Типы дальномеров. Монокулярный оптический дальномер. Нитяной дальномер с постоянным углом

Оптические дальномеры - обобщенное название группы дальномеров с визуальной наводкой на объект (цель), действие которых основано на использовании законов геометрической (лучевой) оптики. Распространены оптические дальномеры: с постоянным углом и выносной базой (например, нитяной дальномер, которым снабжают многие геодезические инструменты - теодолиты, нивелиры и т. д.); с постоянной внутренней базой - монокулярные (например, фотографический дальномер) и бинокулярные (стереоскопические дальномеры).

Оптический дальномер (светодальномер) - прибор для измерения расстояний по времени прохождения оптическим излучением (светом) измеряемого расстояния. Оптический дальномер содержит источник оптического излучения, устройство управления его параметрами, передающую и приёмную системы, фотоприёмное устройство и устройство измерения временных интервалов. Оптический дальномер делятся на импульсные и фазовые в зависимости от методов определения времени прохождения излучением расстояния от объекта и обратно.

Рис. 4

Рис.5

В дальномерах измеряется не сама длина линии, а некоторая другая величина, относительно которой длина линии является функцией.

Как ранее говорилось, в геодезии применяют 3 вида дальномеров:

· оптические (дальномеры геометрического типа),

· электрооптические (светодальномеры),

· радиотехнические (радиодальномеры).

Физические основы измерений и принцип действия

Рис. 6

Пусть требуется найти расстояние АВ. Поместим в точку А оптический дальномер, а в точку В перпендикулярно линии АВ - рейку.

Обозначим: l - отрезок рейки GM, ц - угол, под которым этот отрезок виден из точки А.

Из треугольника АGВ имеем:

D=1/2*ctg(ц/2) (3.1)

D = l * сtg(ц) (3.2)

Обычно угол ц небольшой (до 1 o) , и, применяя разложение функции Ctgц в ряд, можно привести формулу (4.1.1) к виду (4.1.2). В правой части этих формул два аргумента, относительно которых расстояние D является функцией. Если один из аргументов имеет постоянное значение, то для нахождения расстояния D достаточно измерить только одну величину. В зависимости от того, какая величина - ц или l, - принята постоянной, различают дальномеры с постоянным углом и дальномеры с постоянным базисом.

В дальномере с постоянным углом измеряют отрезок l, а угол ц - постоянный; он называется диастимометрическим углом.

В дальномерах с постоянным базисом измеряют угол ц, который называется параллактическим углом; отрезок l имеет постоянную известную длину и называется базисом.

Нитяной дальномер с постоянным углом

В сетке нитей зрительных труб, как правило, имеются две дополнительные горизонтальные нити, расположенные по обе стороны от центра сетки нитей на равных расстояниях от него; это - дальномерные нити (рис.7).

Нарисуем ход лучей, проходящих через дальномерные нити в трубе Кеплера с внешней фокусировкой. Прибор установлен над точкой А; в точке В находится рейка, установленная перпендикулярно визирной линии трубы. Требуется найти расстояние между точками А и В.

Рис. 7

Построим ход лучей из точек m и g дальномерных нитей. Лучи из точек m и g, идущие параллельно оптической оси, после преломления на линзе объектива пересекут эту ось в точке переднего фокуса F и попадут в точки М и G рейки. Расстояние от точки A до точки B будет равно:

D = l/2 * Ctg(ц/2) + fоб + d (3.3)

где d - расстояние от центра объектива до оси вращения теодолита; f об -фокусное расстояние объектива; l - длина отрезка MG на рейке.

Обозначим (f об + d) через c, а величину 1/2*Ctg ц/2 - через С, тогда

D = C * l + c. (3.4)

Постоянная С называется коэффициентом дальномера. Из Dm"OF имеем:

Ctg ц/2 = ОF/m"O; m"O= p/2 (3.5)

Ctg ц/2 = (fоб*2)/p, (3.6)

где p - расстояние между дальномерными нитями. Далее пишем:

С = fоб/p. (3.7)

Коэффициент дальномера равен отношению фокусного расстояния объектива к расстоянию между дальномерными нитями. Обычно коэффицент С принимают равным 100, тогда Ctg ц/2 = 200 и ц = 34.38". При С = 100 и fоб = 200 мм расстояние между нитями равно 2 мм.

Пусть визирная линия трубы JK при измерении расстояния АВ имеет угол наклона н, и по рейке измерен отрезок l (рис. 8). Если бы рейка была установлена перпендикулярно визирной линии трубы, то наклонное расстояние было бы равно:

D = l 0 * C + c (3.8)

l 0 = l*Cos н (3.9)

D = C*l*Cosн + c. (3.10)

Горизонтальное проложение линии S определим из Д JKE:

S = D*Cosн (3.11)

S= C*l*Cos2н + c*Cosн. (3.12)


Рис. 8

Для удобства вычислений принимаем второе слагаемое равным с*Cos2н; поскольку с величина небольшая (около 30 см), то такая замена не внесет заметной ошибки в вычисления. Тогда

S = (C * l + c) * Cos 2 н (3.13)

S = D"* Cos2н (3.14)

Oбычно величину (C*l + c) назыывают дальномерным расстоянием. Обозначим разность (D" - S) через ДD и назовем ее поправкой за приведение к горизонту, тогда

S = D" - ДD (3.15)

ДD = D" * Sin 2 н (3.16)

Угол н измеряют вертикальным кругом теодолита; причем при поправка ДD не учитывается. Точность измерения расстояний нитяным дальномером обычно оценивается относительной ошибкой от 1/100 до 1/300.

