Энтропия обозначается. Энтропия в термодинамике

Второй закон термодинамики устанавливает критерии необратимости термодинамических процессов. Известно много формулировок второго закона, которые эквивалентны друг другу. Мы приведем здесь только одну формулировку, связанную с энтропией.

Существует функция состояния - энтропия S , которая обладает следующим свойством: , (4.1) где знак равенства относится к обратимым процессам, а знак больше - к необратимым.

Для изолированных систем второй закон утверждает: dS і 0, (4.2) т.е. энтропия изолированных систем в необратимых процессах может только возрастать, а в состоянии термодинамического равновесия она достигает максимума (dS = 0,
d 2 S < 0).

Неравенство (4.1) называют неравенством Клаузиуса . Поскольку энтропия - функция состояния, ее изменение в любом циклическом процессе равно 0, поэтому для циклических процессов неравенство Клаузиуса имеет вид:

где знак равенства ставится, если весь цикл полностью обратим.

Энтропию можно определить с помощью двух эквивалентных подходов - статистического и термодинамического. Статистическое определение основано на идее о том, что необратимые процессы в термодинамике вызваны переходом в более вероятное состояние, поэтому энтропию можно связать с вероятностью:

где k = 1.38 10 -23 Дж/К - постоянная Больцмана (k = R / N A), W - так называемая термодинамическая вероятность, т.е. число микросостояний, которые соответствуют данному макросостоянию системы (см. гл. 10). Формулу (4.4) называют формулой Больцмана .

С точки зрения строгой статистической термодинамики энтропию вводят следующим образом:

где G (E ) - фазовый объем, занятый микроканоническим ансамблем с энергией E .

Термодинамическое определение энтропии основано на рассмотрении обратимых процессов:

Это определение позволяет представить элементарную теплоту в такой же форме, как и различные виды работы:

Q обр = TdS , (4.7)

где температура играет роль обобщенной силы, а энтропия - обобщенной (тепловой) координаты.

Расчет изменения энтропии для различных процессов

Термодинамические расчеты изменения энтропии основаны на определении (4.6) и на свойствах частных производных энтропии по термодинамическим параметрам:

(4.8)

Последние два тождества представляют собой соотношения Максвелла (вывод см. в гл. 5).

1) Нагревание или охлаждение при постоянном давлении .

Количество теплоты, необходимое для изменения температуры системы, выражают с помощью теплоемкости: Q обр = C p dT .

(4.9)

Если теплоемкость не зависит от температуры в интервале от T 1 до T 2 , то уравнение (4.8) можно проинтегрировать:

Если изменение температуры происходит при постоянном объеме, то в формулах (4.9) и (4.10) C p надо заменить на C V .

2) Изотермическое расширение или сжатие .

Для расчета энтропии в этом случае надо знать уравнение состояния системы. Расчет основан на использовании соотношения Максвелла:

(4.11)

В частности, для изотермического расширения идеального газа (p = nRT / V )

Этот же результат можно получить, если использовать выражение для теплоты изотермического обратимого расширения идеального газа: Q обр = nRT ln(V 2 /V 1) .

3) Фазовые переходы .

При обратимом фазовом переходе температура остается постоянной, а теплота фазового перехода при постоянном давлении равна H фп, поэтому изменение энтропии равно:

(4.13)

При плавлении и кипении теплота поглощается, поэтому энтропия в этих процессах возрастает: S тв < S ж < S г. При этом энтропия окружающей среды уменьшается на величину S ф.п. , поэтому изменение энтропии Вселенной равно 0, как и полагается для обратимого процесса в изолированной системе.

4) Смешение идеальных газов при постоянных температуре и давлении .

Если n 1 молей одного газа, занимающего объем V 1 , смешиваются с n 2 молями другого газа, занимающего объем V 2 , то общий объем будет равен V 1 + V 2 , причем газы расширяются независимо друг от друга и общее изменение энтропии равно сумме изменений энтропии каждого газа:

где x i - мольная доля i -го газа в полученной газовой смеси. Изменение энтропии (4.14) всегда положительно, т.к. все ln x i < 0, поэтому идеальные газы всегда смешиваются необратимо.

Если при тех же условиях смешиваются две порции одного и того же газа, то уравнение (4.14) уже неприменимо. Никаких изменений в системе при смешивании не происходит, и S = 0. Тем не менее, формула (4.14) не содержит никаких индивидуальных параметров газов, поэтому, казалось бы, должна быть применима и к смешению одинаковых газов. Это противоречие называют парадоксом Гиббса .

Абсолютная энтропия

В отличие от многих других термодинамических функций, энтропия имеет точку отсчета, которая задается постулатом Планка (третьим законом термодинамики) :

При абсолютном нуле T = 0 К все идеальные кристаллы
имеют одинаковую энтропию, равную нулю.

При стремлении температуры к абсолютному нулю не только энтропия стремится к 0, но и ее производные по всем термодинамическим параметрам:

(x = p , V ). (4.15)

Это означает, что вблизи абсолютного нуля все термодинамические процессы протекают без изменения энтропии. Это утверждение называют тепловой теоремой Нернста .

Постулат Планка позволяет ввести понятие абсолютной энтропии вещества, т.е. энтропии, отсчитанной от нулевого значения при T = 0. Для расчета абсолютной энтропии веществ в стандартном состоянии надо знать зависимости теплоемкости C p от температуры для каждой из фаз, а также температуры и энтальпии фазовых переходов. Так, например, абсолютная энтропия газообразного вещества в стандартном состоянии при температуре T складывается из следующих составляющих:

В термодинамических таблицах обычно приводят значения абсолютной энтропии в стандартном состоянии при температуре 298 К.

