Устройство защиты от импульсных перенапряжений: применение и схема монтажа. Узип — устройство защиты от импульсных перенапряжений Установка оин 1 в трехфазную сеть

Здесь привожу несколько типовых схем подключения устройств защиты от импульсных перенапряжений (УЗИП). Ниже вы найдете однофазные и трехфазные схемы для разных систем заземления: TN-C, TN-S и TN-C-S. Они наглядные и понятные для простого человека.

Сегодня существует большое количество производителей УЗИП. Сами устройства бывают разных моделей, характеристик и конструкций. Поэтому перед его монтажом обязательно изучите паспорт и схему подключения. В принципе, суть подключения у всех УЗИП одинаковая, но все же рекомендую сначала прочитать инструкцию.

Во всех выложенных схемах присутствуют УЗО и групповые автоматические выключатели . Их я указал для наглядности и полноты распределительного щитка. Эта "начинка" щитка у вас может быть совсем другая.

1. Схема подключения УЗИП в однофазной сети системы заземления TN-S.

На данной схеме представлен УЗИП серии Easy9 производителя Schneider Electric. К нему подключаются следующие проводники: фазный, нулевой рабочий и нулевой защитный. Здесь он устанавливается сразу после вводного автомата. Все контакты на любом УЗИП обозначены. Поэтому куда подключать "фазу", а куда "ноль" можно легко определить. Зеленый флажок на корпусе указывает на исправное состояние, а красный флажок сигнализирует о неисправной касете.

Представленное устройство относится к классу 2. Оно одно самостоятельно не способно защитить от прямого удара молнии. Грамотный выбор УЗИП это сложная и уже отдельная тема.

Думаю тут все понятно...

Ниже представлена аналогичная схема подключения УЗИП, но уже без электросчетчика и с использованием общего УЗО.

2. Схема подключения УЗИП в трехфазной сети системы заземления TN-S.

На схеме также изображен УЗИП производителя Schneider Electric серии Easy9, но уже для 3-х фазной сети. На рисунке изображено 4-х полюсное устройство с подключением нулевого рабочего проводника.

Еще существует 3-х полюсное УЗИП этой же серии. Оно применяется в системе заземления TN-C. В нем нет контакта для подключения нулевого рабочего проводника.

3. Схема подключения УЗИП в трехфазной сети системы заземления TN-C.

Здесь изображен УЗИП фирмы IEK. Данная схема представляет собой обычный вводной щит для частного дома. Он состоит из вводного автомата, электросчетчика, УЗИП и общего противопожарного УЗО. Также на схеме показан переход с системы заземления TN-C на TN-C-S, что требуется современными нормами.

На первом рисунке изображен 4-х полюсный вводной автомат, а на втором 3-х полюсный.

Выше представлены наглядные схемы подключения УЗИП. Думаю они понятны вам. Если остались вопросы, то жду их в комментариях.

Улыбнемся:

Нет постояннее соединения, чем временная скрутка!

Согласно требованиям п. 7.1.22 ПУЭ на все электроустановки с воздушным вводом должны устанавливаться ограничители импульсных напряжений. Их устанавливают в ВУ/ВРУ. Основная задача – это погасить всплески высокого напряжения и компенсировать энергию импульса. Компания «Энергомера» выпускает подобное устройство под названием ОИН-1. Характеристики, принцип работы и схема подключения данного ограничителя рассмотрены в этой статье.

Назначение и принцип работы

Ограничитель импульсных напряжений ОИН-1 нужен для защиты электросетей напряжением 380/220В. Это стандартные напряжения для питания электросетей. Импульсные могут возникнуть в результате ударов молнии. Из-за них же и возникает разность потенциалов в земле. Кроме них выделяют коммутационные всплески в сети. Они возникают при включении или отключении мощных электроприборов или групповом старте потребителей в электроустановке. Коммутационные импульсы могут возникать при пуске мощных электрических двигателей или групповом пуске насосных станций, а также при включении конденсаторных установок.

Как работает ограничитель? Внутри ОИН-1 установлены варисторы. По принципу действия напоминают разрядники, которые использовались ранее. Поэтому ограничитель устанавливается параллельно защищаемой цепи. В случае, если напряжение в сети превысит допустимое (классификационное) напряжение варистора, он начинает замыкать провода, таким образом отводя опасность от подключенных после него электроприборов.

Область применения

Рассмотрим, где применяется на практике ОИН-1. Применение в реальной работе ограничителя импульсных напряжений достаточно широко. Его устанавливают во вводные щиты или щиты учёта потребителей. При этом его рекомендуется устанавливать до счётчика, чтобы защитить и его. О том, как правильно подключать ОИН-1 в щиток мы поговорим ниже.