Кроме обычного нитяного дальномера существуют оптические дальномеры двойного изображения.

Особенности конструкции и принцип работы

В импульсном светодальномере источником излучения чаще всего является лазер, излучение которого формируется в виде коротких импульсов. Для измерения медленно меняющихся расстоянии используют одиночные импульсы, при быстро изменяющихся расстояниях применяется импульсный режим излучения. Твердотельные лазеры допускают частоту следования импульсов излучения до 50--100 Гц, полупроводниковые -- до 104--105 Гц. Формирование коротких импульсов излучения в твердотельных лазерах осуществляется механическими, электрооптическими или акустооптичекими затворами или их комбинациями. Инжекционные лазеры управляются током инжекции.

В фазовых светодальномерах в качестве источников света применяются накальные или газосветные лампы, светодиоды и почти все виды лазеров. Оптический дальномер со светодиодами обеспечивают дальность действия до 2--5 км, с газовыми лазерами при работе с оптическими отражателями на объекте -- до 100 км, а при диффузном отражении от объектов -- до 0,8 км; аналогично, Оптический дальномер с полупроводниковыми лазерами обеспечивает дальность действия 15 и 0,3 км. В фазовых Светодальномерное излучение модулируется интерференционными, акустооптическим и злектрооптическими модуляторами. В СВЧ фазовых оптических дальномерах применяются электрооптические модуляторы на резонаторных и волноводных СВЧ структурах.

В импульсных светодальномерах обычно в качестве фотоприёмного устройства применяются фотодиоды, в фазовых светодальномерах фотоприём осуществляется на фотоэлектронные умножители. Чувствительность фотоприёмного тракта оптического дальномера может быть увеличена на несколько порядков применением оптического гетеродинирования. Дальность действия такого Оптического дальномера ограничивается длиной когерентности) передающего лазера, при этом возможна регистрация перемещений и колебаний объектов до 0,2 км.

Измерение временных интервалов чаще всего осуществляется счётно-импульсным методом.

дальномер лазерный оптический прибор

линии АС угол наклона ν = 4° 30". Температура стальной ленты при измерении t =

– 10° С, при компарировании t к = + 20° С.

Р е ш е н и е. 1. Оценка качества полевого измерения линии АС : абсолютное

расхождение результатов D = D" – D " = 0,10 м;

относительная

погрешность

расхождения D / D = 0,10 / 315 = 1/ 3150 ≤ 1/ 2000, т.е. расхождение

D = 0,10 м

допустимо, а среднее значения расстояния D = (D" + D ") / 2 = 315, 43 м.

Поправки: D к = + 0,008 (15 + 0,77) = + 0,126

D ν = АВ cos ν – АВ = 100 · 0,996917 – 100 =

D t = 1,25 · 10– 5 · 315 [– 10 – (+20)] = – 0,118 м.

Результат: d АС = 315, 43 + 0,126 – 0,308 – 0,118

Внешние факторы ограничения точности измерения линий лентами. При измерениях лентами на местности возникают систематические и случайные погрешности. Систематическая погрешность складывается из ряда односторонне действующих факторов: остаточной погрешности компарирования ленты, погрешностей за счет искривлений ленты на вертикальных неровностях земной поверхности и отклонений ленты от створа, ее неверного натяжения и смещений шпилек, вследствие пренебрежения поправками за наклон при ν < 1,5°, а также температурными поправками.

Случайная погрешность обусловлена случайными влияниями неточного учета поправок на наклон и температуру, колебаниями силы натяжения ленты.

Внешние условия сильно влияют на точность измерений линий лентами. В благоприятных условиях (ровная поверхность связного грунта) относительная погрешность длины линии составляет в среднем 1/ Т = 1 / 3000, в средних условиях измерений (небольшие неровности, низкая трава) 1/ Т = = 1 / 2000, в неблагоприятных условиях (резко пересеченная или заболоченная местность, кочковатость, пашня, высокие травы и др.) относительная погрешность 1/ Т = 1 / 1000 (или 0,1 м на 100 м расстояния).

11.3. Оптические дальномеры

Оптические дальномеры служат для определения расстояний величиной до 100300 м с относительной погрешностью от 1/200 до 1/3000 в зависимости от конструкции прибора. Принцип измерения расстояний оптическими дальномерами геометрического типа основан на решении сильно вытянутого прямоугольника или равнобедренного треугольника, называемого параллактическим (рис. 11.5, а ), ма-

лая сторона которого b = MN называется базисом дальномера, а противолежащий малый угол φ – параллактическим. Из прямоугольного треугольника FWM , где WM = b / 2 находим измеряемое расстояние

D = (1/2) b ctg (φ /2).

