Сколько независимых уравнений состояния имеет простая система. Другие уравнения состояния. Что такое реальный газ

Для равновесной термодинамической системы существует функциональная связь между параметрами состояния, ко­торая называется уравнением со­ стояния . Опыт показывает, что удель­ный объем, температура и давление про­стейших систем, которыми являются газы, пары или жидкости, связаны тер мическим уравнением состо­яния вида .

Уравнению состояния можно придать другую форму:


Эти уравнения показывают, что из трех основных параметров, определяю­щих состояние системы, независимыми являются два любых.

Для решения задач методами термо­динамики совершенно необходимо знать уравнение состояния. Однако оно не мо­жет быть получено в рамках термодина­мики и должно быть найдено либо экспе­риментально, либо методами статистиче­ской физики. Конкретный вид уравнения состояния зависит от индивидуальных свойств вещества.

Уравнение состояния идеальных га­ зов

Из уравнений (1.1) и (1.2) следует, что
.

Рассмотрим 1 кг газа. Учитывая, что в нем содержится N молекул и, следова­тельно,
, получим:
.

Постоянную величину Nk , отнесен­ную к 1 кг газа, обозначают буквой R и называют газовой постоян­ ной . Поэтому

, или
. (1.3)

Полученное соотношение представляет собой уравнение Клапейрона.

Умножив (1.3) на М, получим урав­нение состояния для произвольной массы газа М:

. (1.4)

Уравнению Клапейрона можно при­дать универсальную форму, если отнести газовую постоянную к 1 кмолю газа, т. е. к количеству газа, масса которого в килограммах численно равна молеку­лярной массе μ. Положив в (1.4) М= μ и V = V μ , получим для одного моля урав­нение Клапейрона - Менделеева:

.

Здесь
- объем киломоля газа, а
-универсальная газовая постоянная.

В соответствии с законом Авогадро (1811г.) объем 1 кмоля, одинаковый в одних и тех же условиях для всех иде­альных газов, при нормальных физических условиях равен 22,4136 м 3 , поэтому

Газовая постоянная 1 кг газа составляет
.

Уравнение состояния реальных га­ зов

В реальных газах в отличие от иде­альных существенны силы межмолеку­лярных взаимодействий (силы притяже­ния, когда молекулы находятся на значи­тельном расстоянии, и силы отталкивания при достаточном сближении их друг с другом) и нельзя пренебречь собствен­ным объемом молекул.

Наличие межмолекулярных сил от­талкивания приводит к тому, что молеку­лы могут сближаться между собой толь­ко до некоторого минимального расстоя­ния. Поэтому можно считать, что свобод­ный для движения молекул объем будет равен
, где b - тот наименьший объем, до которого можно сжать газ. В соответствии с этим длина свободного пробега молекул уменьшается и число ударов о стенку в единицу времени, а следовательно, и давление увеличива­ется по сравнению с идеальным газом в отношении
, т. е.

.

Силы притяжения действуют в том же направлении, что и внешнее давле­ние, и приводят к возникновению молеку­лярного (или внутреннего) давления. Сила молекулярного притяжения каких-либо двух малых частей газа пропорцио­нальна произведению числа молекул в каждой из этих частей, т. е. квадрату плотности, поэтому молекулярное давле­ние обратно пропорционально квадрату удельного объема газа: р мол = а/v 2 , где а - коэффициент пропорциональности, зависящий от природы газа.

Отсюда получаем уравнение Ван-дер-Ваальса (1873 г.):

,

При больших удельных объемах и сравнительно невысоких давлениях ре­ального газа уравнение Ван-дер-Ваальса практически вырождается в уравнение состояния идеального газа Клапейрона, ибо величина a /v 2

(по сравнению с p ) и b (по сравнению с v ) становятся прене­брежимо малыми.

