Энциклопедия что такое кто статья электростанция. Рассказ об электричестве детям. Книга - знание, знание -сила, сила знания - ток в деревне

Электрическая станция - совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории.

Существует множество типов электростанций. Отличия заключаются в технических особенностях и исполнении, а также в виде используемого источника энергии. Но несмотря на все различия большинство электростанций используют для своей работы энергию вращения вала генератора.

Станции разных типов объединены в Единую энергетическую систему, позволяющую рационально использовать их мощности, снабжать всех потребителей.

Основное оборудование электростанций

К основному оборудованию электростанций можно отнести:

  • генераторы;
  • турбины;
  • котлы;
  • трансформаторы;
  • распределительные устройства;
  • двигатели;
  • выключатели;
  • разъединители;
  • линии электропередач;
  • средства автоматики и релейной защиты

Энергосистемы

Энергосистемы - совокупность энергетических ресурсов всех видов, методов и средств их получения, преобразования, распределения и использования, обеспечивающих снабжение потребителей всеми видами энергии.

Что входит в энергосистему

В энергосистемы входят:

  • электроэнергетическая система;
  • система нефте- и газоснабжения;
  • система угольной промышленности;
  • ядерная энергетика;
  • нетрадиционная энергетика.

Обычно все эти системы объединяются в масштабах страны в единую энергетическую систему, в масштабах нескольких районов - в объединённые энергосистемы. Объединение отдельных энергоснабжающих систем в единую систему также называют межотраслевым топливно-энергетическим комплексом, оно обусловлено прежде всего взаимозаменяемостью различных видов энергии и энергоресурсов

Часто под энергосистемой в более узком смысле понимают совокупность электростанций, электрических и тепловых сетей, которые соединёны между собой и связаны общими режимами непрерывных производственных процессов преобразования, передачи и распределения электрической и тепловой энергии, что позволяет осуществлять централизованное управление такой системой.

В современном мире снабжение потребителей электроэнергией производится от электростанций, которые могут находиться вблизи потребителей или могут быть удалены от них на значительные расстояния. В обоих случаях передача электроэнергии осуществляется по линиям электропередачи. Однако в случае удалённости потребителей от электростанции передачу приходится осуществлять на повышенном напряжении, а между ними сооружать повышающие и понижающие подстанции. Через эти подстанции с помощью электрических линий электростанции связывают друг с другом для параллельной работы на общую нагрузку, также через тепловые пункты с помощью теплопроводов, только на гораздо меньших расстояниях связывают между собой ТЭЦ и котельные.

Совокупность всех этих элементов называют энергосистемой, при таком объединении возникают существенные технико-экономические преимущества:

  • существенное снижение стоимости электро- и теплоэнергии;
  • значительное повышение надёжности электро- и теплоснабжения потребителей;
  • повышение экономичности работы различных типов электростанций;
  • снижение необходимой резервной мощности электростанций.

Энергетика

Энергетика - область общественного производства, охватывающая энергетические ресурсы, выработку, преобразование, передачу и использование различных видов энергии. Энергетика каждого государства функционирует в рамках созданных соответствующих энергосистем.

Её целью является обеспечение производства энергии путём преобразования первичной, природной, энергии во вторичную, например в электрическую или тепловую энергию. При этом производство энергии чаще всего происходит в несколько стадий:

  • получение и концентрация энергетических ресурсов, примером может послужить добыча, переработка и обогащение ядерного топлива;
  • передача ресурсов к энергетическим установкам, например доставка мазута на тепловую электростанцию;
  • преобразование с помощью электростанций первичной энергии во вторичную, например химической энергии угля в электрическую и тепловую энергию;
  • передача вторичной энергии потребителям, например по линиям электропередачи.

Энергетика как наука, в соответствии с номенклатурой специальностей научных работников, утверждённой Министерством образования и науки Российской Федерации, включает следующие научные специальности:

  • Энергетические системы и комплексы;
  • Электрические станции и электроэнергетические системы;
  • Ядерные энергетические установки;
  • Промышленная теплоэнергетика;
  • Энергоустановки на основе возобновляемых видов энергии;
  • Техника высоких напряжений;
  • Тепловые электрические станции, их энергетические системы и агрегаты.

Электроэнергетика

Электроэнергетика - это подсистема энергетики, охватывающая производство электроэнергии на электростанциях и её доставку потребителям по линии электропередачи. Центральными её элементами являются электростанции, которые принято классифицировать по виду используемой первичной энергии и виду применяемых для этого преобразователей. Необходимо отметить, что преобладание того или иного вида электростанций в определённом государстве зависит в первую очередь от наличия соответствующих ресурсов.