Различают оптические дальномеры с постоянным базисом и с постоянным параллактическим углом. В дальномерах с постоянным базисом используется специальная рейка с визирными марками М и N , расстояние между которыми принимается от 1,5 до 3 м и определяется с относительной погрешностью около 1: 50 000 (не грубее 0,03 – 0,05 мм). Рейку устанавливают на штативе горизонтально и перпендикулярно линии FW , параллактический угол φ измеряют высокоточным теодолитом с погрешностью m φ ≤ 3". Расстояние D вычисляют по формуле (11.10) с учетом температурной поправки в длину базиса. Относительная погрешность расстояния длиной 100 – 200 м составляет около 1/1500 – 1/3000.

Рис. 11.5. Оптический дальномер геометрического типа:

а – геометрическая схема; б – поле зрения трубы; в – схема измерений

В дальномерах с постоянным параллактичесим углом (φ = const) измеряют ба-

зис b , при этом в формуле (11.10) произведение (1/2) ctg(φ /2) = К является постоянной величиной, которая называется коэффициентом дальномера , поэтому

D = К b.

Нитяной дальномер . Такие дальномеры конструктивно входят в устройство теодолитов и нивелиров. В зрительной трубе теодолита и нивелира верхний и нижний горизонтальные штрихи n и m визирной сетки (рис. 11.5, б ) образуют нитяной дальномер с вертикальным постоянным параллактическим углом φ. Вершина F этого угла (передний фокус оптической системы зрительной трубы – рис. 11.5, в )

расположена либо вне, либо внутри зрительной трубы. Визирные лучи, проходящие через дальномерные нити и передний фокус F , пересекаются с вертикально расположенной дальномерной шкалой в точках N и M . Наблюдатель через окуляр трубы отсчитывает по шкале величину базиса b – число делений между нитями n и m . Измеренное расстояние FW равно D 1 = К b . Полное расстояние JW = D между вертикальной осью прибора ZZ и плоскостью шкалы вычисляются по формуле нитяного дальномера

где с – постоянное слагаемое дальномера (расстояние между осью вращения ZZ прибора и передним фокусом F .

В современных зрительных трубах К = 100; с ≈ 0, а соответствующий параллактический угол φ = 34,38"

Дальномерные рейки к нитяному дальномеру могут быть специальными, шкала которых нанесена с ценой деления 2 или 5 см для измерения расстояний до 200– 300 м. Но при топографических съемках масштаба 1: 1000 и крупнее обычно используют рейки для технического нивелирования с сантиметровыми шашечными делениями, при этом максимальное измеряемое расстояние близко к 150 м. На рис. 11.6, а по сантиметровым делениям между нитями t и m отсчитан отрезок шкалы b

= 17,6 см = 0,176 м. Здесь при К = 100 и с = 0 искомое расстояние D = 17,6 м.

П р и м е ч а н и е. При К = 100 наблюдатель принимает сантиметровые деления как условно метровые и в метрах отсчитывает по рейке искомое расстояние D , в нашем примере D = 17,6 м и при с = 0 формула (11.12) принимает вид D = D 1 .

Горизонтальное проложение . При измерениях расстояний дальномером зрительной трубы теодолита дальномерную рейку устанавливают вертикально. Визирование на рейку сопровождается наклоном визирной оси зрительной трубы на угол ν (рис. 11.6, б ).

Между проекциями дальномерных нитей на шкалу рейки в точки М и N берется отсчет базиса b , но его значение получается преувеличенным в сравнении с величиной b " = М "N ", которая получается при наклоне рейки в положение, перпендикулярное лучу ОW . Треугольник WMM " практически прямоугольный, так как

угол при вершине M " отличается от прямого на φ/2 = 17,2 " = 0,3°, поэтому b " / 2 = WM " = WM cos ν = (b / 2) cos ν. Отсюда и b " = М " N " = b cosν. Тогда для треугольника F 1 М "N " высота F 1 W = К b ", а наклонное расстояние D = ОW = К b " + с = К b cos ν + с. Тогда горизонтальное проложение d = ОВ " = ОW cos ν = (D + с ) cos ν , или

где D ν = 2D sin 2ν – поправка на наклон в расстояние, измеренное нитяным дальномером.

Для определения в полевых условиях величин d пользуются инженерными калькуляторами или специальными тахеометрическими таблицами.

Определение постоянных нитяного дальномера. Для каждого теодолита не-

обходимо определить фактические значения поправки с и коэффициента дальномера К , поскольку его погрешность может достигать 0,5% (т. е. 1/200 от измеряемого расстояния). Для проверки на ровном горизонтальном участке местности через 30– 35 м забивают колышки, над начальным колышком центрируют теодолит, на остальных последовательно ставят рейку и по дальномеру отсчитывают значения b 1 ,

b 2 ,…, b n , затем рулеткой измеряют расстояние каждого колышка от начального. В соответствии с формулой (11.11) составляют несколько уравнений:

D 1 = К b1 + с; D 2 = К b 2 + с; …, D n = К b n

где D 1 , D 1 , …, D n

– расстояния, измеренные рулеткой с точностью 0,01-0,02 м.