Если вы собираетесь строить дом и подключаете участок к электроэнергии – в технических условиях на подключение будет указана необходимость установки устройства защиты от импульсных перенапряжений. Но такое требование вносится в большинстве случаев как прописано в ПУЭ – при воздушном вводе кабеля.

Официальная документация о применении ограничителя импульсных напряжений от компании «Энергомера» ссылается на то, что рекомендуется его применение в системах заземления , в однофазной и трёхфазной сети.

Технические характеристики

Ни одно описание устройств не обходится без информации о технических характеристиках. ОИН-1 имеет такие характеристики:

  1. Длительно выдерживает напряжение до 275В, при стандартной частоте в 50 Гц.
  2. Устанавливается на .
  3. Ширина 17,5мм, что совпадает с размерами однополюсного автомата.
  4. Во время работы потребляет ток 0,7 мА, при 275В.
  5. Соответствует ГОСТам и прошёл сертификацию, поэтому может выдерживать импульсы до 10 кВ, с Iкз=5000А.
  6. Есть версия ОИН-1С, оборудованная световым индикатором наличия напряжения в сети.
  7. Клеммники позволяют подключать токопроводящие жилы от 4 до 16 мм.

Как подключить ОИН-1 в щитке

У этого устройства есть ряд функциональных аналогов от всех популярных производителей электротехники, поэтому и схемы их подключения в принципе аналогичны. В официальной документации схема подключения не слишком очевидна, она представлена в двух вариантах и выглядит следующим образом:

Обратите внимание первый вариант – подключение параллельно защищаемой цепи, а второй – последовательно с разъединителем. То есть в результате срабатывания ограничителя импульсных напряжений разъединитель должен разорвать цепь питания, чтобы избежать возгорания изделия и протекания тока по электрической дуге.

Но приведенная схема совсем не наглядно и не понятно изображена, и сразу возникает вопрос о том, как правильно установить аппарат. Поэтому ознакомьтесь с несколькими примерами .

На рисунке ниже изображена типовая схема из условий для подключения 3 фаз. Здесь более наглядно изображено подключение ограничителей напряжения до счётчика. В трёхфазной цепи с системой заземления TN-S или TN-C-S его подключают между фазами, нулём и землёй. Но подключение ОИН-1 после счетчика тоже допустимо как дополнительная ступень защиты.

Монтажная схема на примере подключения в двухпроводной электросети:

И напоследок рассмотрим схемы для четырёх разных схем электроснабжения (1 фаза, 3 фазы, объединённый и разъединённый защитные проводники), которые встречаются наиболее часто:

Важное примечание

Мы рассмотрели для чего нужен ОИН-1 и как его установить. Но в обязательном порядке нужно добавить примечание из официальной документации:

Речь идёт о подключении автомата в разрыв питающего провода перед ограничителем. Это нужно для того, чтобы в случае в ограничителе импульсов разорвать цепи и предотвратить негативные последствия случая.

Ограничитель импульсных перенапряжений - это один из наиболее широко известных высоковольтных приборов, использующийся для защиты сети.

Описание приспособления

Для начала стоит объяснить, из-за чего, в принципе, возникают импульсные перенапряжения и чем они опасны. Причиной появления этого процесса является нарушение в атмосферном или коммутационном процессе. Такие дефекты вполне способны нанести огромный ущерб электрическому оборудованию, которое подвергнется такому воздействию.

Тут стоит привести пример на громоотводе. Это устройство отлично справляется с отводом сильного разряда, бьющего в объект, однако оно никак не сможет помочь, если разряд попадет в сеть через воздушные линии. Если такое происходит, то первый же проводник, который попадется на пути у такого разряда, выйдет из строя, а также может стать причиной поломки другого электрического оборудования, которое подключено к этой же электрической сети. Элементарная защита - отключение всех приборов во время грозы, однако в некоторых случаях это невозможно, а потому были изобретены такие устройства, как ограничители перенапряжений ОПН.

Что даст использование устройства

Если говорить об обычных средствах защиты, то их конструктивное исполнение несколько хуже, чем у ОПН. При обычном исполнении устанавливаются карборундовые резисторы. Дополнительной конструкцией являются искровые промежутки, которые соединены между собой последовательным образом.

В ограничителях импульсных перенапряжений же имеются такие элементы, как нелинейные транзисторы. Основой для этих элементов стал оксид цинка. Таких деталей имеется несколько, и все они объединяются в одну колонку, которая помещается в специальный корпус из такого материала, как фарфор или полимер. Это обеспечивает полностью безопасное использование таких устройств, а также надежно защищает их от любых внешних воздействий.

Тут важно отметить, что основная особенность ограничителя перенапряжения - это конструкция оксидно-цинковых резисторов. Такое исполнение позволяет сильно расширить функции, которые может выполнять устройство.