Значения абсолютной энтропии веществ используют для расчета изменения энтропии в химических реакциях:

. (4.17)

ПРИМЕРЫ

Пример 4-1. Определите зависимость энтропии от объема для термодинамической системы, которая описывается уравнением состояния (для одного моля)

Решение .

Интегрируя это равенство, находим зависимость энтропии от объема:

где const зависит от температуры.

Пример 4-2. Рассчитайте изменение энтропии при нагревании 0.7 моль моноклинной серы от 25 до 200 о С при давлении 1 атм. Мольная теплоемкость серы равна:

C p (S тв) = 23.64 Дж/(моль. К),
C p (S ж) = 35.73 + 1.17 . 10 -3 . T Дж/(моль. К).

Температура плавления моноклинной серы 119 о С, удельная теплота плавления 45.2 Дж/г.

Решение . Общее изменение энтропии складывается из трех составляющих: 1) нагревание твердой серы от 25 до 119 о С, 2) плавление, 3) нагревание жидкой серы от 119 до 200 о С.

4.54 Дж/К.

2.58 Дж/К.

S = S 1 + S 2 + S 3 = 11.88 Дж/К.

Ответ. 11.88 Дж/К.

Пример 4-3. Найдите изменение энтропии газа и окружающей среды, если n молей идеального газа расширяются изотермически от объема V 1 до объема V p .

Решение . а) Изменение энтропии газа при обратимом изотермическом расширении можно найти с помощью термодинамического определения энтропии с расчетом теплоты расширения по первому закону:

.

Так как расширение обратимое, то общее изменение энтропии Вселенной равно 0, поэтому изменение энтропии окружающей среды равно изменению энтропии газа с обратным знаком:

.

б) Энтропия - функция состояния, поэтому изменение энтропии системы не зависит от того, как совершался процесс - обратимо или необратимо. Изменение энтропии газа при необратимом расширении против внешнего давления будет таким же, как и при обратимом расширении. Другое дело - энтропия окружающей среды, которую можно найти, рассчитав с помощью первого закона теплоту, переданную системе:

.

В этом выводе мы использовали тот факт, что U = 0 (температура постоянна). Работа, совершаемая системой против постоянного внешнего давления равна: A = p (V 2 -V 1), а теплота, принятая окружающей средой, равна работе, совершенной системой, с обратным знаком.

Общее изменение энтропии газа и окружающей среды больше 0:

,

как и полагается для необратимого процесса.

Пример 4-4. Рассчитайте изменение энтропии 1000 г воды в результате ее замерзания при -5 О С. Теплота плавления льда при 0 о С равна 6008 Дж/моль. Теплоемкости льда и воды равны 34.7 и 75.3 Дж/(моль. К), соответственно. Объясните, почему энтропия при замерзании уменьшается, хотя процесс - самопроизвольный.

Решение . Необратимый процесс замерзания воды при температуре -5 О С можно представить в виде последовательности обратимых процессов: 1) нагревание воды от
-5 О С до температуры замерзания (0 О С); 2) замерзание воды при 0 О С; 3) охлаждение льда от 0 до -5 О С:

Изменение энтропии в первом и третьем процессах (при изменении температуры) рассчитывается по формуле (4.9):

77.3 Дж/К.

-35.6 Дж/К.

Изменение энтропии во втором процессе рассчитывается как для обычного фазового перехода (4.13). Необходимо только иметь в виду, что теплота при замерзании выделяется:

-1223 Дж/К.

Т.к. энтропия - функция состояния, общее изменение энтропии равно сумме по этим трем процессам:

S = S 1 + S 2 + S 3 = -1181 Дж/К.

Энтропия при замерзании убывает, хотя процесс самопроизвольный. Это связано с тем, что в окружающую среду выделяется теплота и энтропия окружающей среды увеличивается, причем это увеличение больше, чем 1181 Дж/К, поэтому энтропия Вселенной при замерзании воды возрастает, как и полагается в необратимом процессе.

Ответ. -1181 Дж/К.

ЗАДАЧИ

4-1. Приведите пример термодинамического процесса, который может быть проведен как обратимо, так и необратимо. Рассчитайте изменение энтропии системы и окружающей среды в обоих случаях.

4-2. Проверьте неравенство Клаузиуса для циклического процесса, представленного в задаче 2.14.

4-3. Рассчитайте мольную энтропию неона при 500 К, если при 298 К и том же объеме энтропия неона равна 146.2 Дж/(моль. К).

4-4. Рассчитайте изменение энтропии при нагревании 11.2 л азота от 0 до 50 о С и одновременном уменьшении давления от 1 атм до 0.01 атм.

4-5. Один моль гелия при 100 о С и 1 атм смешивают с 0.5 моль неона при 0 о С и 1 атм. Определите изменение энтропии, если конечное давление равно 1 атм.

4-6. Рассчитайте изменение энтропии при образовании 1 м 3 воздуха из азота и кислорода (20 об.%) при температуре 25 о С и давлении 1 атм.

4-7. Три моля идеального одноатомного газа (C V = 3.0 кал/(моль. К)), находящегося при T 1 = 350 K и P 1 = 5.0 атм, обратимо и адиабатически расширяются до давления P 2 = 1.0 атм. Рассчитайте конечные температуру и объем, а также совершенную работу и изменение внутренней энергии, энтальпии и энтропии в этом процессе.