Вычитая одно уравнение из другого, находим, например,

D 2 – D 1

D 3 – D 1

D 3 – D 2

К 1 =

; К 2 =

К 3 =

b 2 – b1

b 3 – b1

b 3 – b2

и получаем среднее значение коэффициента дальномера

К = (К 1 + К 2

+ …, К n ) / n .

Подставив значение К в каждое из уравнений (11.16) получаем величины с 1 , с 2 , …, с n и среднее с . В современных теодолитах с ≈ 0.

Постоянную дальномеров удобно определять путем измерения комбинаций расстояний. Для этого на горизонтальной поверхности в одном створе откладывают несколько (не менее трех) расстояний: D 1 , D 2 , D 3 . Измеряют эти расстояния, а

также расстояния: D 4 = D 1 + D 2 ;

D 5 = D 3 + D 2 ; D 6 = D 1 + D 2 + D 3

В каждом результате измерений будет присутствовать постоянная поправка дальномера с i , поэтому можно записать: D i = D i / + c , где D i ‒ результат измере-

ний. Тогда можно записать систему уравнений:

D4 / + c = D1 / + D2 / + 2 c;

D5 / + c = D3 / + D2 / + 2 c;

D6 / + c = D1 / + D2 / + D3 / + 3 c

Откуда получают среднее значение постоянной прибора по формуле

с =

− (2D /

3D /

2D / ))

Этот способ может применяться при отсутствии компарированной рулетки и менее трудоемок.

Если К ≠ 100 и нельзя пренебрегать соответствующими погрешностями, то расстояния вычисляют при помощи инженерного калькулятора или исправляют поправками, которые выбирают из специально составленной таблички.

Точность нитяного дальномера . При помощи нитяного дальномера технических теодолитов в комплекте с нивелирной рейкой с сантиметровыми делениями расстояния измеряются с погрешностями, которые зависят от ряда факторов: точности учета коэффициента дальномера К и постоянной с ; вертикальности рейки; состояния приземного слоя воздуха (величины рефракционных колебаний изображения). При точном учете величин К и с , старательной работе и благоприятных по-

1/400 – 1/300). Однако при менее благоприятных условиях и недостаточной старательности наведения штрихов дальномера погрешности D значительно возрастают.

Рассмотренные погрешности нитяного дальномера учитываются в инструкциях по наземным крупномасштабным топографическим съемкам: расстояния от теодолита до рейки ограничивают до 80 – 100 м.

11.4. Определение неприступных расстояний тригонометрическими способами

Если между точками имеется препятствие (река, водоем, овраг и др.), превышающее длину механического мерного прибора (ленты), то при отсутствии достаточно точного оптического или электронного дальномера неприступное расстояние определяют различными тригонометрическими (косвенными) способами.

1 . Параллактическими называются косвенные способы определения расстояний, основанные на вычислении высоты сильно вытянутого равнобедренного треугольника (рис. 11.7, а ), в котором измеряется базис b и малый острый угол φ – параллактический угол. На местности закрепляют точки А и В определяемой линии, в точке А с помощью теодолита строят перпендикуляр (базис b ), концы которого С 1 и С 2 закрепляют на расстоянии b/2 от точки А . После измерения b и φ вычисляется искомое расстояние

АВ = d = (b / 2) ctg (φ /2).

Чтобы относительная погрешность результата d была не более 1/2000, угол φ должен быть не меньшим 8 – 10° и измеряться с погрешностью не более 10 – 15", а базис следует измерять с относительной погрешностью не грубее 1/4000 – 1/5000.

2 . Для отыскания длины d неприступного расстояния МN (рис. 11.7, б ) на местности вначале закрепляют и измеряют два базиса b 1 и b 2 , измеряют углы треуголь-

ников МК 1 N и МК 2 N – β1 , α 1 и β2 , α 2 . Вычисляют углы γ1 и γ2

по формулам γ1 =

180° – β1 – α 1 и γ2 = 180° – β2 – α 2 ,

а затем дважды вычисляют расстояние d :

d" = b 1 sin β1 / sin γ1 ;

d" = b 2 sin β2 / sin γ2 .

Расхождение величин d" и d" допускается до 1/1000 – 1/2000

от искомой длины

Рис 11.7. Косвенные способы определения расстояний

3 . Между точками Р и L (рис. 11.7 в ) находится препятствие, перекрывающее видимость вдоль линии РL . В этом случае выбирают точку Т с учетом хороших условий измерения линий РТ и ТL и после нахождения их горизонтальных проложений d 1 и d 2 и измерения горизонтального угла β вычисляют по теореме косинусов

РL = √ d 2 1 + d 2 2 − 2 d 1 d 2 cosβ .

Для контроля измерения и вычисления повторяют.

Рассмотренные способы прямого и косвенного определения расстояний трудоемки. В инженерно-геодезических работах для измерения расстояний широко применяются электронные дальномеры, работающие в оптическом (световом) диапазоне электромагнитных волн (светодальномеры).