Технические параметры

Как и у любого другого устройства, у ОПН имеется основная характеристика, которая определяет его работоспособность и качество. В данном случае таким показателем стала величина рабочего напряжения, которое может подводиться к клеммам устройства без какого-либо ограничения в плане времени.

Имеется еще одна характеристика - ток проводимости. Это значение тока, который проходит через прибор под воздействием напряжения. Измерить данный показатель можно лишь в условиях реального использования устройства. Основными числовыми показателями данного параметра являются емкость и активность. Общий показатель этой характеристики может достигать нескольких сотен микроампер. По полученному значению этой характеристики оценивается работоспособность ограничителя перенапряжений.

Описание устройства ОПН

Для того чтобы изготовить данное устройство, производители используют те же электротехнические и конструкторские методы, которые применяются в изготовлении других продуктов. Это наиболее заметно при осмотре размеров и материалов, использующихся для изготовления корпуса. Внешний вид также имеет некоторую схожесть с другими устройствами. Однако стоит отметить, что отдельного внимания удостаиваются такие вещи, как установка ограничителя перенапряжения, а также его дальнейшее подключение к общим электроустановкам потребительского типа.

Имеется несколько требований, которые предъявляются именно к этому классу устройств. Корпус ОПН должен быть полностью защищен от прямого прикосновения человека. Должен быть полностью исключен риск того, что устройство загорится из-за возможных перегрузок. Если элемент выйдет из строя, то это не должно повлечь за собой короткого замыкания в линии.

Назначение и применение ОПН

Основное предназначение нелинейных ограничителей перенапряжения - изоляции электрического оборудования от атмосферных или коммутационных перенапряжений. Данное устройство относится к группе высоковольтных приборов.

В этих аппаратах отсутствует такой раздел, как искровой промежуток. Если сравнивать диапазон действия ОПН и обычного то ограничитель способен выдерживать более глубокие перепады напряжения. Основная задача данного устройства - выдерживать эти нагрузки без ограничения по времени. Еще одно существенное отличие ограничителя перенапряжения от обычного вентильного заключается в том, что размеры, а также физический вес конструкции в данном случае гораздо ниже. Наличие такого элемента, как крышка из фарфора или полимеров, привело к тому, что внутренняя часть устройства надежно защищена от внешних воздействий окружающей среды.

ОПН-10

Устройство этого прибора несколько отличается от обычного ОПН. В данном варианте применяется колонка варисторов, которые заключены в покрышку. Для создания покрышки в данном случае используется уже не фарфор или полимеры, а стеклопластиковая труба, на которую опрессована оболочка из трекингостойкой кремнийорганической резины. Кроме того, колонка варисторов имеет алюминиевые выводы, которые поджаты с двух сторон, а также ввернуты внутрь трубы.

Ограничители импульсных напряжений (ОИН). Оин1Ограничитель импульсных напряжений схема подключения

Ограничители импульсных напряжений (ОИН) ОИН1, ОИН2

ОИН1, ОИН2

РМЕА 656111.011 ТУ Предназначены для защиты электрооборудования и бытовых приборов от грозовых и импульсных перенапряжений. ОИН1 - без индикатора рабочего состояния; ОИН2 - с индикатором рабочего состояния.

Нормативно-правовое обеспечение

  • Отвечают требованиям ТР ТС 004/2011 «О безопасности низковольтного оборудования», других стандартов и ПУЭ».
  • Отвечает требованиям к защите от перенапряжений по ГОСТ Р 50571.19

Функциональные возможности

ОИН1 - ограничитель импульсных напряжений моноблок с варистором; по заказу световой индикатор наличия напряжения сети. ОИН2 - ограничитель импульсных напряжений моноблок с варистором, световой индикатор рабочего состояния, световая индикация напряжения сети.

Конструктивные особенности

Ограничитель импульсных напряжений (ОИН) обеспечивает:

  • Максимальное длительное рабочее напряжение 275 В частотой 50 Гц
  • Рабочий потребляемый ток при напряжении 275 В не превышает 0,7 мА
  • Выполнен в виде унифицированного модуля шириной 17,5 мм для монтажа на рейке 35/7мм
  • Выдерживает воздействие импульсов комбинированной волны с напряжением разомкнутой цепи 10,0 кВ и с током короткозамкнутой цепи 5 кА
  • Обеспечивает защиту оборудования от импульсного перенапряжения категории II по ГОСТ Р 50571.19-2000 (уровень напряжения защиты 2,0 кВ)
  • Выдерживает без повреждений воздействие временного перенапряжения 380 В
  • Классификация по тепловой защите: ОИН1 и ОИН2 - без тепловой защиты.
  • Классификация по наличию индикатора состояния: ОИН1 - без индикатора; ОИН1С (по дополнительному заказу) - со световым индикатором наличия напряжения сети; ОИН2 - со световым индикатором рабочего состояния.
  • Классификация по ремонтопригодности: ОИН1 и ОИН2 - моноблочные (неремонтируемые в условиях эксплуатации).
  • Допускает присоединение проводников сечением от 4 до 16 мм

www.energomera.ru

Ограничитель импульсных перенапряжений

Содержание:

Среди множества защитных устройств широко известен такой высоковольтный аппарат, как ограничитель импульсных перенапряжений. Импульсные перенапрежения возникают в результате нарушений в атмосферных или коммутационных процессах и способны нанести серьезный вред электрооборудованию.