Электроэнергетику принято делить натрадиционную и нетрадиционную.

Традиционная электроэнергетика

Характерной чертой традиционной электроэнергетики является её давняя и хорошая освоенность, она прошла длительную проверку в разнообразных условиях эксплуатации. Основную долю электроэнергии во всём мире получают именно на традиционных электростанциях, их единична электрическая мощность очень часто превышает 1000 Мвт. Традиционная электроэнергетика делится на несколько направлений.

Тепловая энергетика (теплоэнергетика)

В этой отрасли производство электроэнергии производится на тепловых электростанциях (ТЭС), использующих для этого химическую энергию органического топлива.

Тепловые электростанции делятся на:

  • Паротурбинные электростанции, на которых энергия преобразуется с помощью паротурбинной установки;
  • Газотурбинные электростанции, на которых энергия преобразуется с помощью газотурбинной установки;
  • Парогазовые электростанции, на которых энергия преобразуется с помощью парогазовой установки.

Теплоэнергетика в мировом масштабе преобладает среди традиционных видов, на базе нефти вырабатывается 39% всей электроэнергии мира, на базе угля - 27%, газа - 24%, то есть всего 90% от общей выработки всех электростанций мира. Энергетика таких стран мира, как Польша и ЮАР практически полностью основана на использовании угля, а Нидерландов - газа. Очень велика доля теплоэнергетики в Китае, Австралии, Мексике.

Гидроэнергетика

В этой отрасли электроэнергия производится на гидроэлектростанциях (ГЭС), использующих для этого энергию водного потока.

ГЭС преобладает в ряде стран - в Норвегии и Бразилии вся выработка электроэнергии происходит на них. Список стран, в которых доля выработки ГЭС превышает 70 %, включает несколько десятков.

Ядерная энергетика

Отрасль, в которой электроэнергия производится на атомных электростанциях (АЭС), использующих для этого энергию управляемой цепной ядерной реакции, чаще всего урана и плутония.

По доле АЭС в выработке электроэнергии первенствует Франция, около 80 %. Преобладает она также в Бельгии, Республике Корея и некоторых других странах. Мировыми лидерами по производству электроэнергии на АЭС являются США, Франция и Япония.

Нетрадиционная электроэнергетика (Альтернативная энергетика)

Большинство направлений нетрадиционной электроэнергетики основаны на вполне традиционных принципах, но первичной энергией в них служат либо источники локального значения, например ветряные, геотермальные, либо источники находящиеся в стадии освоения, например топливные элементы или источники, которые могут найти применение в перспективе, например термоядерная энергетика. Характерными чертами нетрадиционной энергетики являются их экологическая чистота, чрезвычайно большие затраты на капитальное строительство (например для солнечной электростанции мощностью 1000 Мвт требуется покрыть весьма дорогостоящими зеркалами площадь около 4-х км²) и малая единичная мощность.

Направления нетрадиционной энергетики:

  • Малые гидроэлектростанции
  • Ветровая энергетика
  • Геотермальная энергетика
  • Солнечная энергетика
  • Биоэнергетика
  • Установки на топливных элементах
  • Водородная энергетика
  • Термоядерная энергетика.

Также можно выделить важное из-за своей массовости понятие - малая энергетика, этот термин не является в настоящее время общепринятым, наряду с ним употребляются термины локальная энергетика, распределённая энергетика, автономная энергетика и др. Чаще всего так называют электростанции мощностью до 30 МВт с агрегатами единичной мощностью до 10 МВт. К ним можно отнести как экологичные виды энергетики, перечисленные выше, так и малые электростанции на органическом топливе, такие как дизельные электростанции (среди малых электростанций их подавляющее большинство, например в России - примерно 96 %), газопоршневые электростанции, газотурбинные установки малой мощности на дизельном и газовом топливе.

Электрические сети

Электрическая сеть - совокупность подстанций, распределительных устройств и соединяющих их линий электропередачи, предназначенная для передачи и распределения электрической энергии. Электрическая сеть обеспечивает возможность выдачи мощности электростанций, её передачи на расстояние, преобразование параметров электроэнергии (напряжения, тока) на подстанциях и её распределение по территории вплоть до непосредственных электроприёмников.