11.5. Учет значимости погрешностей измерений углов и расстояний при обосновании точности геодезических работ

При производстве многих видов геодезических работ измеряют длины линий и горизонтальные углы между ними, при этом точности угловых и линейных измерений рационально выбирать под условием их приблизительно равного влияния на погрешности планового положения определяемых точек (равной значимости). В соответствии с данным условием определяют согласованную точность приборов и методов линейных и угловых измерений.

На рис. 11.8 показано, что погрешность d измерения линии d вызывает продольное перемещение точки В в положение В" , а погрешность Δβ измерения горизонтального угла приводит к поперечной линейной погрешности е и смещению точки в положение В ". По условию равной значимости линейная поперечная погрешность е должна быть равна по величине продольной линейной погрешности d . При этом соответствующая угловая погрешность вычисляется в радианах Δβрад

Рис. 11.8. Продольная d и поперечная е линейные погрешности определения точки В линейно-угловыми измерениями

В формуле (11.22) отношение d /d часто задается нормированной относительной погрешностью d /d = 1/Т измерения расстояния d , а горизонтальный угол Δβ выражается в градусах, минутах или секундах. Тогда угловые погрешности, отвечающие по условию равной значимости заданным относительным погрешностям 1/Т, будут соответственно равны

Исходя из формул (11.23) определяется также относительная погрешность 1/Т измерения линий при заданной допустимой погрешности Δβ измерения горизон-

Соотношения (11.23) и (11.24) учитываются при расчетах по обоснованию точности приборов, необходимых для выполнения линейных и угловых измерений при различных геодезических работа . В таблице 11.1 приведены соответствующие примеры.

Таблица 11.1.

Расчетное соответствие между точностью измерения линий и углов по условию равной значимости их погрешностей и примеры выбора средств линейных и угловых измерений

Величины погрешностей, средства измерений

погрешности,

средства измерений

Номер примера

Допустимая

погрешность

измерения линий 1/Т

Допустимая

грешность

Расчетные

ния углов, 2m β р

Средняя квадрати-

ческая погрешность

измерения углов,

m β р

Угломерные

теодолиты типа

Допустимая 2m β

средняя квадратич. m β

2m β = 1"

2m β = 1"

2m β = 30"

2m β = 10"

2m β = 4"

погрешности измерения

углов данным

m β = 0,5"

m β = 0,5"

m β = 15"

m β = 5"

m β = 2"

Соответствие

Мерные ленты. Техниче-

Светодальномеры. Высокоточные и точ-

их точности

ские теодолиты. Практи-

ные теодолиты. При погрешности свето-

равной значимости

чески соблюдается согла-

дальномера

3 мм на 150м

грешностей угловых и

сованная

точность угло-

и условие равной значимости не

линейных измерений

линейных

соблюдается, но светодальномеры эффек-

измерений

снижают трудоемкость измерения

расстояний

Как видно из таблицы 11.1, теоретическое равенство значимости погрешностей линейных и угловых измерений на практике может соблюдаться достаточно точно (для теодолитов и мерных лент) и не соблюдаться. На практике нет необходимости в непременном применении условия равной значимости рассматриваемых погрешностей при выборе приборов для измерения углов и линий. Например, при заданной точности угловых измерений в комплекте с теодолитами типа Т30 или Т15, для упрощения и ускорения измерения линий вместо мерных лент целесообразно применять недорогие светодальномеры (лазерные рулетки), обеспечивающие ускорение и упрощение работ по измерению расстояний. (см. примеры в таблице 11.1).

Скачать с Depositfiles

2.3 Краткая характеристика приборов для измерения длин линий

Как указывалось в первой лекции, по физической природе носителей информации , геодезические приборы для измерения длин (вариант 1) в соответствии с принципом, положенным в основу измерения, можно разделить на:

— механические,

— оптические,

— основанные на физических методах определения расстояний.

Дадим краткую характеристику механическим, оптическим и электронным приборам для измерения длин линий, а потом детально рассмотрим некоторые из них.

2.3.1 Механические мерные приборы

Механические мерные приборы представляют собой линейные меры различной длины, изготавливаемые чаще всего из металла (углеродистая сталь, нержавеющая сталь, инвар и другие сплавы) или из фибергласса (стеклопластика) с капроновым кордом в виде лент , рулеток , проволок и т.п., служащие для непосредственного измерения длины линиипутем последовательного отложения длины мерного прибора в створе измеряемой линии . Результаты измерения получают суммированием количества отложений в принятых единицах измерений.

Для справки .

Инвар (лат. invariabilis - неизменный) - сплав, состоящий из никеля (Ni, 36 %) и железа (Fe, остальное). Именуется как FeNi36, 64FeNi в США, российские аналоги именуются по ГОСТ как 36Н.

«Invar» - зарегистрированная торговая марка компании ArcelorMittal, но сплавы с таким составом изготавливаются и другими компаниями.

Первый из открытых инварных сплавов, состав которого был найден швейцарским ученым Ш. Гийомом в 1899 году. В 1920 году он получил Нобелевскую премию по физике за открытие важного сплава для производства точных инструментов и приборов.