4-8. Рассчитайте изменение энтропии при нагревании 0.4 моль хлорида натрия от 20 до 850 о С. Мольная теплоемкость хлорида натрия равна:

C p (NaCl тв) = 45.94 + 16.32 . 10 -3 . T Дж/(моль. К),
C p (NaCl ж) = 66.53 Дж/(моль. К).

Температура плавления хлорида натрия 800 о С, теплота плавления 31.0 кДж/моль.

4-9. Рассчитайте изменение энтропии при смешении 5 кг воды при 80 о С с 10 кг воды при 20 о С. Удельную теплоемкость воды принять равной: C p (H 2 O) = 4.184 Дж/(г. К).

4-10. Рассчитайте изменение энтропии при добавлении 200 г льда, находящегося при температуре 0 о С, к 200 г воды (90 о С) в изолированном сосуде. Теплота плавления льда равна 6.0 кДж/моль.

4-11. Для некоторого твердого тела найдена зависимость коэффициента расширения от давления в интервале давлений от p 1 до p 2:

.

Насколько уменьшится энтропия этого тела при сжатии от p 1 до p 2 ?

4-12. Найдите изменение энтропии газа и окружающей среды, если n молей идеального газа расширяются изотермически от давления p 1 до давления p 2: а) обратимо; б) против внешнего давления p < p 2 .

4-13. Запишите выражение для расчета абсолютной энтропии одного моля воды при температуре 300 0 С и давлении 2 атм.

4-14. Нарисуйте график зависимости стандартной энтропии воды от температуры в интервале от 0 до 400 К.

4-15. Запишите энтропию одного моля идеального газа как функцию температуры и давления (теплоемкость считать постоянной).

4-16. Определите зависимость энтропии от объема для термодинамической системы, которая описывается уравнением состояния (для одного моля):

4-17. Определите зависимость энтропии от объема для термодинамической системы, которая описывается уравнением состояния (для одного моля):

4-18. Один моль газа описывается уравнением состояния

где f (V ) - некоторая функция, которая не зависит от температуры. Рассчитайте изменение энтропии газа при его необратимом изотермическом расширении от объема V 1 до объема V 2 .

4-19. Рассчитайте изменение энтропии 1000 г метанола в результате его замерзания при -105 О С. Теплота плавления твердого метанола при -98 о С (т.пл.) равна 3160 Дж/моль. Теплоемкости твердого и жидкого метанола равны 55.6 и 81.6 Дж/(моль. К), соответственно. Объясните, почему энтропия при замерзании уменьшается, хотя процесс - самопроизвольный.

4-20. Теплоемкость некоторого вещества в интервале температур от T 1 до T 2 изменяется следующим образом:

Постройте график зависимости энтропии вещества от температуры в этом интервале температур.

4-21. Пользуясь справочными данными, приведите пример самопроизвольной химической реакции, для которой стандартное изменение энтропии меньше 0.

4-22. Пользуясь справочными данными, рассчитайте стандартное изменение энтропии в реакции H 2(г) + ЅO 2(г) = H 2 O (г) а) при 25 о С; б) при 300 о С.

Уравнение (44.7) или (44.12) может быть истолковано особо. При работе обратимых машин , и тепло при температуре «эквивалентно» теплу при температуре ; ведь если поглощается , то всегда выделяется тепло . Если теперь придумать для особое название, то можно сказать, что при обратимых процессах поглощается столько же , сколько и выделяется. Иначе говоря, не убывает и не прибывает. Эта величина называется энтропией, и мы говорим, что «за обратимый цикл изменение энтропии равно нулю». Если , то энтропия равна ; мы уже снабдили энтропию особым символом . Энтропия повсюду обозначается буквой , а численно она равна теплу (которое мы обозначили буквой ), выделяемому в одноградусном резервуаре (энтропия не равна просто теплу, это тепло, деленное на температуру, и измеряется она в джоулях на градус).

Интересно, что, кроме давления, которое зависит от температуры и объема, и внутренней энергии (функции все тех же объема и температуры), мы нашли еще величину - энтропию вещества, которая тоже является функцией состояния. Постараемся объяснить, как вычислять энтропию и что мы понимаем под словами «функция состояния». Проследим за поведением системы в разных условиях. Мы уже умеем создавать разные условия экспериментально, например можно заставить систему расширяться адиабатически или изотермически. (Между прочим, машина не обязательно должна иметь только два резервуара, может быть и три, и четыре различные температуры, и машина будет обмениваться теплом с каждым из резервуаров.) Мы можем прогуляться по всей диаграмме , переходя от одного состояния к другому. Иначе говоря, можно перевести газ из состояния в какое-нибудь другое состояние и потребовать, чтобы переход из в был обратимым. Теперь предположим, что вдоль пути из в поставлены маленькие резервуары с разными температурами. Тогда каждый короткий шажок будет сопровождаться изъятием из вещества тепла и передачей его в резервуар при температуре, соответствующей данной точке пути. Давайте свяжем все эти резервуары с помощью обратимых тепловых машин с одним резервуаром единичной температуры. После того как мы закончим перевод вещества из состояния в состояние , мы вернем все резервуары в их первоначальное состояние. Обратимая машина вернет каждую дольку тепла , изъятого из вещества при температуре , и каждый раз при единичной температуре будет выделяться энтропия , равная

Подсчитаем полное количество выделенной энтропии. Разность энтропии, или энтропия, нужная для перехода из в в результате какого-нибудь обратимого изменения, это - полная энтропия, т. е. энтропия, взятая из маленьких резервуаров и выделенная при единичной температуре:

Вопрос заключается в том, зависит ли разность энтропии от пути в плоскости ? Из в ведет много дорог. Вспомним, что в цикле Карно мы могли перейти из точки в точку (см. фиг. 44.6) двумя способами. Можно было расширить газ сначала изотермически, а потом адиабатически, а можно было начать с адиабатического расширения и окончить изотермическим. Итак, мы должны выяснить, меняется ли энтропия при изменении пути из в (фиг. 44.10). Она не должна измениться, потому что если мы совершим полный цикл, выйдя из в по одному пути и возвратясь по другому, то это путешествие будет эквивалентно полному циклу обратимой машины. При таком цикле никакого тепла не передается одноградусному резервуару.