Электрические сети современных энергосистем являются многоступенчатыми, то есть электроэнергия претерпевает большое количество трансформаций на пути от источников электроэнергии к её потребителям. Также для современных электрических сетей характерна многорежимность, под чем понимается разнообразие загрузки элементов сети в суточном и годовом разрезе, а также обилие режимов, возникающих при выводе различных элементов сети в плановый ремонт и при их аварийных отключениях. Эти и другие характерные черты современных электросетей делают их структуры и конфигурации весьма сложными и разнообразными.

Теплоснабжение

Жизнь современного человека связана с широким использованием не только электрической, но и тепловой энергии. Для того, чтобы человек чувствовал себя комфортно дома, на работе, в любом общественном месте, все помещения должны отапливаться и снабжаться горячей водой для бытовых целей. Так как это напрямую связано со здоровьем человека, в развитых государствах пригодные температурные условия в различного рода помещениях регламентируются санитарными правилами и стандартами. Такие условия могут быть реализованы в большинстве стран мира только при постоянном подводе к объекту отопления (теплоприёмнику) определённого количества тепла, которое зависит от температуры наружного воздуха, для чего чаще всего используется горячая вода с конечной температурой у потребителей около 80-90°C. Также для различных технологических процессов промышленных предприятий может требоваться так называемый производственный пар с давлением 1-3 МПа.

В общем случае снабжение любого объекта теплом обеспечивается системой, состоящей из:

  • источника тепла, например котельной;
  • тепловой сети, например из трубопроводов горячей воды или пара;
  • теплоприёмника, например батареи водяного отопления.

Централизованное теплоснабжение

Характерной чертой централизованного теплоснабжения является наличие разветвлённой тепловой сети, от которой питаются многочисленные потребители (заводы, здания, жилые помещения и пр.).

Для централизованного теплоснабжения используются два вида источников:

  • Теплоэлектроцентрали (ТЭЦ), которые также могут вырабатывать и электроэнергию;
  • Котельные, которые делятся на:
    • Водогрейные;
    • Паровые.

Децентрализованное теплоснабжение

Систему теплоснабжения называют децентрализованной, если источник теплоты и теплоприёмник практически совмещены, то есть тепловая сеть или очень маленькая, или отсутствует. Такое теплоснабжение может быть индивидуальным, когда в каждом помещении используются отдельные отопительные приборы, например электрические, или местным, например обогрев здания с помощью собственной малой котельной. Обычно теплопроизводительность таких котельных не превышает 1 Гкал/ч (1,163 МВт). Мощность тепловых источников индивидуального теплоснабжения обычно совсем невелика и определяется потребностями их владельцев.

Виды децентрализованного отопления:

  • Малыми котельными;
  • Электрическое, которое делится на:
    • Прямое;
    • Аккумуляционное;
  • Теплонасосное;
  • Печное.

Тепловые сети

Тепловая сеть - это сложное инженерно-строительное сооружение, служащее для транспорта тепла с помощью теплоносителя, воды или пара, от источника, ТЭЦ или котельной, к тепловым потребителям.

От коллекторов прямой сетевой воды с помощью магистральных теплопроводов горячая вода подаётся в населённые пункты. Магистральные теплопроводы имеют ответвления, к которым присоединяется разводка к тепловым пунктам, в которых находится теплообменное оборудование с регуляторами, обеспечивающими снабжение потребителей тепла и горячей воды. Тепловые магистрали соседних ТЭЦ и котельных для повышения надёжности теплоснабжения соединяют перемычками с запорной арматурой, которые позволяют обеспечить бесперебойное теплоснабжение даже при авариях и ремонтах отдельных участков тепловых сетей и источников теплоснабжения. Таким образом, тепловая сеть любого города является сложнейшим комплексом теплопроводов, источников тепла и его потребителей.

Энергетическое топливо

Так как большинство из традиционных электростанций и источников теплоснабжения выделяют энергию из невозобновляемых ресурсов, вопросы добычи, переработки и доставки топлива чрезвычайно важны в энергетике. В традиционной энергетике используются два принципиально отличных друг от друга видов топлива.

Органическое топливо

В зависимости от агрегатного состояния органическое топливо делится на газообразное, жидкое и твёрдое, каждое из них в свою очередь делится на естественное и искусственное. Доля такового топлива в мировом энергобалансе составляла в 2000 году около 65%, из которых 39% приходились на уголь, 16% на природный газ, 9% на жидкое топливо(2000г). В 2010 году по данным BP доля ископаемого органического топлива 87%, в том числе: нефть 33,6%, уголь 29,6% газ 23,8%. Tо же по данным «Renewable21» 80,6%, не считая традиционной биомассы 8,5%.