Основным средством защиты дома при попадании молнии служит громоотвод или молниеотвод. Но он не способен справиться с разрядом, проникшим в сеть через воздушные линии. Поэтому проводник, принявший на себя этот импульс, становится основной причиной выхода из строя электрооборудования и домашней аппаратуры, подключенной к данной сети. Чтобы избежать подобных неприятностей рекомендуется их полное отключение на период грозы. Гарантированная защита обеспечивается путем установки ограничителей перенапряжения (ОПН).

Преимущества в использовании ОПН

В обычных средствах защиты установлены карборундовые резисторы, а также соединенные последовательно искровые промежутки. В отличие от них в ОПН устанавливаются нелинейные резисторы, основой которых является окись цинка. Они объединяются в общую колонку, помещенную в фарфоровый или полимерный корпус. Таким образом, обеспечивается их эффективная защита от внешних воздействий и безопасная эксплуатация устройства.

Особенности конструкции оксидно-цинковых резисторов позволяют выполнять ограничителям перенапряжения более широкие функции. Они свободно выдерживают, независимо от времени, постоянное напряжение электрической сети. Размеры и вес ОПН значительно ниже, чем у стандартных вентильных разрядников.

Технические характеристики ОПН

Основной величиной, характеризующей работу ограничителя перенапряжения ОПН, является максимальное действие рабочего напряжения, которое может подводиться к клеммам прибора без каких-либо временных ограничений.

Ток, проходящий через защитное устройство под действием напряжения, называется током проводимости. Его значение измеряется в условиях реальной эксплуатации, а основными показателями служит активность и емкость. Общая величина такого тока может составлять до нескольких сотен микроампер. По этому параметру оцениваются рабочие качества ОПН.

Все импульсные ограничители способны устойчиво переносить медленно изменяющееся напряжение. То есть, они не должны разрушаться в течение определенного времени при повышенном уровне напряжения. Значения, полученные при испытаниях, позволяют настроить защитное отключение прибора по истечению установленного срока.

Величина предельного разрядного тока является максимальным значением грозового разряда. С ее помощью устанавливается предел прочности импульсного ограничителя при прямом попадании молнии.

Нормативный ресурс ОПН определяется и токовой пропускной способностью. Он рассчитывается для работы в наиболее тяжелых условиях, когда присутствуют максимальные грозовые или коммутационные перенапряжения.

Устройство ограничителей импульсных перенапряжений

Производители электротехники пользуются технологией и конструкторскими решениями, которые применяются в других электроустановочных изделиях. Прежде всего, это материал корпуса и габаритные размеры, внешний вид и прочие параметры. Отдельно решаются технические вопросы, связанные с установкой ОПН и его подключением к общим электроустановкам потребителей.

Существуют отдельные требования, предъявляемые именно этому классу устройств. Корпус ограничителя перенапряжений должен обеспечивать защиту от прямых прикосновений. Полностью исключается риск возгорания защитного устройства из-за перегрузок. При его выходе из строя на линии не должно быть коротких замыканий.

Современный ограничитель импульсных перенапряжений оборудуется простой и надежной индикацией. К нему может подключаться сигнализация дистанционного действия.

Защита от импульсных перенапряжений

electric-220.ru

Как организовать защиту от перенапряжения сети в частном доме: схемы, приборы, оборудование

Наличие в доме дорогостоящей электробытовой и электронной технике, природные катаклизмы и низкое качество электроснабжения в городских сетях вынуждают собственников жилья принимать меры, чтобы минимизировать возможный ущерб от вышеуказанных факторов.

В данной статье речь пойдёт о практических мерах по защите от перенапряжения, которые можно реализовать при организации электроснабжения частного дома. Причём эти работы можно выполнить как при новом строительстве, так и при модернизации существующих систем электроснабжения частного дома.

Я выполнял указанные работы при переводе электропитания дома с однофазной на трёхфазную схему. Причём работы были не только выполнены, но и приняты представителями горэлектросетей без замечаний, а правильное функционирование приборов и эффективность защиты от перенапряжения проверена на практике в процессе эксплуатации. Известно, что основным условием подключения к городским электросетям является выполнение технических условий (ТУ), которые выдаются собственнику жилья. Как показал личный опыт, надеяться на то, что в данных ТУ будут отражены все мероприятия по безопасной эксплуатации электрооборудования, можно с определённым скептицизмом. На фото ниже показаны ТУ, выданные мне в горэлектросетях.

