами, уравнением k = 4pDd . (6) Подставив в это уравнение вместо D его значение из уравнения Эйнштейна и учитывая, что d = 2r, получим 4 RT 3 –1 k= ,м с. (7) 3h Из формулы (7) видно, что величина k не зависит от начальной концентрации золя и от размера частиц и поэтому не меняется при их слипании. Константа скорости процесса коагуляции – постоянная толь- ко для данной коллоидной системы. Если величина константы k, вычис- ленная из экспериментальных данных, не совпадает с величиной, полу- ченной из теоретической формулы (7), то это значит, что в системе про- исходит не быстрая, а медленная коагуляция. С. Смолуховский предложил формулы, позволяющие определить с к о л ь к о ч а с т и ц того или иного порядка (первичных, вторичных и т.д.) имеется в золе ко времени t. Причем для того, чтобы исключить входящие в эти формулы трудно определяемые величины D и d, он ввел в них так называемое время половинной коагуляции q (период коагуля- ции), за которое начальная концентрация первичных частиц уменьшает- ся вдвое. Тогда для первичных частиц n0 n1 = , (8) (1 + t q) 2 для вторичных частиц n0 t q n2 = (9) (1 + t q) 3 и для частиц m-го порядка n0 (t q) m-1 nm = . (10) (1 + t q) m+1 На рис. 4.8 уравнения (8-10) изображены графически. Получен- ные кривые наглядно показывают распределение числа частиц в бы- стро коагулирующем золе. В на- чальный момент, т. е. когда t = 0, все частицы – первичные: n = n1 = n0, а n2 = n3 = n4 = 0. Через некоторое время количество всех частиц равно n, число первичных n1 уменьшается, но начинают появ- ляться двойные, тройные и др. час- тицы. По мере коагуляции эти час- тицы также постепенно исчезают, уступая место частицам высших порядков – более крупным агрега- там. Поэтому кривые, выражающие Рис.4.8 Распределение числа частиц при изменение числа частиц различных быстрой коагуляции золя порядков, со временем приобрета- ют ясно выраженные максимумы. Кривые, выражающие распределение числа частиц во времени, строят также в координатах n = f (t / q) , n = f (t) или в линейной форме – в координатах 1 / n = f (t) . Согласно теории С. Смолуховского, время половинной коагуляции не зависит от времени коагуляции. Чтобы проверить применимость тео- рии, по экспериментальным данным вычисляют q для нескольких зна- чений t по формуле, полученной из (4), . (11) Если величина q не остается постоянной при различных t, то это означает, что в системе происходит не быстрая, а медленная коагуля- ция. 4.13 Примеры коагуляции. Образование почв Мы рассмотрели развитие основных идей, определяющих содержа- ние проблемы устойчивости. Так, одна из важнейших задач заключается в сохранении устойчивого состояния суспензий, эмульсий и других объектов, проходящих в процессе переработки через сложные системы производственных агрегатов. Не менее важной для народного хозяйства является и обратная задача – скорейшего разрушения дисперсных сис- тем: дымов, туманов, эмульсий, промышленных и сточных вод. Огра- ничимся здесь иллюстрацией многообразия и сложности коагуляцион- ных явлений на примерах, связанных с процессами почвообразования. Почвы образуются при разрушении горных пород в результате вы- ветривания, выщелачивания, гидролиза и т. д. Эти процессы приводят к образованию окислов: как нерастворимых, типа SiO2, Al2O3, Fe2O3 (точ- нее – их гидроокисей), так и растворимых, типа RO и R2O (где R – ме- талл). Из-за значительной гидратации нерастворимых элементов почвы и дальнему взаимодействию в процессе взаимной коагуляции образуют- ся структурированные коагуляты, близкие по свойствам к гелям, назы- ваемые коагелями. Эти коллоидно-химические процессы определяют все многообразие существующих типов почв. Например, подзолистые почвы, типичные для северных районов нашей страны, образуются в условиях малого содержания органических остатков (гуминовых веществ) и большой влажности, вымывающей окислы основного характера (RO и R2O). Остающиеся коагели характе- ризуются высоким содержанием SiO2 и малым количеством питатель- ных веществ, необходимых для растений. Наоборот, черноземные почвы средней полосы России образуются в условиях малой влажности. В этих условиях ионы Са2+ и Mg2+ не вы- мываются и, взаимодействия с гуминовыми кислотами, образуют нерас- творимые высокомолекулярные коллоидные частицы – гуматы Са2+ и Mg2+. В процессе взаимной коагуляции положительно заряженных час- тиц R2O3 с отрицательно заряженными гуматами и SiO2 возникают