Инвар имеет однофазную внутреннюю структуру. Плотность 8130 кг/м³, температура плавления 1425°C. Сплав обладает малым температурным коэффициентом линейного расширения и практически не расширяется в интервале температур от −100 до +100 °C. Его коэффициент теплового расширения ~1,2·10−6/°C в интервале температур от −20 до 100 °C. Очень чистый сплав (с содержанием кобальта менее 0,1 %) имеет ещё меньший коэффициент линейного расширения 0,62-0,65·10−6/°C.

Используется в точном приборостроении для изготовления мерных проволок в геодезии, эталонов длины, деталей часовых механизмов (балансиров хронометров, пружин), деталей барографов и высотомеров, несущих конструкций лазеров и др. Применялся в трубе космического телескопа «Астрон». Стоек против коррозии, хорошо обрабатывается механически.

Например, инварная проволока стандартной длины 24 м при изменении температуры на 1° C изменит свою длину всего лишь на 0.0288 мм, а при изменении температуры на 20° C – на 0.576 мм.

Существует также целый ряд разных других прецизионных сплавов (иновко, ковар, дилвер, ловар, элинвар), имеющих различные характеристики.

Измерения производят либо по поверхности земли (рис. 2.2,а), либо подвешивая мерный прибор на небольшой высоте (1.0–1.5 м) на специальных штативах (рис. 2.2,б). В обоих случаях вместо прямой – кратчайшего расстояния между конечными точками – измеряют некоторую ломанную линию (рис. 2.2,в). Поэтому для получения горизонтального проложения измеряют углы наклона ν линии или отдельных ее частей.

Рис. 2.2 – Вариант измерения длин линий металлическими рулетками, мерными лентами и мерными проволоками

Одним из наиболее простых по устройству мерных приборов является землемерная лента (рис. 2.3), предназначенная для измерения длин с невысокой точностью, характеризующейся относительной погрешностью порядка 1:1000 – 1:2000. В настоящее время землемерные ленты практически не используются, за исключением студентов первого курса геодезических специальностей. Стоит, однако, заметить, что почти во всем мире, в том числе и в США, Великобритании, Австралии, в университетских курсах металлические ленты и рулетки, а также методика измерения и обработка результатов измерения с их использованием, являются обязательным разделом рабочей программы курса.

Металлические рулетки (рис. 2.4) являются достаточно употребительным в геодезии мерным прибором. В Украине в основном используются рулетки российского и зарубежного производства.

Рулетки предназначены для измерения коротких линий при маркшейдерских, топографо-геодезических и строительных работах. Рулетки бывают стальные длиной 10, 20, 30, 50 м и более и тесьмяные длиной 5, 10 и 20 м.

В инженерно-геодезических работах используются металлические рулетки:

— в закрытом корпусе типа РЗ (рис. 2.4, а),

— на крестовине типа РК (рис. 2,4 б),

— на вилке типа РВ (рис. 2.4, в) и др.

В маркшейдерской практике чаще применяются горные рулетки на вилке или крестовине типов РГ-20, РГ-30 и РГ-50, изготавливаемые из нержавеющей стали, обладающие высокими механическими свойствами и большой коррозионной стойкостью.

Металлические рулетки представляют собой полосу из стали (реже — инвара), на которой нанесены сантиметровые или миллиметровые деления. По точности нанесения шкал рулетки делятся на 1-й, 2-й и 3-й классы. Точность измерения длин линий стальной рулеткой достигает 1: 50 000 и выше.

Для грубых измерений, когда можно пренебрегать погрешностями в несколько сантиметров (например, при съемке ситуации), используются тесьмяные рулетки в пластмассовых или металлических футлярах. Тесьмяная рулетка выполнена в виде полотняной полосы с проволочной стабилизирующей основой, окрашенной масляной краской, на которой отпечатаны сантиметровые деления и подписи дециметров и метров. Точность ее невелика, так как тесьма со временем вытягивается; кроме того, прочность этих рулеток значительно меньше, чем стальных. В маркшейдерском деле тесьмяные рулетки применяются при замерах горных выработок.

Рулетки в зависимости от класса точности и материала изготовления обеспечивают производство линейных измерений с относительными погрешностями от 1:2000 до 1:20000.

Рулетки с учетом их технических характеристик, рекомендуется использовать для различных геодезических работ: измерение линий, разбивочные работы, поэтажное распространение отметок, исполнительные съемки, различные обмеры габаритов конструкций и др.

Достоинства рулеток: компактность, малый вес, простота устройства и эксплуатации при сравнительно высокой точности измерений, особенно коротких линий.

Недостатки – большая трудоемкость при измерении отдельных линий, необходимость расчистки трассы, вешения, измерения углов наклона отдельных участков линий и т.п.

Мерные проволоки (рис. 2.5) предназначены для точных и высокоточных линейных измерений .

При точных и высокоточных линейных измерениях применяют стальные и инварные проволоки длиной 24 и 48 м, диаметр проволоки- 1,65 мм. На обоих концах проволоки расположены шкалы длиной 8-10 см с миллиметровыми делениями (рис. 2.5, а).