Примечание: пункты, помеченные на фото красным цветом, были мной реализованы самостоятельно ещё до получения тех. условий. Пункт, помеченный синим цветом, больше обусловлен интересами самих горсетей (защитить себя от ответственности за ущерб перед собственником дома по причине возможных проблем в зоне их ответственности).

Поэтому при разработке проекта схемы электроснабжения частного дома было решено использовать дополнительные меры по защите электрооборудования, которые не были отражены в ТУ. Ниже на фото показан фрагмент проекта электроснабжения моего жилого дома.

Как видно из фото, в учётно-распределительном шкафу (ЩР1), устанавливаемом внутри дома, предусмотрено устройство защиты от импульсных перенапряжений (УЗИП-II) согласно требованиям ТУ, выданных городскими электрическими сетями.

Так как ввод в дом осуществляется по воздушной линии, то с учётом требований ПУЭ (правил устройства электроустановок), на вводе в дом должны устанавливаться ограничители перенапряжений, что и было мной учтено в проекте (УЗИП-I на фото), которые установлены в шкафу (ЩВ1) на фасаде здания. Для защиты индивидуальных электроприёмников в доме используются ИБП (источники бесперебойного питания) и стабилизаторы напряжений.

Таким образом, защита электрооборудования дома от перенапряжений реализована в трёх зонах (уровнях):

  • на вводе в дом
  • внутри дома, в учётно-распределительном шкафу
  • индивидуальная защита электроприборов внутри помещений дома

Что важно учесть при выполнении работ

В первую очередь должен отметить специфические особенности, предъявляемые к выполнению электромонтажных работ со стороны представителей городских электросетей. Для примера с точки зрения учёта потребляемой электроэнергии достаточно поверить и опечатать счётчик электроэнергии. Но поскольку в каждом из нас они видят «потенциальных расхитителей электроэнергии», то всё, что касается монтажа оборудования, присоединений на участке от городской опоры и до счётчика включительно, должно быть «недоступным для потребителя», закрытым (в боксы, шкафы) и опломбированным. Причём даже в том случае, если эти «требования» противоречат требованиям технической документации на установленное оборудование, создают риск возникновения отказов в работе оборудования и т. д. Более подробно об этих «специфических требованиях» будет сказано ниже.

Теперь о технической стороне вопроса:

Для защиты электрооборудования, установленного в доме, я использовал следующие приборы и аппараты.

1. В качестве УЗИП (устройства защиты от импульсных перенапряжений) - I уровня мной были использованы ограничители перенапряжений нелинейные (ОПН), российского производства (Санкт-Петербург), в количестве трёх штук (по одному, на каждый фазный проводник). Заводское обозначение данных приборов - ОПНд-0,38. Установлены они в опечатанном пластиковом боксе в стальном шкафу на фасаде дома.

Что важно отметить по данному оборудованию:

  • Данные приборы защищают только от импульсных (кратковременных) перенапряжений, возникающих при грозах, а также от кратковременных коммутационных перенапряжений, причём в обе стороны. При длительных перенапряжениях, вызванных авариями и неполадками в городской электросети, данные приборы защиту дома не обеспечат.
  • В техническом плане ОПН представляет собой варистор (нелинейный резистор). Прибор подключается параллельно нагрузке между фазным и нулевым проводом. При появлении бросков (импульсов) напряжения, внутреннее сопротивление прибора моментально снижается, при этом ток через прибор резко и многократно возрастает, уходя в землю. Таким образом, происходит сглаживание (снижение) амплитуды импульсного напряжения. В связи с вышесказанным, при монтаже данных приборов нужно обратить особое внимание на устройство контура заземления и надёжного подключения ОПН к нему.
  • В зависимости от схемы электроснабжения дома, количество используемых ОПН может варьироваться. Например, для однофазного воздушного ввода достаточно установить один такой прибор, при питании от городской сети по двухпроводной линии. Для трёхфазного воздушного ввода в большинстве случаев достаточно установить три прибора (по числу фаз). Если ввод в дом осуществляется по трёхфазной, но пяти проводной схеме, или приборы ставится на участке после разделения общего проводника на нулевой рабочий (N) проводник и защитный проводник (PE), то потребуется установка дополнительного прибора между нулевым и защитным проводником.

2. В качестве УЗИП - II уровня я использовал аппараты УЗМ-50 М (устройство защитное многофункциональное) российского производства.

Из особенностей данных аппаратов можно отметить следующее:

  • В отличие от ОПН, данные аппараты обеспечивают защиту не только от импульсных перенапряжений, но и защиту от длительных (аварийных) перенапряжений и просадок (недопустимого падения напряжения).
  • В конструктивном отношении представляют собой реле контроля напряжения, дополненное мощным реле и варистором, заключенным в один корпус.
  • Для однофазной сети необходимо установить один аппарат, для трёхфазной сети потребуется три аппарата, не зависимо от числа проводников питающей линии.