Газообразное

Естественным топливом является природный газ, искусственным:

  • Генераторный газ;
  • Коксовый газ;
  • Доменный газ;
  • Продукты перегонки нефти;
  • Газ подземной газификации;
  • Синтез-газ.

Жидкое

Естественным топливом является нефть, искусственным называют продукты его перегонки:

  • Бензин;
  • Керосин;
  • Соляровое масло;
  • Мазут.

Твёрдое

Естественным топливом являются:

Ископаемое топливо:

  • Торф;
  • Бурый уголь;
  • Каменный уголь;
  • Антрацит;
  • Горючий сланец;

Растительное топливо:

  • Дрова;
  • Древесные отходы;
  • Топливные брикеты;
  • Топливные гранулы.

Искусственным твёрдым топливом являются:

  • Древесный уголь;
  • Кокс и полукокс;
  • Углебрикеты;
  • Отходы углеобогащения.

Ядерное топливо

В использовании ядерного топлива вместо органического состоит главное и принципиальное отличие АЭС от ТЭС.

Ядерное топливо получают из природного урана, который добывают:

  • В шахтах (Франция, Нигер, ЮАР);
  • В открытых карьерах (Австралия, Намибия);
  • Способом подземного выщелачивания (США, Канада, Россия).

Для использования на АЭС требуется обогащение урана, поэтому его после добычи отправляют на обогатительный завод, после переработки на котором 90% побочного обеднённого урана направляется на хранение, а 10% обогащается до нескольких процентов (3-5% для энергетических реакторов). Обогащённый диоксид урана направляется на специальный завод, где из него изготавливают цилиндрические таблетки, которые помещают в герметичные циркониевые трубки длиной почти 4 м, ТВЭЛы (тепловыделяющие элементы). По нескольку сотен ТВЭЛов для удобства использования объединяют в ТВС, тепловыделяющие сборки.



Электростанция

электрическая станция, совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории. В зависимости от источника энергии различают тепловые электростанции (См. Тепловая электростанция), гидроэлектрические станции (См. Гидроэлектрическая станция), гидроаккумулирующие электростанции (См. Гидроаккумулирующая электростанция), атомные электростанции (См. Атомная электростанция), а также приливные электростанции (См. Приливная электростанция), ветроэлектростанции (См. Ветроэлектрическая станция), геотермические электростанции (См. Геотермическая электростанция) и Э. с магнитогидродинамическим генератором (См. Магнитогидродинамический генератор).

Тепловые Э. (ТЭС) являются основой электроэнергетики (См. Электроэнергетика); они вырабатывают электроэнергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. По виду энергетического оборудования ТЭС подразделяют на паротурбинные, газотурбинные и дизельные Э.

Основное энергетическое оборудование современных тепловых паротурбинных Э. составляют Котлоагрегат ы, паровые турбины (См. Паровая турбина), Турбогенератор ы, а также пароперегреватели, питательные, конденсатные и циркуляционные насосы, Конденсатор ы, воздухоподогреватели, электрические распределительные устройства (См. Распределительное устройство). Паротурбинные Э. подразделяются на конденсационные электростанции (См. Конденсационная электростанция) и теплоэлектроцентрали (См. Теплоэлектроцентраль) (теплофикационные Э.).

На конденсационных Э. (КЭС) тепло, полученное при сжигании топлива, передаётся в парогенераторе водяному пару, который поступает в конденсационную турбину (См. Конденсационная турбина), внутренняя энергия пара преобразуется в турбине в механическую энергию и затем электрическим генератором в Электрический ток . Отработанный пар отводится в конденсатор, откуда конденсат пара перекачивается насосами обратно в парогенератор. КЭС, работающие в энергосистемах СССР, называются также ГРЭС .

В отличие от КЭС на теплоэлектроцентралях (ТЭЦ) перегретый пар не полностью используется в турбинах, а частично отбирается для нужд теплофикации. Комбинированное использование тепла значительно повышает экономичность тепловых Э. и существенно снижает стоимость 1 квт ·ч вырабатываемой ими электроэнергии.