Измерение длин линий мерными проволоками производится по кольям или по целикам, устанавливаемым на штативах в створе линий. При измерениях проволока подвешивается на блочных станках под натяжением 10-килограммовых гирь (рис. 2.5, б). Пролеты между целиками или кольями измеряют несколько раз. Отсчеты по обеим шкалам проволоки производят одновременно с точностью до 0,1 мм.

Наиболее известными приборами этого типа являются базисные приборы БП-1, БП-2 и БП-3 с инварными проволоками, которые используются для измерения базисов в сетях триангуляции и длин сторон в полигонометрии, а также при точных инженерно-геодезических работах. В зависимости от числа проволок в комплекте, условий и методики измерений точность линейных измерений стальными проволоками колеблется от 1:10000 до 1:25000, а инварными проволоками- от 1:30000 до 1:1000000.

В настоящее время в связи с появлением электронных измерительных приборов, обеспечивающих практически такую же точность измерений, мерные проволоки в геодезии практически не используются.

2.3.2 Оптические дальномеры

При выполнении работ в труднодоступных районах – в таёжной заболоченной местности, в горах, в городских условиях – единственно возможным средством для измерения расстояний являются геодезические дальномеры , которые подразделяют на:

— геометрические или оптические,

— электронные или электромагнитные.

Оптический дальномер представляет собой оптико-механическое устройство, принцип действия которого основан на решении параллактического треугольника, образуемого базой и параллактическим углом (рис. 2.1)

Из параллактического треугольника искомое расстояние будет равно

(2.3)

Одну из величин ( или ) принимают постоянной, другую измеряемой. В зависимости от того, что известно, различают следующие оптические дальномеры:

— с постоянным углом и переменной (измеряемой) базой ;

— с постоянной базой и переменным (измеряемым) углом .

Конструктивно оптические дальномеры могут быть выполнены в виде насадки на зрительную трубу, самостоятельного прибора, встроенного узла или в виде одного из элементов зрительной трубы. В настоящее время из оптических дальномеров в основном используется нитяный дальномер с постоянным углом . Однако в студенческой практике используются также приборы с постоянным базисом, такие, например, как рейка Балла.

2.3.2.1 Оптический дальномер с постоянным параллактическим углом и измеряемой базой

На рис. 2.7 показан принцип действия оптического дальномера с постоянным параллактическим углом.

Наиболее распространенным среди оптических дальномеров с постоянным параллактическим углом является нитяный дальномер , постоянный угол которого образуют лучи, проходящие через два дальномерных штриха сетки нитей и узловую точку объектива зрительной трубы геодезического прибора (рис. 2.8).

Сетка нитей представляет собой систему штрихов, расположенных в плоскости изображения, даваемого объективом зрительной трубы. Основные штрихи сетки нитей предназначены для наведения трубы на цель в горизонтальной и вертикальной плоскости. Через точку пересечения основных штрихов проходит визирная ось зрительной трубы. Дальномерные штрихи нанесены симметрично относительно перекрестия основных штрихов и служат для определения расстояния по рейке, являющейся линейной мерой. Дальномерная рейка – это деревянный брусок длиной 3-4 м, толщиной 2 см и шириной 8 см со шкалой сантиметровых или иных делений.

Если в точке установить прибор, а в точке – рейку с сантиметровыми делениями, то визирные лучи и от дальномерных штрихов, пройдя через объектив, пересекутся в переднем главном фокусе объектива, образовав постоянный угол , и отметят на рейке отрезок , являющийся дальномерным отсчетом.

Всем привет. Сегодня рассмотрим необычный монокулярный лазерный дальномер на 600м. У прибора такого типа достаточно широкие сферы применения, от охоты, рыбалки, гольфа до каких либо тактических игр. Но обозреваемый экземпляр обижен производителем, урезаны некоторые функции Все функции оставили только в старших моделях.
Принцип работы у лазерных дальномеров: излучатель испускает лазерные импульсы, приёмник принимает отражённые от объекта, микросхема определяет результат по задержке принимаемых импульсов.
Перейдем к нашему образцу.
Дальномер упакован в плотную коробку.




Комплектация:
Дальномер
Чехол со шнурком
Ткань для чистки объектива
Инструкция на англ.

Характеристики
Диапазон измерения: 5-600m
Точность измерения: ±1 м
Длина волны лазера: 905 нм
Увеличение: 6X
Диаметр объектива: 24 мм
Ручная фокусировка
Рабочая температура: -60 ° ~ 60 °
Батарея: 3V CR2
Размеры: 11 * 7.5 * 4.5см
Масса: 174г.

Фото дальномера.








Есть чехол, очень удобно для переноски, ну и наверно немного защитит от небольших механических воздействий. От брызг и пыли точно.


В чехле.


Размеры


Питается от батарейки CR2 3В




На верхней стороне дальномера находятся 2 кнопки: включения и переключения меры измерения(метры-ярды).
После включения прибора в окуляре включаются визирные линии (перекрестье линий), как в оптическом прицеле для облегчения наведения, появляетя буква М (метры) и флажок, наверно для старших моделей.