Уравнение Ван-дер-Ваальса с ка­чественной стороны достаточно хорошо описывает свойства реального газа, но результаты численных расчетов не всег­да согласуются с экспериментальными данными. В ряде случаев эти отклонения объясняются склонностью молекул ре­ального газа к ассоциации в отдельные группы, состоящие из двух, трех и более молекул. Ассоциация происходит вслед­ствие несимметричности внешнего элек­трического поля молекул. Образовавши­еся комплексы ведут себя как самостоя­тельные нестабильные частицы. При столкновениях они распадаются, затем вновь объединяются уже с другими мо­лекулами и т. д. По мере повышения тем­пературы концентрация комплексов с большим числом молекул быстро уменьшается, а доля одиночных молекул растет. Большую склонность к ассоциа­ции проявляют полярные молекулы во­дяного пара.

Параметры состояния связаны друг с другом. Соотношение, которое определяет эту связь, называется уравнением состояния этого тела. В простейшем случае равновесное состояние тела определяется значением тех параметров: давления p, объема V и температуры, массу тела (системы) обычно считают известной. Аналитически связь между этими параметрами выражают как функцию F:

Уравнение (1) называют при этом уравнением состояния. Это закон, который описывает характер изменения свойств вещества при изменении внешних условий.

Что такое идеальный газ

Особенно простым, но весьма информативным является уравнение состояния так называемого идеального газа.

Определение

Идеальным называют газ, в котором взаимодействием молекул между собой можно пренебречь.

К идеальным можно отнести разреженные газы. Особенно близки по своему поведению к идеальному газу гелий и водород. Идеальный газ представляет собой упрощенную математическую модель реального газа: молекулы считаются движущимися хаотически, а соударения между молекулами и удары молекул о стенки сосуда --- упругими, такими, которые не приводя к потерям энергии в системе. Такая упрощенная модель очень удобна, так как не требует учитывать силы взаимодействия между молекулами газа. Большинство реальных газов не отличаются в своем поведении от идеального газа при условиях, когда суммарный объем молекул пренебрежимо мал по сравнению с объемом сосуда (т.е. при атмосферном давлении и комнатной температуре), что позволяет использовать уравнение состояния идеального газа в сложных расчетах.

Уравнение состояния идеального газа можно записать в нескольких видах (2), (3), (5):

Уравнение (2) -- уравнение Менделеева -- Клайперона, где m - масса газа, $\mu $ -- молярная масса газа, $R=8,31\ \frac{Дж}{моль\cdot К}$- универсальная газовая постоянная, $\nu \ $- количество молей вещества.

где N - число молекул газа в массе m, $k=1,38\cdot 10^{-23}\frac{Дж}{К}$, постоянная Больцмана, которая определяет «долю» газовой постоянной приходящуюся на одну молекулу и

$N_A=6,02\cdot 10^{23}моль^{-1}$ -- постоянная Авогадро.

Если разделить в (4) обе части на V, то получим следующую форму записи уравнения состояния идеального газа:

где $n=\frac{N}{V}$- число частиц в единице объема или концентрация частиц.

Что такое реальный газ

Обратимся теперь к более сложным системам - к неидеальным газам и жидкостям.

Определение

Реальным газом называют газ, между молекулами которого существуют заметные силы взаимодействия.

В неидеальных, плотных газах взаимодействие молекул велико и его нужно учитывать. Оказывается, что взаимодействие молекул столь сильно усложняет физическую картину, что точное уравнение состояния неидеального газа не удается записать в простой форме. В таком случае прибегают к приближенным формулам, найденным полуэмпирический. Наиболее удачной такой формулой является уравнение Ван-деp-Ваальса.

Взаимодействие молекул имеет сложный характер. На сравнительно больших расстояниях между молекулами действуют силы притяжения. По мере уменьшения расстояния силы притяжения сначала растут, но затем уменьшаются и переходят в силы отталкивания. Притяжение и отталкивание молекул можно рассматривать и учитывать раздельно. Уравнение Ван-дер-Ваальса описывающее состояние одного моля реального газа:

\[\left(p+\frac{a}{V^2_{\mu }}\right)\left(V_{\mu }-b\right)=RT\ \left(6\right),\]

где $\frac{a}{V^2_{\mu }}$- внутреннее давление, обусловленное силами притяжения между молекулами, b -- поправка на собственный объем молекул, которая учитывает действие сил отталкивания между молекулами, причем

где d - диаметр молекулы,

величина a вычисляется по формуле:

где $W_p\left(r\right)\ $- потенциальная энергия притяжения двух молекул.