3. Третий немаловажный момент, касающийся правильного монтажа и работы УЗИП при их последовательном включении (показаны на фото красными прямоугольниками УЗИП-1 и УЗИП-2) заключается в том, что расстояние между ними (по длине кабеля) должно быть не менее 10 метров. В моём случае оно равно 20 метрам.

Примечание: приобрести указанное оборудование (ОПН и УЗМ) в моём городе оказалось невозможным, ввиду его отсутствия в продаже, заказывал через интернет. Такой расклад навеял мысль о том, что вопросу защиты электрооборудования, по крайней мере, в нашем городе, внимания практически никто не уделяет.

Практическое выполнение работ

Практическое выполнение работ не представляет собой большой сложности и показано на фото ниже, с небольшими пояснениями.

Монтаж ОПН-0,38 на вводе в дом

На фото показан монтаж ОПН в пластиковом боксе. Из особенностей нужно учесть, что специальных боксов для ОПН не существует, ибо конструктивно они крепятся на опорной конструкции и по типу своего исполнения могут устанавливаться открыто. Установка ОПН в боксе - мера вынужденная. Бокс должен иметь возможность для пломбировки. Для установки ОПН в боксе сделана самодельная конструкция из оцинкованной стали толщиной 1 мм, которая закреплена вместо штатной дин рейки, установленной в боксе на заводе-изготовителе.

При монтаже ОПН и подключении к ним проводов использование граверных шайб - обязательно. По требованиям ТУ, вводной автомат должен устанавливаться в боксе с возможностью пломбировки. Использовался аналогичный бокс, как для ОПН, что и показано на фото ниже (верхний пластиковый бокс в металлическом шкафу).

Такое нагромождение конструкций (пластиковых боксов в металлическом шкафу) на фасаде дома, обусловлено, как я отмечал ранее, именно специфическими требованиями горэлектросетей и вызывает не только заметное удорожание работ, но и дополнительных затрат сил, времени и нервов. На мой взгляд, правильное в техническом плане выполнение работ при воздушном вводе, выполненное проводом СИП, должно бы быть следующим: от опоры горэлектросетей до фасада дома прокладываем провод СИП, крепим на фасаде дома и обрезаем с небольшим напуском. Затем на каждый провод СИП крепим прокалывающий зажим с отводом из медного провода сечением 10 мм2, который заводится в шкаф (или бокс) на клеммы вводного автомата. Срезы проводов СИП закрываем герметичными колпачками. Таким образом, мы правильно «перешли» с алюминия (провод СИП) на медь. При этом у нас не возникло бы проблем с подключением медного провода (сечением 10 мм2) к клеммам модульного вводного автомата. Но такую работу представители горсетей не примут.

Поэтому провод СИП сечением 16 мм2 необходимо завести непосредственно на клеммы вводного автомата, который должен быть установлен в пластиковый бокс. Сделать это на практике очень сложно, так как нужно сохранить степень защиты бокса (для наружной установки не ниже IP 54), при этом провод СИП должен быть зафиксирован по отношению к пластиковому боксу и т. д.

На практике пришлось просто купить ещё один стальной шкаф, в котором установил сами пластиковые боксы, затем провод СИП был заведён в шкаф и закреплён в нём. Ниже на фото показаны завершающие работы по монтажу шкафа и его крепления на фасаде дома. Работы были приняты без замечаний и претензий.

Ещё один важный момент, на который нужно обратить внимание, связан с тем, что ОПН при работе во время грозы отводит ток в землю посредством подключения самого ОПН к контуру заземления. При этом токи могут достигать значительных величин: от 200 - 300 А и до нескольких тысяч ампер. Поэтому важно обеспечить кратчайший путь от самих ОПН до контура заземления медным проводником сечением не менее 10 мм2. Ниже на фото показано, как данное подключение выполнил я. Для надёжности работы ОПН я сделал подключение приборов к контуру заземления двумя медными проводами сечением 10 мм2 каждый. На фото провод в желто-зеленой трубке ТУТ (термоусаживающаяся трубка).

Монтаж аппаратов УЗМ-50М в учётно-распределительном шкафу

Выполнение электромонтажных работ проблем не доставляет, поскольку аппараты имеют штатное крепление на DIN-рейку. Фрагмент выполнения работ по монтажу УЗМ-50М в шкафу показан на фото ниже. Аппараты также должны устанавливаться в пластиковый бокс с возможностью пломбирования. На фото верхняя крышка бокса не показана.