Фиг. 44.10. Изменение энтропии при обратимом переходе.

Поскольку мы не имеем права взять тепло из одноградусного резервуара, то при каждом путешествии из в приходится обходиться одним и тем же количеством энтропии. Это количество не зависим от пути, существенны только конечные точки. Таким образом, можно говорить о некоторой функции, которую мы назвали энтропией вещества. Эта функция зависит только от состояния вещества, т. е. только от объема и температуры.

Можно найти функцию . Мы подсчитаем изменение энтропии при обратимых изменениях вещества, следя за теплом, выделяемым в одноградусном резервуаре. Но это изменение можно выразить еще в терминах тепла , изымаемого у вещества при температуре

Полное изменение энтропии равно разности энтропии в конечной и начальной точках пути:

. (44.18)

Это выражение не определяет энтропию полностью. Пока известна лишь разность энтропии в двух разных состояниях. Определить энтропию абсолютно можно только после того, как мы сумеем вычислить энтропию одного какого-нибудь состояния.

Очень долго считалось, что абсолютная энтропия - это вообще ничего не значащее понятие. Но в конце концов Нернст высказал утверждение, названное им тепловой теоремой (иногда его называют третьим законом термодинамики). Смысл ее очень прост. Сейчас мы сообщим эту теорему, не объясняя, почему она верна. Постулат Нернста утверждает просто, что энтропия всякого тела при абсолютном нуле равна нулю. Теперь мы знаем, при каких и (при ) энтропия равна нулю, и сможем вычислить энтропию в любой другой точке.

Чтобы проиллюстрировать эту идею, давайте вычислим энтропию идеального газа. При изотермическом (а, следовательно, обратимом) расширении равен просто , потому

что постоянная. Таким образом, согласно (44.4), изменение энтропии равно

,

так что плюс функция одной только температуры. А как зависит от ? Мы уже знаем, что при адиабатическом расширении теплообмена нет. Таким образом, энтропия остается постоянной, хотя объем изменяется, заставляя изменяться (чтобы сохранить равенство ). Ясно ли вам после этого, что

,

где - постоянная, не зависящая ни от , ни от ? [Постоянная называется химической постоянной. Она зависит от свойств газа, и ее можно определить экспериментально в соответствии с теоремой Нернста. Для этого надо измерить тепло, выделяемое газом при его охлаждении и конденсации до превращения его при 0° в твердое тело (гелий и при этой температуре остается жидким). Потом надо найти интеграл . Можно найти и теоретически; для этого понадобятся постоянная Планка и квантовая механика, но в нашем курсе этого мы не будем касаться.]

Отметим некоторые свойства энтропии. Сначала вспомним, что на участке обратимого цикла между точками и энтропия меняется на (фиг. 44.11). Вспомним еще, что по мере продвижения вдоль этого пути энтропия (тепло, выделяемое при единичной температуре) возрастает в согласии с правилом , где - тепло, изъятое из вещества при температуре .

Фиг. 44.11. Изменение энтропии за полный обратимый цикл.

Полное изменение энтропии равно нулю.

Мы уже знаем, что после обратимого цикла полная энтропия всего, что включается в процесс, не изменяется. Ведь тепло , поглощенное при , и тепло , выделенное при , вносят в энтропию равные по величине, но противоположные по знаку вклады. Поэтому чистое изменение энтропии равно нулю. Таким образом, при обратимом цикле энтропия всех участников цикла, включая резервуары, не изменяется. Это правило как будто похоже на закон сохранения энергии, но это не так. Оно применимо только к обратимым циклам. Если перейти к необратимым циклам, то закона сохранения энтропии уже не существует.

Приведем два примера. Для начала предположим, что какая-то машина с трением производит необратимую работу, выделяя тепло при температуре . Энтропия возрастет на . Тепло равно затраченной работе, и когда мы производим какую-то работу с помощью трения о какой-то предмет, температура которого равна , то энтропия возрастает на величину .

Другой пример необратимости: если приложить друг к другу два предмета с разными температурами, скажем и , то от одного предмета к другому перетечет некоторое количество тепла. Предположим, например, что мы бросили в холодную воду горячий камень. Насколько изменяется энтропия камня, если он отдает воде тепло при температуре ? Она уменьшается на . А как изменяется энтропия воды? Она возрастет на . Тепло, конечно, может перетечь только от более высокой температуры к более низкой . Поэтому если больше , то положительно. Таким образом, изменение энтропии положительно и равно разности двух дробей:

. (44.19)

Итак, справедлива следующая теорема: в любом необратимом процессе энтропия всего на свете возрастает. Только обратимые процессы могут удержать энтропию на одном уровне. А поскольку абсолютно необратимых процессов не существует, то энтропия всегда понемногу растет. Обратимые процессы - это идеализированные процессы с минимальным приростом энтропии.