С увеличением объема роль поправок в уравнении (6) становится менее существенной. И в пределе уравнение (6) переходит в уравнение (2). Это согласуется с тем фактом, что при уменьшении плотности реальные газы по своим свойствам приближаются к идеальным.

Достоинством уравнения Ван-деp-Ваальса является то обстоятельство, что оно при очень больших плотностях приближённо описывает и свойства жидкости, в частности плохую ее сжимаемость. Поэтому есть основание полагать, что уравнение Ван-деp-Ваальса позволит отразить и переход от жидкости к газу (или от газа к жидкости).

На рис.1 изображена изотерма Ван-дер-Ваальса для некоторого постоянного значения температуры T, построенная из соответствующего уравнения.

В области "извилины" (участок КМ) изотерма трижды пересекает изобару. На участке [$V_1$, $V_2$] давление pастет с увеличением объема.

Такая зависимость невозможна. Это может означать, что в данной области с веществом пpоисходит что-то необычное. Что именно это, невозможно увидеть из уравнения Ван-деp-Ваальса. Необходимо обратиться к опыту. Опыт показывает, что в области "извилины" на изотерме в состоянии равновесия вещество расслаивается на две фазы: на жидкую и газообразную. Обе фазы сосуществуют одновременно и находятся в фазовом равновесии. В фазовом равновесии протекают процессы испарения жидкости и конденсации газа. Они идут с такой интенсивностью, что полностью компенсируют друг друга: количество жидкости и газа с течением времени остается неизменным. Газ, находящийся в фазовом равновесии со своей жидкостью, называется насыщенным паром. Если фазового равновесия нет, нет компенсации испарения и конденсации, то газ называется ненасыщенным паром. Как же ведет себя изотерма в области двухфазного состояния вещества (в области "извилины" изотермы Ван-деp-Ваальса)? Опыт показывает, что в этой области при изменении объема давление остается постоянным. График изотермы идет параллельно оси V(рис 2).

По мере увеличения температуры участок двухфазных состояний на изотермах сужается, пока не превратится в точку (рис. 2). Это особая точка К, в которой исчезает различие между жидкостью и паром. Она называется критической точкой. Параметры, соответствующие критическому состоянию, называются критическими (критическая температура, критическое давление, критическая плотность вещества).

Уравнением состояния называется уравнение, устанавливающее взаимосвязь между термическими параметрами, т.е. ¦(P,V,T) = 0. Вид данной функции зависит от природы рабочего тела. Различают идеальные и реальные газы.

Идеальным называется газ, для которого можно пренебречь собственным объемом молекул и силами взаимодействия между ними. Простейшим уравнением состояния идеального газа является уравнение Менделеева – Клапейрона = R = const, где R – константа, зависящая от химической природы газа, и которая называется характеристической газовой постоянной. Из данного уравнения следует:

Pu = RT (1 кг)

PV = mRT (m кг)

Простейшим уравнением состояния реального газа является уравнение Ван- дер-Ваальса

(P + ) × (u - b) = RT

где - внутреннее давление

где a, b – постоянные, зависящие от природы вещества.

В предельном случае (для идеального газа)

u >> b Pu = RT

Для определения характеристической газовой постоянной R запишем уравнение Менделеева-Клапейрона (далее М.-К.) для P 0 = 760 мм.рт.ст., t 0 =0, 0 C

умножим обе части уравнения на величину m, которая равна массе киломоля газа mP 0 u 0 = mRT 0 mu 0 = V m = 22,4 [м 3 /кмоль]

mR = R m = P 0 V m / T 0 = 101,325*22,4/273,15 = 8314 Дж/кмоль×К

R m - не зависит от природы газа и поэтому называется универсальной газовой постоянной. Тогда характеристическая постоянная равна:

R= R m /m=8314/m; [Дж/кг×К].