Касающееся технологии многих лекарственных форм.

Формулировка правила:

Объяснение правила

Частицы лекарственного вещества имеют трещины (щели Гриффитса), в которые проникает жидкость . Жидкость оказывает расклинивающее давление на частицу, которое превосходит стягивающие силы, что и способствует измельчению. Если измельчаемое вещество является набухающим, то его тщательно измельчают в сухом виде и лишь потом добавляют жидкость. После измельчения лекарственного вещества используют прием взмучивания с целью фракционирования частиц. Взмучивание состоит в том, что при смешивании твердого вещества с жидкостью, в 10-20 раз по объему превосходящей его массу, мелкие частицы находятся во взвешенном состоянии, а крупные оседают на дно. Этот эффект объясняется разной скоростью седиментации частиц разных размеров (закон Стокса). Взвесь наиболее измельченных частиц сливают, а осадок повторно измельчают и взмучивают с новой порцией жидкости до тех пор, пока весь осадок не перейдет в тонкую взвесь.

Применение в технологии

Bismuthi subnitratis ana 3,0

Aquae destillatae 200 ml

M.D.S. Протирать кожу лица

Значение рецепта: в подставку отмеривают 200 мл очищенной воды. В ступке измельчают 3 г крахмала и 3 г основного нитрата висмута с 3 мл воды (по правилу Дерягина), затем добавляют 60-90 мл воды, смесь взмучивают и оставляют на несколько минут. Осторожно сливают тонкую взвесь с осадка во флакон . Влажный осадок дополнительно растирают пестиком , смешивают с новой порцией воды, сливают. Измельчение и взмучивание повторяют, пока все крупные частицы не превратятся в тонкую взвесь .

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Правило Дерягина" в других словарях:

    Правило Дерягина правило, разработанное химиком Дерягиным Б. В., касающееся технологии многих лекарственных форм. Само правило звучит так: «Для получения тонко измельченного лекарственного вещества при его диспергировании рекомендуется добавлять … Википедия

    Борис Владимирович Дерягин Дата рождения: 9 августа 1902(1902 08 09) Место рождения: Москва Дата смерти: 16 мая 1994(1994 05 16) (91 год) … Википедия

    Статья по тематике Индуизм История · Пантеон Направления … Википедия

    Педофилия … Википедия

    МКБ 10 F … Википедия

    Одна из составных частей общей структуры преступности, в которую входят деяния, связанные с физическим и психическим насилием над личностью или угрозой его применения. Насильственная преступность может пониматься в широком смысле при этом в неё… … Википедия

    Эксгибиционизм (лат. exhibeo выставлять, показывать) форма отклоняющегося сексуального поведения, когда сексуальное удовлетворение достигается путём демонстрации половых органов незнакомым лицам, обычно противоположного пола, а также в публичных… … Википедия

    Это имеющие негативную эмоциональную окраску представления личности (ощущения неудовлетворённости, страха, греха), связанные с половыми отношениями, оказывающие существенное, а иногда и определяющее влияние как на половую жизнь, так и в целом на… … Википедия

    - (от лат. coagulatio свертывание, сгущение), объединение частиц дисперсной фазы в агрегаты вследствие сцепления (адгезии) частиц при их соударениях. Соударения происходят в результате броуновского движения, а также седиментации, перемещения частиц … Химическая энциклопедия