С точки зрения электрической схемы подключения (хотя схема имеется в паспорте на аппарат и на корпусе самого аппарата) у неподготовленного читателя могут возникнуть вопросы. Чтобы пояснить особенности подключения аппарата, ниже на рисунке приводится схема подключения, приведённая в паспорте на УЗМ-50М, с некоторыми моими пояснениями.

Во-первых, как видно из схемы, УЗМ-50М является однофазным коммутирующим аппаратом и для своего функционирования требует обязательного подключения проводников L и N к верхним клеммам. Это показано на схеме подключения в обоих случаях (а и б). Далее, между схемой а и схемой б появляется различие, о котором производитель не даёт ни какого пояснения и приходится потребителю самостоятельно додумывать, как и в каких случаях какую схему использовать.

Различие заключается в том, что по верхней схеме (а) нагрузка подключается к аппарату по двум проводам (L и N). Т. е. в случае аварийного срабатывания аппарата цепь будет разорвана как по фазному проводнику (L), так и по проводнику (N).

В нижней схеме (б) нагрузка к аппарату подключается только по одному фазному проводнику (L), а второй провод (N) подключается к нагрузке напрямую, минуя аппарат. Т. е. в случае аварийного срабатывания аппарата он разомкнёт только фазный проводник, а проводник N остаётся подключенным всегда. Исходя из вышесказанного, а также зная, в каком случае допускается разрывать проводник N, а в каком - не допускается, можно сделать следующий вывод:

В случае подключения дома (квартиры) по двухпроводной линии (система TN-C), необходимо подключать аппарат УЗМ-50М по нижней схеме (б), так как в этом случае провод N выполняет две функции (нулевого рабочего проводника и нулевого защитного проводника), и его разрывать ни в коем случае нельзя.

Оборудование > Модульные устройства

Ограничители импульсных перенапряжений

На современных объектах индивидуального строительства (коттеджи, дачные дома и т. д.) требуется применение повышенных мер электробезопасности. Это связано с высокой энергонасыщенностью, разветвленностью электрических сетей и спецификой эксплуатации как самих объектов, так и электрооборудования. При выборе схемы электроснабжения , типа УЗО и распределительных щитков следует обратить внимание на необходимость использования устройств защиты от импульсных перенапряжений (УЗИП ), которые следует устанавливать до УЗО.
Ограничители импульсных перенапряжений (УЗИП) предназначены для защиты внутренних распределительных цепей жилых и общественных зданий от грозовых и коммутационных перенапряжений.
Конструктивно ограничители выполнены в виде стандартных модулей шириной 18 мм для установки на монтажную рейку и состоят из основания - контактной колодки и сменного функционального модуля. Сменный модуль содержит твердотельный композитный варистор из карбида цинка и механизм визуального контроля степени "износа" варистора с "аварийным" предохранителем.
Карбид цинка обладает свойством практически мгновенно снижать свое сопротивление в тысячи раз при появлении на выводах сменного модуля напряжения, превышающего предельно допустимую величину.

Проверка исправности ограничителя

Проверку исправности ограничителя в процессе эксплуатации производить следующим образом:
- по визуальному индикатору проверяют степень "износа" (если индикатор затемнен более, чем на 3/4, то его необходимо заменить);
- отсоединить ограничитель от питающей сети и подсоединить к мегомметру напряжением 1000 В;
- замерить сопротивление ограничителя, которое должно лежать в диапазоне 0,1...2 мОм. Если сопротивление ограничителя находится вне указанного диапазона, ограничитель должен быть заменен.

Техническая характеристика

Параметр

0ПС1 В (I )

0ПС1 С (II)

0ПС1 D (III)

Номинальное рабочее напряжение, В

Максимальное рабочее напряжение, В

Номинальный разрядный ток 8/20 мкс, кА

Максимальный разрядный ток 8/20 мкс, кА

Уровень напряжения защиты, не более, кВ

Классификационное напряжение, В

Количество полюсов

1, 2, 3, 4

1, 2, 3, 4

1, 2

Условия эксплуатации

УХЛ4

УХЛ4

УХЛ4

Сечение присоединяемых проводов, мм кв.