Выясним смысл характеристической газовой постоянной. Для этого запишем уравнение М.-К. для двух состояний идеального газа, участвующего в изобарном процессе:

P(V 2 -V 1)=mR(T 2 -T 1)

R= = ; где L – работа изобарного процесса.

m(T 2 -T 1) m(T 2 -T 1)

Таким образом, характеристическая газовая постоянная представляет собой механическую работу (работу изменения объема), которую совершает 1 кг газа в изобарном процессе при изменении его температуры на 1 К.

Лекция №2

Калорические параметры состояния

Внутренняя энергия вещества представляет собой сумму кинетической энергии теплового движения атомов и молекул потенциальной энергии взаимодействия, энергии химических связей, внутриядерной энергии и т.д.

U = U КИН + U ПОТ + U ХИМ + U ЯД. +…

В т.д процессах изменяются только первые 2 величины, остальные не изменяются, так как не в этих процессах не изменяется химическая природа вещества и строение атома.

В расчетах определяется не абсолютное значение внутренней энергии, а ее изменение и поэтому в термодинамике принято, что внутренняя энергия состоит только из 1-го и 2-го слагаемых, т.к. в расчетах остальные сокращаются:



∆U = U 2 +U 1 = U КИН + U ПОТ … Для идеального газа U ПОТ = 0. В общем случае

U КИН = f(T); U ПОТ = f(p, V)

U = f(p, T); U ПОТ = f(p, V); U = f(V,T)

Для идеального газа можно записать следующее соотношение:

Т.е. внутренняя энергия зависит толлько от

теммпературы и не зависит от давления и объема

u = U/m; [Дж/кг]-удельная внутренняя энергия

Рассмотрим изменение внутренней энергии рабочего тела, совершающего круговой процесс или цикл

∆u 1m2 = u 2 - u 1 ; ∆U 1n2 = u 1 – u 2 ; ∆u ∑ = ∆u 1m2 – ∆u 2n1 = 0 du = 0

Из высшей математики известно, что если данный нтеграл равен нулю, то величина du представляет собой полный дифференциал функции

u = u(T, u) и равен

Поскольку уравнение состояния pV = nRT имеет простой вид и отражает с разумной точностью поведение многих газов в широком диапазоне внешних условий, оно очень полезно. Но, конечно, оно не является универсальным. Очевидно, что этому уравнению не подчиняется ни одно вещество в жидком и твердом состоянии. Не существует таких конденсированных веществ, объем которых уменьшался бы вдвое при увеличении давления в два раза. Даже газы при сильном сжатии или вблизи точки конденсации проявляют заметные отклонения от указанного поведения. Было предложено много других более сложных уравнений состояния. Некоторые из них отличаются высокой точностью в ограниченной области изменения внешних условий. Некоторые применимы к специальным классам веществ. Имеются уравнения, которые применимы к более широкому классу веществ при более сильно различающихся внешних условиях, но они не очень точны. Здесь мы не будем тратить время на подробное рассмотрение таких уравнений состояния, но все же дадим некоторое представление о них.

Предположим, что молекулы газа являются абсолютно упругими твердыми шариками, столь малыми, что их общим объемом можно пренебречь по сравнению с объемом, занимаемым газом. Предположим также, что между молекулами не существует никаких притягивающих или отталкивающих сил и что они движутся совершенно хаотически, сталкиваясь случайно друг с другом и со стенками сосуда. Если применить к этой модели газа элементарную классическую механику, то мы получим соотношение pV = RT, не прибегая к каким-либо обобщениям опытных данных типа законов Бойля - Мариотта и Шарля - Гей-Люсса-ка. Иначе говоря, газ, который мы назвали «идеальным», ведет себя так, как должен был бы вести себя газ, состоящий из очень маленьких твердых шариков, взаимодействующих друг с другом только в момент столкновений. Давление, оказываемое таким газом на любую поверхность, равно просто средней величине импульса, передаваемой за единицу времени молекулами единице поверхности при столкновении с ней. Когда молекула массой m налетает на поверхность, имея перпендикулярную поверхности компоненту скорости , и отражается с компонентой скорости , то результирующий импульс, переданный поверхности, согласно законам механики, равен Эти скорости довольно высоки (несколько сотен метров в секунду для воздуха при нормальных условиях), поэтому время столкновения очень мало и передача импульса происходит почти мгновенно. Но столкновения столь многочисленны (порядка 1023 на 1 см2 в 1 с в воздухе при атмосферном давлении), что при измерении любым прибором давление оказывается абсолютно постоянным во времени и непрерывным.