В 50-70-х гг. в электроэнергетике появились электроэнергетические установки с газовыми турбинами (См. Газовая турбина). Газотурбинные установки в 25-100 Мвт используются в качестве резервных источников энергии для покрытия нагрузок в часы «пик» или в случае возникновения в энергосистемах аварийных ситуаций. Перспективно применение комбинированных парогазовых установок (ПГУ), в которых продукты сгорания и нагретый воздух поступают в газовую турбину, а тепло отработанных газов используется для подогрева воды или выработки пара для паровой турбины низкого давления.

Дизельной Э. называется энергетическая установка, оборудованная одним или несколькими электрическими генераторами с приводом от дизелей (См. Дизель). На стационарных дизельных Э. устанавливаются 4-тактныс дизель-агрегаты мощностью от 110 до 750 Мвт; стационарные дизельные Э. и Энергопоезд а (по эксплуатационным характеристикам они относятся к стационарным Э.) оснащаются несколькими дизельагрегатами и имеют мощность до 10 Мвт. Передвижные дизельные Э. мощностью 25-150 квт размещаются обычно в кузове автомобиля (полуприцепа) или на отдельных шасси либо на ж.-д. платформе, в вагоне. Дизельные Э. используются в сельском хозяйстве, в лесной промышленности, в поисковых партиях и т. п. в качестве основного, резервного или аварийного источника электропитания силовых и осветительных сетей. На транспорте дизельные Э. применяются как основные энергетические установки (дизель-электровозы, дизель-электроходы).

Гидроэлектрическая станция (ГЭС) вырабатывает электроэнергию в результате преобразования энергии потока воды. В состав ГЭС входят гидротехнические сооружения (Плотина , водоводы, водозаборы и пр.), обеспечивающие необходимую концентрацию потока воды и создание Напор а, и энергетическое оборудование (гидротурбины (См. Гидротурбина), Гидрогенератор ы, распределительные устройства и т. п.). Сконцентрированный, направленный поток воды вращает гидротурбину и соединённый с ней электрический генератор.

По схеме использования водных ресурсов и концентрации напоров ГЭС обычно подразделяют на русловые, приплотинные, деривационные, гидроаккумулирующие и приливные. Русловые и приплотинные ГЭС сооружают как на равнинных многоводных реках, так и на горных реках, в узких долинах. Напор воды создаётся плотиной, перегораживающей реку и поднимающей уровень воды верхнего бьефа. В русловых ГЭС здание Э. с размещенными в нём гидроагрегатами является частью плотины. В деривационных ГЭС вода реки отводится из речного русла по водоводу (деривации (См. Деривация)), имеющему уклон, меньший, чем средний уклон реки на используемом участке; деривация подводится к зданию ГЭС, где вода поступает на гидротурбины. Отработавшая вода либо возвращается в реку, либо подводится к следующей деривационной ГЭС. Деривационные ГЭС сооружают главным образом на реках с большим уклоном русла и, как правило, по совмещенной схеме концентрации потока (плотина и деривация совместно).

Гидроаккумулирующая Э. (ГАЭС) работает в двух режимах: аккумулирования (энергия, получаемая от других Э., главным образом в ночные часы, используется для перекачки воды из нижнего водоёма в верхний) и генерирования (вода из верхнего водоёма по трубопроводу направляется к гидроагрегатам; вырабатываемая электроэнергия отдаётся в энергосистему). Наиболее экономичны мощные ГАЭС, сооружаемые вблизи крупных центров потребления электроэнергии; их основное назначение - покрывать пики нагрузки, когда мощности энергосистемы использованы полностью, и потреблять излишки электроэнергии в то время суток, когда другие Э. оказываются недогруженными.

Приливные Э. (ПЭС) вырабатывают электроэнергию в результате преобразования энергии морских приливов. Электроэнергия ПЭС из-за периодического характера приливов и отливов может быть использована лишь совместно с энергией др. Э. энергосистемы, которые восполняют дефицит мощности ПЭС в пределах суток и месяца.

Источником энергии на атомной Э. (АЭС) служит Ядерный реактор , где энергия выделяется (в виде тепла) вследствие цепной реакции деления ядер тяжёлых элементов. Выделившееся в ядерном реакторе тепло переносится теплоносителем, который поступает в теплообменник (парогенератор); образующийся пар используется так же, как на обычных паротурбинных Э. Существующие способы и методы дозиметрического контроля полностью исключают опасность радиоактивного облучения персонала АЭС.

Ветроэлектростанция вырабатывает электроэнергию в результате преобразования энергии ветра. Основное оборудование станции - ветродвигатель и электрический генератор. Ветровые Э. сооружают преимущественно в районах с устойчивым ветровым режимом.