К сожалению, нам не придется углубиться в область термодинамики. Наша цель лишь проиллюстрировать основные идеи этой науки и объяснить причины, по которым возможно основываться на этих аргументах. Но в нашем курсе мы не будем часто прибегать к термодинамике. Термодинамикой широко пользуются в технике и в химии. Поэтому с термодинамикой вы практически познакомитесь в курсе химии или технических наук. Ну а дублировать нет смысла, и мы ограничимся лишь некоторым обзором природы теории и не будем вдаваться в детали для специальных ее применений.

Два закона термодинамики часто формулируют так:

Первый закон: Энергия Вселенной всегда постоянна.

Второй закон: Энтропия Вселенной всегда возрастает.

Это не слишком хорошая формулировка второго закона. В ней ничего не говорится, например, о том, что энтропия не изменяется после обратимого цикла и не уточняется само понятие энтропии. Просто это легко запоминаемая форма обоих законов, но из нее нелегко понять, о чем собственно идет речь.

Все законы, о которых сейчас шла речь, мы собрали в табл. 44.1. А в следующей главе мы используем эту сводку законов, чтобы найти соотношение между теплом, выделяемым резиной при растяжении, и дополнительным натяжением резины при ее нагревании.

Таблица 44.1 Законы термодинамики

Первый закон

Подведенное к системе тепло + Работа, совершенная над системой = Возрастание внутренней энергии системы:

Этот пост является вольным переводом ответа, который Mark Eichenlaub дал на вопрос What"s an intuitive way to understand entropy? , заданный на сайте Quora

Энтропия. Пожалуй, это одно из самых сложных для понимания понятий, с которым вы можете встретиться в курсе физики, по крайней мере если говорить о физике классической. Мало кто из выпускников физических факультетов может объяснить, что это такое. Большинство проблем с пониманием энтропии, однако, можно снять, если понять одну вещь. Энтропия качественно отличается от других термодинамических величин: таких как давление, объём или внутренняя энергия, потому что является свойством не системы, а того, как мы эту систему рассматриваем. К сожалению в курсе термодинамики её обычно рассматривают наравне с другими термодинамическими функциями, что усугубляет непонимание.

Так что же такое энтропия?

Если в двух словах, то
Энтропия - это то, как много информации вам не известно о системе

Например, если вы спросите меня, где я живу, и я отвечу: в России, то моя энтропия для вас будет высока, всё-таки Россия большая страна. Если же я назову вам свой почтовый индекс: 603081, то моя энтропия для вас понизится, поскольку вы получите больше информации.


Почтовый индекс содержит шесть цифр, то есть я дал вам шесть символов информации. Энтропия вашего знания обо мне понизилась приблизительно на 6 символов. (На самом деле, не совсем, потому что некоторые индексы отвечают большему количеству адресов, а некоторые - меньшему, но мы этим пренебрежём).


Или рассмотрим другой пример. Пусть у меня есть десять игральных костей (шестигранных), и выбросив их, я вам сообщаю, что их сумма равна 30. Зная только это, вы не можете сказать, какие конкретно цифры на каждой из костей - вам не хватает информации. Эти конкретные цифры на костях в статистической физике называют микросостояниями, а общую сумму (30 в нашем случае) - макросостоянием. Существует 2 930 455 микросостояний, которые отвечают сумме равной 30. Так что энтропия этого макросостояния равна приблизительно 6,5 символам (половинка появляется из-за того, что при нумерации микросостояний по порядку в седьмом разряде вам доступны не все цифры, а только 0, 1 и 2).

А что если бы я вам сказал, что сумма равна 59? Для этого макросостояния существует всего 10 возможных микросостояний, так что его энтропия равна всего лишь одному символу. Как видите, разные макросостояния имеют разные энтропии.

Пусть теперь я вам скажу, что сумма первых пяти костей 13, а сумма остальных пяти - 17, так что общая сумма снова 30. У вас, однако, в этом случае имеется больше информации, поэтому энтропия системы для вас должна упасть. И, действительно, 13 на пяти костях можно получить 420-ю разными способами, а 17 - 780-ю, то есть полное число микросостояний составит всего лишь 420х780 = 327 600. Энтропия такой системы приблизительно на один символ меньше, чем в первом примере.

Мы измеряем энтропию как количество символов, необходимых для записи числа микросостояний. Математически это количество определяется как логарифм, поэтому обозначив энтропию символом S, а число микросостояний символом Ω, мы можем записать:

Это есть ничто иное как формула Больцмана (с точностью до множителя k, который зависит от выбранных единиц измерения) для энтропии. Если макросостоянию отвечают одно микросостояние, его энтропия по этой формуле равна нулю. Если у вас есть две системы, то полная энтропия равна сумме энтропий каждой из этих систем, потому что log(AB) = log A + log B.

Из приведённого выше описания становится понятно, почему не следует думать об энтропии как о собственном свойстве системы. У системы есть опеделённые внутренняя энергия, импульс, заряд, но у неё нет определённой энтропии: энтропия десяти костей зависит от того, известна вам только их полная сумма, или также и частные суммы пятёрок костей.

Другими словами, энтропия - это то, как мы описываем систему. И это делает её сильно отличной от других величин, с которыми принято работать в физике.

Физический пример: газ под поршнем

Классической системой, которую рассматривают в физике, является газ, находящийся в сосуде под поршнем. Микросостояние газа - это положение и импульс (скорость) каждой его молекулы. Это эквивалентно тому, что вы знаете значение, выпавшее на каждой кости в рассмотренном раньше примере. Макросостояние газа описывается такими величинами как давление, плотность, объём, химический состав. Это как сумма значений, выпавших на костях.