Действительно, большинство прямых измерений и наблюдений показывает, что газы являются непрерывной средой. Вывод о том, что они должны состоять из большого числа отдельных молекул, является чисто умозрительным.

Мы знаем из опыта, что реальные газы не подчиняются правилам поведения, предсказываемым только что описанной идеальной моделью. При достаточно низких температурах и достаточно высоких давлениях любой газ конденсируется в жидкое или твердое состояния, которые по сравнению с газом можно считать несжимаемыми. Таким образом, общим объемом молекул не всегда можно пренебречь по сравнению с объемом сосуда. Ясно также, что между молекулами существуют силы притяжения, которые при достаточно низких температурах могут связывать молекулы, приводя к образованию конденсированной формы вещества. Эти соображения наводят на мысль, что один из способов получения уравнения состояния, более общего, чем уравнение состояния идеального газа, заключается в учете конечного объема реальных молекул и сил притяжения между ними.

Учет молекулярного объема не представляет сложности, по крайней мере на качественном уровне. Примем просто, что свободный объем, доступный для движения молекул, меньше полного объема газа V на величину 6, которая связана с размером молекул и иногда называется связанным объемом. Таким образом, мы должны заменить V в уравнении состояния идеального газа на (V - b); тогда получаем

Это соотношение иногда называют уравнением состояния Клаузиуса в честь немецкого физика Рудольфа Клаузиуса, который сыграл большую роль в развитии термодинамики. Мы узнаем больше о его работах в следующей главе. Заметим, что уравнение (5) написано для 1 моль газа. Для n моль нужно записать p(V-nb) = nRT.

Учесть силы притяжения между молекулами несколько труднее. Молекула, находящаяся в центре объема газа, т. е. далеко от стенок сосуда, будет «видеть» одинаковое число молекул во всех направлениях. Следовательно, силы притяжения одинаковы во всех направлениях и уравновешивают друг друга, так что никакой результирующей силы не возникает. Когда молекула приближается к стенке сосуда, то она «видит» больше молекул позади себя, чем перед собой. В результате возникает сила притяжения, направленная к центру сосуда. Движение молекулы несколько сдерживается, и она ударяется о стенку сосуда менее сильно, чем в случае отсутствия сил притяжения.

Поскольку давление газа обусловлено передачей импульса молекулами, сталкивающимися со стенками сосуда (или с любой другой поверхностью, расположенной внутри газа), давление, создаваемое притягивающимися молекулами, оказывается несколько меньше, чем давление, создаваемое теми же молекулами в отсутствие притяжения. Оказывается, что уменьшение давления пропорционально квадрату плотности газа. Поэтому мы можем написать

где p - плотность в молях на единицу объема, - давление, создаваемое идеальным газом непритягивающихся молекул, и а - коэффициент пропорциональности, характеризующий величину сил притяжения между молекулами данного сорта. Вспомним, что , где n - число молей. Тогда соотношение (б) можно переписать для 1 моль газа в несколько ином виде:

где а имеет характерное значение для данного вида газа. Правая часть уравнения (7) представляет собой «исправленное» давление идеального газа, которым нужно заменить p в уравнении Если мы учтем обе поправки, одну за счет объема в соответствии с (б) и другую за счет сил притяжения согласно (7), то получим для 1 моль газа

Это уравнение впервые было предложено голландским физиком Д. Ван-дер-Ваальсом в 1873 г. Для n моль оно принимает вид