Геотермическая Э. - паротурбинная Э., использующая глубинное тепло Земли. В вулканических районах термальные глубинные воды нагреваются до температуры свыше 100°С на сравнительно небольшой глубине, откуда они по трещинам в земной коре выходят на поверхность. На геотермических Э. пароводяная смесь выводится по буровым скважинам и направляется в сепаратор, где пар отделяется от воды; пар поступает в турбины, а горячая вода после химической очистки используется для нужд теплофикации. Отсутствие на геотермических Э. котлоагрегатов, топливоподачи, золоуловителей и т. п. снижает затраты на строительство такой Э. и упрощает её эксплуатацию.

Э. с магнитогидродинамическим генератором (МГД-генератор) - установка для выработки электроэнергии прямым преобразованием внутренней энергии электропроводящей среды (жидкости или газа).

В. А. Прокудин.

Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Электростанция" в других словарях:

    Электростанция … Орфографический словарь-справочник

Электроста́нция - электрическая станция, совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории. Рассмотрим как работает ТЭЦ.

ТЭЦ - сокращенное от теплоэлектроцентраль - это разновидность тепловой станции, которая производит не только электроэнергию, но и является источником тепла, в виде пара или горячей воды.

Итак, все начинается с воды. Поскольку вода (и пар, как её производное) на ТЭЦ является основным теплоносителем, перед тем как она попадет в котел, её необходимо предварительно подготовить.

Для того, что бы в котлах не образовывалась накипь, на первом этапе, воду необходимо умягчить, а на втором, очистить её от всевозможных примесей и включений.

Происходит все это на территории химического цеха, в котором расположены специальные емкости и сосуды. Вода перекачивается огромными насосами. Полученную здесь воду, в дальнейшем мы будем называть "Чистой Водой".

В качестве топлива используют газ, мазут или уголь. Топливо и вода поступают в Котлотурбинный цех. Состоит он из двух отделений. В первом находятся котлы, каждый высотой с двенадцатиэтажный дом. Всего на ТЭЦ их пять штук. Это сердце ТЭЦ, и здесь происходит основное действие. Газ, поступающий в котел, сгорает, выделяя огромное количество энергии. Сюда же подается "Чистая вода". После нагрева она превращается в пар, точнее в перегретый пар, имеющий температуру на выходе 560 градусов, а давление 140 атмосфер. Мы тоже назовем его "Чистый пар", потому что он образован из подготовленной воды.

Кроме пара, на выходе мы еще имеем выхлоп. На максимальной мощности, все пять котлов потребляют почти 60 кубометров природного газа в секунду! Что бы вывести продукты сгорания нужна большая "дымовая" труба. И такая тоже имеется. В втором отделении котлотурбинного цеха находятся установки, вырабатывающие электроэнергию. В машинном зале ТЭЦ их установлено четыре штуки, общей мощностью 460 МВт (мегаватт). Именно сюда подается перегретый пар из котельного отделения. Он, под огромным давлением направляется на лопатки турбины, заставляя вращаться тридцатитонный ротор, со скоростью 3000 оборотов в минуту.

Установка состоит из двух частей: собственно сама турбина, и генератор, вырабатывающий электроэнергию. После котлотурбинного цеха, электроэнергию подается для преобразования в трансформатор и далее на линии электропередачи, а частично остывший и потерявший часть давления пар отпускать на сторону невыгодно. Так как он образован из "Чистой воды", производство которой довольно сложный и затратный процесс, его целесообразней охладить и вернуть обратно в котел. И так по замкнутому кругу. Зато с его помощью, и с помощью теплообменников можно нагреть воду или произвести вторичный пар, которые спокойно продавать сторонним потребителям.

Вот таким образом, мы с вами получаем тепло и электричество в свои дома, имея привычный комфорт и уют.