Величины, описывающие макросостояние, могут быть связаны друг с другом через так называемое «уравнение состояния». Именно наличие этой связи позволяет, не зная микросостояний, предсказывать, что будет с нашей системой, если начать её нагревать или перемещать поршень. Для идеального газа уравнение состояния имеет простой вид:

Хотя вы, скорее всего, лучше знакомы с уравнением Клапейрона - Менделеева pV = νRT - это то же самое уравнение, только с добавлением пары констант, чтобы вас запутать. Чем больше микросостояний отвечают данному макросостоянию, то есть чем больше частиц входят в состав нашей системы, тем лучше уравнение состояния её описывают. Для газа характерные значения числа частиц равны числу Авогадро, то есть составляют порядка 10 23 .

Величины типа давления, температуры и плотности называются усреднёнными, поскольку являются усреднённым проявлением постоянно сменяющих друг друга микросостояний, отвечающих данному макросостоянию (или, вернее, близким к нему макросостояниям). Чтобы узнать в каком микросостоянии находится система, нам надо очень много информации - мы должны знать положение и скорость каждой частицы. Количество этой информации и называется энтропией.

Как меняется энтропия с изменением макросостояния? Это легко понять. Например, если мы немного нагреем газ, то скорость его частиц возрастёт, следовательно, возрастёт и степень нашего незнания об этой скорости, то есть энтропия вырастет. Или, если мы увеличим объём газа, отведя поршень, увеличится степень нашего незнания положения частиц, и энтропия также вырастет.

Твёрдые тела и потенциальная энергия

Если мы рассмотрим вместо газа какое-нибудь твёрдое тело, особенно с упорядоченной структурой, как в кристаллах, например, кусок металла, то его энтропия будет невелика. Почему? Потому что зная положение одного атома в такой структуре, вы знаете и положение всех остальных (они же выстроены в правильную кристаллическую структуру), скорости же атомов невелики, потому что они не могут улететь далеко от своего положения и лишь немного колеблются вокруг положения равновесия.

Если кусок металла находится в поле тяготения (например, поднят над поверхностью Земли), то потенциальная энергия каждого атома в металле приблизительно равна потенциальной энергии других атомов, и связанная с этой энергией энтропия низка. Это отличает потенциальную энергию от кинетической, которая для теплового движения может сильно меняться от атома к атому.

Если кусок металла, поднятый на некоторую высоту, отпустить, то его потенциальная энергия будет переходить в кинетическую энергию, но энтропия возрастать практически не будет, потому что все атомы будут двигаться приблизительно одинаково. Но когда кусок упадёт на землю, во время удара атомы металла получат случайное направление движения, и энтропия резко увеличится. Кинетическая энергия направленного движения перейдёт в кинетическую энергию теплового движения. Перед ударом мы приблизительно знали, как движется каждый атом, теперь мы эту информацию потеряли.

Понимаем второй закон термодинамики

Второй закон термодинамики утверждает, что энтропия (замкнутой системы) никогда не уменьшается. Мы теперь можем понять, почему: потому что невозможно внезапно получить больше информации о микросостояниях. Как только вы потеряли некую информацию о микросостоянии (как во время удара куска металла об землю), вы не можете вернуть её назад.


Давайте вернёмся обратно к игральным костям. Вспомним, что макросостояние с суммой 59 имеет очень низкую энтропию, но и получить его не так-то просто. Если бросать кости раз за разом, то будут выпадать те суммы (макросостояния), которым отвечает большее количество микросостояний, то есть будут реализовываться макросостояния с большой энтропией. Самой большой энтропией обладает сумма 35, и именно она и будет выпадать чаще других. Именно об этом и говорит второй закон термодинамики. Любое случайное (неконтролируемое) взаимодействие приводит к росту энтропии, по крайней мере до тех пор, пока она не достигнет своего максимума.

Перемешивание газов

И ещё один пример, чтобы закрепить сказанное. Пусть у нас имеется контейнер, в котором находятся два газа, разделённых расположенной посередине контейнера перегородкой. Назовём молекулы одного газа синими, а другого - красными.

Если открыть перегородку, газы начнут перемешиваться, потому что число микросостояний, в которых газы перемешаны, намного больше, чем микросостояний, в которых они разделены, и все микросостояния, естественно, равновероятны. Когда мы открыли перегородку, для каждой молекулы мы потеряли информацию о том, с какой стороны перегородки она теперь находится. Если молекул было N, то утеряно N бит информации (биты и символы, в данном контексте, это, фактически, одно и тоже, и отличаются только неким постоянным множителем).

Разбираемся с демоном Максвелла

Ну и напоследок рассмотрим решение в рамках нашей парадигмы знаменитого парадокса демона Максвелла. Напомню, что он заключается в следующем. Пусть у нас есть перемешанные газы из синих и красных молекул. Поставим обратно перегородку, проделав в ней небольшое отверстие, в которое посадим воображаемого демона. Его задача - пропускать слева направо только красных, и справа налево только синих. Очевидно, что через некоторое время газы снова будут разделены: все синие молекулы окажутся слева от перегородки, а все красные - справа.


Получается, что наш демон понизил энтропию системы. С демоном ничего не случилось, то есть его энтропия не изменилась, а система у нас была закрытой. Получается, что мы нашли пример, когда второй закон термодинамики не выполняется! Как такое оказалось возможно?