4...25

4...25

4...25

Габаритные размеры

Электрические схемы

Источники импульсных перенапряжений

В летний период грозовой разряд в воздушную линию вызывает появление перенапряжений в десятки киловольт, носящих характер бегущих волн с большой крутизной и временем возрастания от нуля до максимума 1,0...8,0 мкс. Попав во внутреннюю распределительную сеть здания разряд может вызвать пробой, возгорание изоляции и выход из строя электрооборудования. Аналогичные последствия могут вызвать коммутационные перенапряжения, возникающие при переключениях на подстанциях или при пуске и отключении мощных электропотребителей.
С помощью ОПС1 можно создать весьма эффективную и долговременную защиту объекта. Одним из основных условий при этом является наличие контура заземления, а для производственных помещений - и системы выравнивания потенциалов; ведь, несмотря на малую длительность, грозовой разряд несет значительную энергию. Максимальное пиковое значение тока разряда может достигать 100 кА, и при отсутствии выравнивания потенциалов вполне возможно возникновение опасного шагового напряжения. Трехступенчатая система защиты внутри здания позволяет плавно понижать опасный импульс перенапряжения "по ходу" в сторону потребителя до безопасной величины путем отбора и "слива" в землю части энергии быстродействующими разрядниками каждой ступени. При установке разрядников следует учесть, что последовательная (селективная) работа ступеней защиты будет обеспечена, если расстояние между ступенями по воздушной и кабельной цепям составляет не менее 7...10 м. В этом случае, при появлении бегущей волны разряда, индуктивность участка цепи будет создавать необходимую постоянную времени задержки нарастания напряжения.
Расстояние от разрядников, установленных в абонентском щите потребителя, до самой удаленной нагрузки не должно превышать 30 м.
Подключение к фазным и нулевой шинам во всех трех ступенях производят до коммутационной аппаратуры и аппаратуры защитного отключения. Длина проводников, соединяющих разрядники с PEN или РЕ проводником должна быть минимальной, а их сечение не менее 25 мм2.

Классификация электрооборудования по стойкости к перенапряжениям

Характеристика

Номинальное импульсное выдерживаемое напряжение, кВ

Специальное оборудование, которое, будучи присоединено к существующим электроустановкам зданий, нуждается в дополнительных устройствах защиты от импульсных перенапряжений. УЗИП могут быть встроены в оборудование категории 1 или расположены между этим оборудованием и остальной частью электроустановки (например, персональные компьютеры, которые подключены к питающей сети через удлинители со встроенными УЗИП).

Оборудование, которое присоединяют к существующим электроустановкам зданий посредством штепсельных розеток и других аналогичных соединителей (например, бытовые электроприборы, радиоэлектронные приборы, переносной инструмент).

Оборудование, установленное внутри зданий, которое составляет часть конкретной электроустановки здания и доступно для обычных лиц и необученного персонала. Примеры такого оборудования - распределительные щитки, проводка, выключатели и розетки, электроплиты.

Оборудование, установленное вблизи от электроустановок зданий (внутри или снаружи) перед главным распределительным щитом, которым может быть вводно-распределительное устройство для многоэтажных зданий или квартирный щиток для индивидуальных зданий (например, электрические счетчики, первичные аппараты защиты от сверхтоков).

Области применения 0ПС1 в соответствии с классификационным напряжением

Класс 0ПС1

Назначение и место установки 0ПС1

I (B)

Первая ступень защиты от прямых или косвенных грозовых разрядов в ЛЭП на вводе в объект. Устанавливают на вводе в здание во вводно-распределительном устройстве (ВРУ) или в главном распределительном щите (ГРЩ)

II (C)

Вторая ступень защиты внутренних распределительных цепей объекта от грозовых разрядов и коммутационных перенапряжений. Устанавливают в распределительные щиты.

III (D)

Третья ступень защиты электрооборудования объекта от остаточных грозовых и коммутационных перенапряжений. Устанавливают в непосредственной близости электропотребителей (электроприборов).

Установка УЗИП в сети TN-C-S 220/380 В

Для того, чтобы надежно защитить объект от воздействия любого вида перенапряжений, в первую очередь необходимо создать эффективную систему заземления и выравнивания потенциалов с системой электропитания TN-S или TN-C-S. Это важно не только с точки зрения защиты от импульсных перенапряжений, но и для защиты людей от поражения электрическим током (возможно применение УЗО). Следующим шагом должна стать установка защитных устройств. При установке защитных устройств необходимо, чтобы расстояние между соседними ступенями защиты было не менее 10 м по кабелю электропитания.

Выполнение этого требования очень важно для правильной работы (координации срабатывания) защитных устройств. В момент возникновения в силовом кабеле импульсного грозового перенапряжения за счет увеличения индуктивного сопротивления металлических жил кабеля при протекании по ним импульса тока на них возникает падение напряжения, которое оказывается приложенным к первому каскаду защиты. Таким образом достигается его первоочередное срабатывание (обеспечивается необходимая временная задержка в нарастании импульса перенапряжения на следующей ступени защиты).

Вольт-амперная характеристика

Особенностью вольт-амперной характеристики варистора является наличие участка малых токов (от нуля до нескольких миллиампер), в котором находится рабочая точка варистора и участок больших токов (до тысяч ампер), который в ряде случаев называют туннельным.
Туннельный участок во многом определяет функциональные свойства и, в частности, напряжение ограничения, т.е. максимальное импульсное напряжение, воздействующее на защищаемое электрооборудование при шунтировании его варистором. Одной из характеристик варистора является классификационное напряжение (Uкл). В качестве классификационного указано напряжение при токе 1,5 мА.