Уравнение Ван-дер-Ваальса учитывает в простой и наглядной форме два эффекта, которые обусловливают отклонения поведения реальных газов от идеального. Очевидно, что поверхность, представляющая уравнение состояния Ван-дер-Ваальса в пространстве p, V, Ту не может быть такой простой, как поверхность, соответствующая идеальному газу. Часть такой поверхности для конкретных значений а и b показана на рис. 3.7. Изотермы изображены сплошными линиями. Изотермы, отвечающие температурам выше температуры которой соответствует так называемая критическая изотерма, не имеют минимумов и перегибов и выглядят подобно изотермам идеального газа, показанным на рис. 3.6. При температурах ниже изотермы имеют максимумы и минимумы. При достаточно низких температурах существует область, в которой давление становится отрицательным, как показывают участки изотерм, изображенные штриховыми линиями. Эти горбы и провалы, а также область отрицательных давлений не соответствуют физическим эффектам, а просто отражают недостатки уравнения Ван-дер-Ваальса, его неспособность описать истинное равновесное поведение реальных веществ.

Рис. 3.7. Поверхность p - V - Т для газа, подчиняющегося уравнению Ван-дер-Ваальса .

На самом деле в реальных газах при температурах ниже и достаточно высоком давлении силы притяжения между молекулами приводят к конденсации газа в жидкое или твердое состояние. Таким образом, аномальной области пиков и провалов на изотермах в области отрицательного давления, которую предсказывает уравнение Ван-дер-Ваальса, в реальных веществах соответствует область смешанной фазы, в которой сосуществуют пар и жидкое или твердое состояние. Рис. 3.8 иллюстрирует эту ситуацию. Такое «разрывное» поведение вообще не может быть описано никаким сравнительно простым и «непрерывным» уравнением.

Несмотря на свои недостатки, уравнение Ван-дер-Ваальса полезно для описания поправок к уравнению идеального газа. Значения а и b для различных газов определены из экспериментальных данных, некоторые типичные примеры приведены в табл. 3.2. К сожалению, для любого конкретного газа не существует единственных значений а и b, которые обеспечили бы точное описание зависимости между p, V и Т в широком диапазоне с помощью уравнения Ван-дер-Ваальса.

Таблица 3.2. Характерные значения постоянных Ван-дер-Ваальса

Тем не менее значения, указанные в таблице, дают нам некоторую качественную информацию об ожидаемой величине отклонения от поведения идеального газа.

Поучительно рассмотреть конкретный пример и сравнить результаты, полученные с помощью уравнения идеального газа, уравнения Клаузиуса и уравнения Ван-дер-Ваальса с данными измерений. Рассмотрим 1 моль водяного пара в объеме 1384 см3 при температуре 500 К. Вспоминая, что (моль К), и используя значения из табл. 3.2, получаем

а) из уравнения состояния идеального газа:

б) из уравнения состояния Клаузиуса: атм;

в) из уравнения состояния Ван-дер-Ваальса:

г) из экспериментальных данных:

Для этих конкретных условий закон идеального газа дает завышенное примерно на 14% значение давления, уравнение

Рис. 3.8. Поверхность для вещества, которое сжимается при охлаждении. Поверхность, подобная этой, не может быть описана одним уравнением состояния и должна строиться на основании экспериментальных данных.

Клаузиуса дает еще большую ошибку - около 16%, а уравнение Ван-дер-Ваальса завышает давление примерно на 5%. Интересно, что уравнение Клаузиуса дает большую ошибку, чем уравнение идеального газа. Причина заключается в том, что поправка на конечный объем молекул увеличивает давление, а член, учитывающий притяжение, уменьшает его. Таким образом, эти поправки частично компенсируют друг друга. Закон идеального газа, в котором не учитывается ни та, ни другая поправка, дает более близкое к действительному значение давления, чем уравнение Клаузиуса, в котором учитывается только увеличение его за счет уменьшения свободного объема. При очень больших плотностях поправка, учитывающая объем молекул, становится намного более существенной и уравнение Клаузиуса оказывается более точным, чем уравнение идеального газа.

Вообще говоря, для реальных веществ мы не знаем явного соотношения между р, V, Т и п. Для большинства твердых тел и жидкостей нет даже грубых приближений. Тем не менее мы твердо уверены, что такое соотношение существует для каждого вещества и что вещество подчиняется ему.