Решается этот парадокс, однако, очень просто. Ведь энтропия - это свойство не системы, а нашего знания об этой системе. Мы с вами знаем о системе мало, поэтому нам и кажется, что её энтропия уменьшается. Но наш демон знает о системе очень много - чтобы разделять молекулы, он должен знать положение и скорость каждой из них (по крайней мере на подлёте к нему). Если он знает о молекулах всё, то с его точки зрения энтропия системы, фактически, равна нулю - у него просто нет недостающей информации о ней. В этом случае энтропия системы как была равна нулю, так и осталась равной нулю, и второй закон термодинамики нигде не нарушился.

Но даже если демон не знает всей информации о микросостоянии системы, ему, как минимум, надо знать цвет подлетающей к нему молекулы, чтобы понять, пропускать её или нет. И если общее число молекул равно N, то демон должен обладать N бит информации о системе - но именно столько информации мы и потеряли, когда открыли перегородку. То есть количество потерянной информации в точности равно количеству информации, которую необходимо получить о системе, чтобы вернуть её в исходное состояние - и это звучит вполне логично, и опять же не противоречит второму закону термодинамики.

Второе начало термодинамики имеет несколько формулировок. Формулировка Клаузиуса:невозможен процесс перехода теплоты от тела с более низкой температурой к телу с более высокой.

Формулировка Томсона: невозможен процесс, результатом которого было бы совершение работы за счет теплоты, взятой от одного какого-то тела. Эта формулировка накладывает ограничение на превращение внутренней энергии в механическую. Невозможно построить машину (вечный двигатель второго рода), которая совершала бы работу только за счет получения теплоты из окружающей среды.

Формулировка Больцмана: Энтропия - это показатель неупорядоченности системы. Чем выше энтропия, тем хаотичнее движение материальных частиц, составляющих систему. Давайте посмотрим, как она работает, на примере воды. В жидком состоянии вода представляет собой довольно неупорядоченную структуру, поскольку молекулы свободно перемещаются друг относительно друга, и пространственная ориентация у них может быть произвольной. Другое дело лед - в нем молекулы воды упорядочены, будучи включенными в кристаллическую решетку. Формулировка второго начала термодинамики Больцмана, условно говоря, гласит, что лед, растаяв и превратившись в воду (процесс, сопровождающийся снижением степени упорядоченности и повышением энтропии) сам по себе никогда из воды не возродится.Энтропия не может уменьшаться в замкнутых системах - то есть, в системах, не получающих внешней энергетической подпитки.

Третье начало термодинамики (теорема Нернста ) - физический принцип, определяющий поведение энтропии при приближении температуры к абсолютному нулю. Является одним из постулатов термодинамики, принимаемым на основе обобщения значительного количества экспериментальных данных.

Третье начало термодинамики может быть сформулировано так:

«Приращение энтропии при абсолютном нуле температуры стремится к конечному пределу, не зависящему от того, в каком равновесном состоянии находится система» .

где - любой термодинамический параметр.

Третье начало термодинамики относится только к равновесным состояниям.

Поскольку на основе второго начала термодинамики энтропию можно определить только с точностью до произвольной аддитивной постоянной (то есть, определяется не сама энтропия, а только её изменение):

третье начало термодинамики может быть использовано для точного определения энтропии. При этом энтропию равновесной системы при абсолютном нуле температуры считают равной нулю.

Энтропия идеальных газов

Для получения рассчетного выражения изменения энтропии идеальных газов воспользуемся первым законом термодинамики, в котором теплота определяется с использованием изменения энтальпии

Разность энтропий идеального газа в конкретных двух состояниях можно получить интегрированием выражения (4.59)

Для определения абсолюного значения энтропии идеального газа необходимо зафиксировать начало ее отсчета любой парой термических параметров состояния. Например, приняв s 0 =0 при Т 0 и Р 0 , воспользовавшись уравнением (4.60), получим

Выражение (4.62) свидетельствует о том, что энтропия идеального газа есть параметр состояния, поскольку ее можно определить через любую пару параметров состояния. В свою очередь, поскольку энтропия сама является параметром состояния, используя ее в паре с любым независимым параметром состояния, можно определить любой другой параметр состояния газа.

В предыдущем разделе мы исходили из того основного предположения, что для любой системы существует параметр, называемый энтропией и обозначаемый S. При малых величинах теплового взаимодействия соответствующее дифференциальное изменение энтропии dS составляет . Используем далее это определение для вычисления изменений энтропии в некоторых простых и известных процессах.

Изменение энтропии при таянии льда. Предположим, что в жаркий летний день мы принесли на пикник термос, наполненный смесью льда и воды. Поскольку изоляция термоса не идеальна, лед будет постепенно таять. Однако таяние происходит медленно, температура в термосе будет оставаться практически неизменной и равной 0°С. Подсчитаем изменение энтропии, соответствующее таянию 1 моль (или 18 г) льда. Табличное значение теплоты плавления льда составляет 79,67 кал/г, что дает около 1434 кал/моль. Тогда можно записать

Как и ранее, обозначает просто суммирование бесконечно малых величин - интегрирование (или суммирование) всех величин , соответствующих каждому малому количеству теплоты . Интегрирование выполняется в этом случае особенно просто потому, что температура Т не меняется в ходе процесса плавления. Поэтому множитель 1/Т можно вынести из-под знака интеграла, так что он становится просто множителем при последнее выражение представляет собой фактически теплоту фазового перехода (плавления) льда кал/моль. Соотношение (19) означает, что энтропия 1 моль воды при 273 К на 5,27 кал/К превышает энтропию 1 моль льда при той же температуре.