Днем и ночью бежит по проводам электрический ток. Он необходим на заводе и на животноводческой ферме, в поезде и в квартире, на телефонной станции и в магазине. Везде вы встре- тите электродвигатели, электроприборы или просто электрическую лампочку.
Откуда же берется электрическая энергия? Ее вырабатывают на элект- ростанциях специальные машины - генераторы электрического тока. Разные бывают генераторы. И очень маленькие, энергии которых хватает только для освещения небольшой комнаты. И генераторы-гиганты, которые могут дать электроэнергию большому городу.
Чтобы генератор давал электрический ток, его надо вращать. Конечно, не весь генератор, а только его часть - ротор. У больших генераторов ротор весит сотни тонн, и вращает его особая машина - турбина.
У каждой турбины есть рабочее колесо с лопатками, или лопастями. Струя пара, раскаленного газа или воды с силой бьет по лопастям рабочего колеса турбины и заставляет ее вращаться, а вместе с турбиной - и ротор генератора.
Если турбину вращает струя воды, то такая турбина называется гидрав- лической, а электростанция, на которой установлены такие турбины, - гидроэлектростанцией или сокращенно ГЭС. На тепловой электростанции (ТЭС) турбину вращает пар, а на газотурбинной - струя раскаленных газов.
Гидроэлектростанции обычно строят на больших, полноводных реках, таких, как Волга, Днепр, Енисей, или же на горных реках (например, на реке Вахш построена Нурекская ГЭС). Здание ГЭС, плотина, судоходные каналы - это сложные и дорогие сооружения. Для ТЭС не нужны плотины и водохранилища, строить их можно везде. Но ТЭС постоянно нуждаются в топливе, чтобы можно было нагревать воду и получать пар. И идут один за другим поезда - везут на ТЭС уголь, мазут; днем и ночью гонят газ по трубам специальные вентиляторы- компрессоры.
А вот для атомной электростанции (АЭС) топлива требуется совсем не- много. Но топливо это особое. Всего 10 граммов атомного топлива заменяют целый вагон угля. Так же как на тепловой, на атомной электростанции" электрогенераторы вращаются паро- выми турбинами. Но ни угольной, ни газовой топки, ни парового котла там нет. Тепло, которое используют для получения пара, выделяется в атомном реакторе - сердце АЭС - в результате ядерной реакции. Ядерную реакцию можно сравнить с небольшими непрерывно повторяющимися атомными взрывами. Но это мирные взрывы. Реактор надежно закрыт толстыми бетонными стенами. Ядерную реакцию непрерывно контролируют автоматические приборы. Если потребуется, ее можно быстро остановить.
Ученые и инженеры ищут новые источники электроэнергии. Нельзя ли, например, заставить работать морские приливы и отливы? Заставить море вращать гидротурбины электростанции? Оказывается, можно. И такие электростанции - их называют приливными или ПЭС - уже работают.
Миллиарды лет щедрое Солнце посылает свои лучи на Землю. Солнечный свет - это тоже энергия. И люди научились превращать ее в электрический ток. Для этого созданы специальные приборы на полупроводниках - фотоэлементы. Собранные вместе, они образуют так называемые солнечные батареи. Солнечные батареи пока еще дороги, и на Земле их используют редко. Зато именно они дают электроэнергию космическим кораблям и искусственным спутникам Земли.

Кто из вас когда-нибудь видел ветер?

Но мы знаем - ветер существует. Ведь мы видим, как он качает деревья, как несет сорванные листья и ветки, как гонит волны. И мы научились запрягать этого невидимку. Ветер надувает паруса наших кораблей. Ветер крутит крылья мельниц и ветряных двигателей.

Ну, а кто видел электричество?

Его тоже никто не видел.

Но мы хорошо знаем, что оно существует. Ведь мы видим, как ярко светят электрические лампы, как быстро мчатся троллейбусы и трамваи, как жарко греют электрические печи, как хорошо работают станки и машины с электрическими двигателями.

Только не всегда было так. Двести лет назад об электричестве знали немногие ученые люди. И знали совсем не то, что знаем мы. Если бы спросили у тогдашнего ученого, что такое электричество, он ничего бы не сказал ни о ярких лампах, ни о жарких электрических печах, ни о могучих двигателях.

Электричество,- сказал бы старый ученый,- это таинственная жидкость, незримая и невесомая. Электричество появляется в янтаре, натертом кошачьей шкуркой, и в грозовых облаках. Под его действием могут плясать маленькие клочки бумаги и шарики из бузинной мякоти. Электричество заставляет вздрагивать лягушачью ножку и рождает грозную молнию. В 1753 году в России ученые Михаил Ломоносов и Георг Рихман построили «громовую машину» и улавливали электричество из воздуха на шест с железным острием. Но однажды в шест ударила молния, и Георг Рихман был убит… Бойтесь электричества: оно загадочно, капризно и очень опасно!