Кусок алюминия будет занимать определенный объем, всегда в точности одинаковый, если температура и давление имеют заданные значения. Мы записываем это общее утверждение в математической форме:

Эта запись утверждает существование некоторого функционального соотношения между р, V, Т и n, которое может быть выражено уравнением. (Если все члены такого уравнения перенести налево, правая часть, очевидно, будет равна нулю.) Такое выражение называется неявным уравнением состояния. Оно означает существование некоторого соотношения между переменными. Оно говорит также, что мы не знаем, каково это соотношение, но вещество его «знает»! Рис. 3.8 позволяет нам представить себе, насколько сложным должно быть уравнение, которое описывало бы реальное вещество в широком диапазоне переменных. На этом рисунке изображена поверхность для реального вещества, которое сжимается при замерзании (так ведут себя почти все вещества, кроме воды). Мы недостаточно искусны, чтобы предсказать путем вычисления, какой объем займет вещество при произвольно заданных значениях р, T и n, но мы абсолютно уверены, что вещество «знает», какой объем ему занять. Эта уверенность всегда подтверждается экспериментальной проверкой. Вещество всегда ведет себя однозначным образом.

УРАВНЕНИЕ СОСТОЯНИЯ -уравнение, к-рое связывает давление р , объём V и абс. темп-ру Т физически однородной системы в состоянии термодинамического равновесия: f (p , V , Т ) = 0. Это ур-ние наз. термическим У. с., в отличие от калорического У. с., определяющего внутр. энергию U системы как ф-цию к--л. двух из трёх параметров р, V, Т . Термическое У. с. позволяет выразить давление через объём и темп-ру, p=p(V, Т) , и определить элементарную работу при бесконечно малом расширении системы . У. с. является необходимым дополнением к термодинамич. законам, к-рое делает возможным их применение к реальным веществам. Оно не может быть выведено с помощью одних только законов , а определяется из опыта или рассчитывается теоретически на основе представлений о строении вещества методами статистич. физики. Из первого начала термодинамики следует лишь существование калорич. У. с., а из второго начала термодинамики - связь между калорическим и термическим У. с.:


где а и b - постоянные, зависящие от природы газа и учитывающие влияние сил межмолекулярного притяжения и конечность объёма молекул; вириальное У. с. для неидеального газа:

где В (Т), С (Т), ... - 2-й, 3-й и т. д. вириальные коэф., зависящие от сил межмолекулярного взаимодействия. Вириальное У. с. позволяет объяснить многочисл. эксперим. результаты на основе простых моделей межмолекулярного взаимодействия в газах. Предложены также разл. эмпирич. У. с., основанные на эксперим. данных о теплоёмкости и сжимаемости газов. У. с. неидеальных газов указывают на существование критич. точки (с параметрами p к, V K , T к), в к-рой газообразная и жидкая фазы становятся идентичными. Если У. с. представить в виде приведённого У. с., то есть в безразмерных переменных р/р к, V /V K , Т/ Т к , то при не слишком низких темп-pax это ур-ние мало меняется для разл. веществ (закон соответственных состояний),

Для жидкостей из-за сложности учёта всех особенностей межмолекулярного взаимодействия пока не удалось получить общее теоретическое У. с. Ур-ние Ван-дер-Ваальса и его модификации, хотя и применяют для качеств, оценки поведения жидкостей, но по существу оно неприменимо ниже критич. точки, когда возможно сосуществование жидкой и газообразной фаз. У. с., хорошо описывающее свойства ряда простых жидкостей, можно получить из приближённых теорий жидкости. Зная распределение вероятностей взаимного расположения молекул (парной кор-реляц. ф-ции; см. Жидкость ),можно в принципе вычислить У. с. жидкости, однако эта задача сложна и полностью не решена даже с помощью ЭВМ.

Для получения У. с. твёрдых тел используют теорию колебаний кристаллической решётки , однако универсальное У. с. для твёрдых тел не получено.

Для (фотонного газа) У. с. определяется