Верь, когда растает лед. Энтропия возрастет.

Наоборот, если у воды при температуре 273 К отобрать достаточно теплоты - чтобы образовался 1 моль льда при 273 К, энтропия системы понизится на .

Заметим, что всюду в этом разделе мы использовали абсолютную температуру по Кельвину в знаменателе отношения . Можно было бы использовать и абсолютную шкалу Рэнкина, если измерять при этом количество теплоты в б.т. е. Очевидно, что в знаменателе выражения нельзя использовать температуры по шкалам Цельсия или Фаренгейта (как это иногда пытаются делать даже подготовленные студенты). Так, например, используя шкалу Цельсия, в рассматриваемом случае мы пришли бы к абсурдному результату (знаменатель выражения обратился бы в нуль). Заметим, что единицы, в которых выражается изменение энтропии, совпадают с единицами, в которых измеряется молярная теплоемкость Изменение энтропии при таянии 1 моль льда при точке замерзания в нормальных условиях составляет 5,27 кал/(моль К).

Изменение энтропии при кипении воды. Другой хорошо знакомый процесс, идущий при определенной температуре, - это переход жидкой воды в пар при давлении 1 атм. Температура, при которой вода кипит при нормальных условиях, равна по определению 100°С, или 373 К. Теплота испарения при такой температуре составляет 539 кал/г, или 9702 кал/моль. Тогда изменение энтропии, соответствующее испарению 1 моль воды при нормальных условиях, равно

Это вычисление оказалось столь простым потому, что температура не менялась в ходе процесса.

Заметим, что изменение энтропии в процессе испарения воды почти в 5 раз превышает изменение энтропии в процессе таяния льда. Значение несколько превышает обычные для подобных ситуаций значения и указывает на необычные свойства такого вещества, как вода. У многих «нормальных» (неполярных) жидкостей изменение энтропии при испарении составляет Это правило было получено эмпирически английским физиком Фредериком Троутоном (1863-1922) и носит название «правило Троутона». Оно дает способ оценки теплоты испарения данного вещества, если известна температура, при которой оно кипит при нормальных условиях.

Чтобы найти приближенное значение теплоты испарения, достаточно умножить температуру кипения (выраженную в Кельвинах) на постоянную Гроутона.

Изменение энтропии в процессе изотермического расширения идеального газа. Существует еще один процесс при постоянной температуре, который уже не раз встречался нам ранее, - это процесс обратимого изотермического расширения идеального газа. Если наряду с тепловым имеется лишь обычное механическое взаимодействие (так что элементарная работа выражается формулой первое начало термодинамики для 1 моль идеального газа можно записать в виде

(здесь учтено, что ). Используя уравнение pV = RT, можно при dT = 0 (условие постоянства температуры) написать

Интегрировать это выражение нам приходилось в гл. 4, так что здесь сразу приведем результат:

Поскольку температура T остается постоянной, выражение для соответствующего изменения энтропии имеет вид

Как известно, газовая постоянная R имеет размерность кал/(моль К), а множитель, содержащий логарифм, - безразмерное число, так что размерности в левой и правой частях соотношения (24) совпадают. Таким образом, увеличение объема (т. е. расширение) при постоянной температуре сопровождается ростом энтропии.

Вернемся к случаю кипения воды. Пусть испарился 1 моль воды; 1 моль идеального газа, как мы помним, при нормальных условиях (давлении 1 атм и температуре 273 К) занимает объем около 22 400 см3. При 373 К соответствующий объем будет равен 22 400 (373/273), или примерно 30 600 см3. До испарения 1 моль жидкости занимал объем около таким образом, отношение составляет Согласно равенству (24), изменение энтропии, соответствующее изменению объема за счет испарения, составляет R ln 1700. Учитывая, что значение R примерно равно , искомое изменение энтропии составляет примерно 14,88 кал/(моль К).

Подсчитывая в предыдущем разделе полное изменение энтропии в течение всего процесса испарения 1 моль воды, мы получили значение 26,0 кал/(моль К). Как мы убедились теперь, чуть более половины этого значения связано с изменением объема при переходе жидкости в пар.

Изменения энтропии, обусловленные изменениями температуры. До сих пор все наши вычисления изменения энтропии проводились для тепловых взаимодействий при постоянной температуре. Рассмотрим теперь более обычный и несколько более сложный случай, когда обратимое нагревание приводит к изменению температуры. Если нагревание происходит при постоянном объеме, то. согласно определению удельной теплоемкости при постоянном объеме , имеем . Тогда

Интегрируя это выражение по конечному интервалу температур, получаем

Здесь предполагалось, что теплоемкость не зависит от температуры и ее можно вынести за знак интеграла. Существенно, что, отождествляя

мы снимаем ограничеиие об обратимости процесса нагревания, а также об однородности температуры в процессе нагревания. Нам необходимо знать температуру системы только в начале и в конце процесса нагревания. Иными словами, существенно лишь, чтобы тепловое равновесие существовало в начальном и конечном состояниях: промежуточные состояния не играют роли.

В более обычном и практически значительно легче осуществляемом случае нагревания при постоянном давлении имеем . Буквально повторяя все приведенные выше рассуждения, получаем

2. Нагревание воды при 1 атм от 273 К до 373 К:

3. Переход вода-пар при 1 атм и 373 К:

Таким образом, результирующее изменение энтропии при превращении 1 моль льда, имеющего температуру 273 К, в пар при 373 К составляет