Но многих передовых ученых того времени не устрашила трагическая смерть Рихмана. Вслед за Ломоносовым и Рихманом принялись они исследовать электричество. Итальянец Алессандро Вольта изобрел первую электрическую батарею. Француз Андре-Мари Ампер исследовал законы электрического тока. Немец Георг Фридрих Ом разгадал тайну сопротивления проводников. Ослепительно вспыхнула электрическая дуга русского академика Василия Петрова. В неистовом пламени этой дуги англичанин Гэмфри Дэви получил новые, неизвестные металлы: натрий, калий, кальций. Датчанин Ганс Эрстед открыл магнитное действие электрического тока. Наконец, Борис Семенович Якоби, сын прусского купца, профессор архитектуры в Юрьеве, изобрел первый электродвигатель.

Так электричество перестало быть таинственной жидкостью и сделалось новым видом энергии. Из тихих лабораторий ученых эта новая энергия начала все смелее проникать в жизнь.

Сейчас электрическая энергия - наш неизменный друг и помощник в любом деле. Механическая энергия не зажжет лампу. Тепловая энергия не побежит по проводам телефона и телеграфа. А электрическая энергия может делать все. И чем больше ее у нас, тем мы богаче, сильнее, тем быстрее движемся вперед.

Но где же взять много электрической энергии? Откуда она вообще берется?

Оказывается, энергия может переходить из одного вида в другой. В тепловом двигателе тепловая энергия переходит в механическую. А если тепловой двигатель будет вращать генератор электроэнергии, механическая энергия перейдет в электрическую. Генератор можно вращать и водяным двигателем, водяной турбиной. Тогда электрическая энергия получится за счет механической энергии текущей воды.

В нашей стране работает много тепловых электростанций. Они используют тепловую энергию 4 каменного угля, торфа, сланца, природного газа. Много и гидроэлектростанций. Они используют энергию рек. С каждым годом электростанций становится все больше. Но запасы топлива в недрах земли не бесконечны. Да и не везде они есть. Запасы энергии рек тоже не бесконечны. И не везде есть подходящие реки для строительства электростанций. Что же будет с нами дальше? Может быть, человечеству угрожает нехватка энергии, энергетический голод?

Нет, этого опасаться не приходится. В природе есть еще много могучих источников энергии. Мы до сих пор не используем внутреннее тепло Земли, тепло морей. Очень мало используется огромная энергия солнечных лучей, энергия приливов и отливов. Все эти виды энергии мы еще плохо умеем преобразовывать.

А энергия атома? Она впервые вырвалась на свободу с огромной, разрушительной силой. Но гораздо труднее оказалось использовать ее в мирных целях. В нашей стране была построена первая в мире атомная электростанция. Это огромное достижение советской науки и техники. Как работает эта станция? В ее реакторе атомная энергия превращается в тепловую. Тепло кипятит воду в котле и превращается в энергию пара. Пар дает механическую энергию. Он вращает турбину. И, наконец, турбина вращает генератор электрического тока. Механическая энергия превращается в электрическую.

Путь превращений получается очень длинным. Хорошо ли это?

Есть сказка о незадачливом старике, который пошел продавать лошадь. По дороге он сменял лошадь на корову, корову - на барана, барана- на утку, утку - на курицу, курицу - на яйцо, яйцо - на иголку. При каждом обмене старик что-то терял.

Примерно то же самое получается и при переходе энергии из одного вида в другой. В атомной электростанции не все тепло реактора переходит в энергию пара. Часть теряется на нагрев реактора, труб, стенок котла, воздуха, здания электростанции.

Не вся энергия пара превращается в механическую энергию. Часть теряется на нагрев турбины, часть уходит с отработанным паром.

Не вся механическая энергия турбины превращается в электрическую. Часть теряется на нагрев генератора. При каждом обмене - потери. Так недолго и до иголки доменяться.

Около 200 лет назад в Лондоне была построена первая паровая мельница. Тогда еще не успели изобрести паровую машину. Был только паровой насос. Он накачивал воду из реки в бассейн, устроенный на холме. А из бассейна вода лилась… на колесо обыкновенной водяной мельницы.

Конечно, потери энергии получались огромные. Но преобразовать энергию пара прямо во вращение тогда еще не умели.

Пока что и атомные электростанции- только первые шаги в завоевании нового вида энергии.

Ведутся опыты по прямому превращению атомной энергии в электрическую. Созданы атомные батареи. Правда, пока что потери энергии в них получаются больше, чем на атомной электростанции. Но ведь и это - первые шаги.

Пройдут годы - мы до конца овладеем могучей энергией атома. И тогда могуществу человека не будет границ!