Резкость изображения можно подстроить вращением кольца наглазника. Ход кольца небольшой и жесткий.


При кратковременном нажатии на кнопку включения происходит мгновенное измерение и на экране появляется результат измерения. Если зажать кнопку включения и держать, включается режим непрерывного сканирования. На перекрестье линий появляется маленький кружок.


Самое дальнее расстояние, которое смог измерять из окна.




Качество замера зависит от множества факторов: величины объекта, цвет поверхности и даже погодные условия.
Сравнил показания замеров с обычным дальномером. ПРИМЕРНО они одинаковые, потому что показания нашего девайса не имеют десятых, только целые. Например 4м и 4.2 м.


Скажу о минусах.
-Если измерять расстояние до предмета через стекло, в 80% замер не происходит. Но думаю мало кто будет проводить измерения через стекло.
-Нет крепления под штатив. Кому то это будет критично, т.к. при замере на дальних расстояниях очень трудно сделать замер на маленький объект, навести перекрестье.
Как дальномер, девайс однозначно мне нравится. Очень компактный и удобный в работе. Со своей главной задачей он справляется и очень хорошо. О точности на дальних расстояниях ничего сказать не могу.
Всем спасибо. Есть вопросы, задавайте.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +6 Добавить в избранное Обзор понравился +18 +36

Спектр применения дальномера невероятно широк. Прибор поможет определить не только дистанцию до дичи, но и ширину водоёма, расстояние до ориентира, высоту дерева и т.п. Игрок в гольф сможет оценить расстояние до лунки, а инженер - размеры строительной площадки.

Залог успешной работы или отдыха - правильно подобранные аксессуары. Здесь мы поможем вам подобрать дальномер, с которым вы не захотите расставаться.

Характеристики оптического дальномера

Две ключевые характеристики - измеряемая дистанция и уровень защищённости от воздействия среды.

Уровень защищённости

Практически любой прибор этого класса будет грязе- и водостойким. Но водостойкость и водонепроницаемость - не одно и то же: бюджетный оптический дальномер выдержит дождь и брызги, а дорогой продолжит работать и после падения в воду целиком.

Собираетесь макать дальномер в воду и возить в грязи? Ищите стандарт защиты не ниже IP67 (Nikon Prostaff 7i).

Дополнительный функционал менее важен, но может сыграть решающую роль при выборе между несколькими аналогичными моделями. Оптический дальномер может обладать следующими функциями:

Термометр и барометр

Температура и давление - базовые параметры для расчёта баллистической поправки при стрельбе на средние и большие дистанции.

Не менее полезны они будут рыбаку - от них зависит клёв - и туристу, предчувствующему грозу.

Уклономер

Даёт несколько важных преимуществ: расчёт горизонтального расстояния, высоты и всё ту же баллистическую поправку - на сей раз, угловую.

Важно помнить, что при измерении высоты к результату понадобится прибавить ваш рост.

Измерение скорости

Редкая, но полезная функция для охотников и рыбаков.

Оптический дальномер измеряет относительную скорость независимо от того, кто движется: цель или вы сами. Так, вы легко определите свою собственную скорость, наведя прибор на берег.

Ближняя и дальня цель

Режим выполняет две задачи: измерить расстояние до далёкой цели, игнорируя попутные ветки и кусты, или до ближней цели, слишком маленькой для автофокуса.

Непрерывное сканирование

Будет полезно для "ведения" движущейся цели или просто последовательных измерений дистанции до нескольких объектов.

Баллистический калькулятор

Встречается только у дорогих моделей, но значительно облегчит вам жизнь: оптический дальномер сам посчитает поправку, и вам останется только ввести данные в прицел.

Как выбрать оптический дальномер?

Кто вы? Умелый охотник? Опытный турист? Заядлый рыбак? Или дальномер вам нужен для работы - проектирования, контроля или картографирования? Для каждого из этих случаев потребуется свой прибор.

Для охотников важны дополнительные функции: расчёт горизонтальной дистанции и уклона, температуры, режим ближней и дальней цели. А вот дистанция измерений нужна небольшая - до 500 метров: дальше охотничьи ружья всё равно не берут.

Для туристов потребуется гораздо большая дистанция: от 1000 метров и более. Такой оптический дальномер позволит определить расстояние до ближайших ориентиров и найти своё местоположение по карте - на случай, если навигатора с собой не оказалось.

Для рыбаков дистанция и функционал отходят на второй план: главное, чтобы прибор выдержал падение в воду. И, желательно, всплыл обратно. Также может пригодиться функция измерения скорости, температуры и давления.

Для спортсменов понадобятся средние дистанции - около 1000 метров, а также особые функции. Например, режим "Гольф" у Nikon Laser Rangefinder 1000 AS выводит сразу несколько данных: горизонтальное и реальное расстояния и высоту.

Для инженеров , геодезистов и строителей потребуется функция уклономера, позволяющая определять высоту строений, зато можно ограничиться 500 метрами.

Цена оптического дальномера

На стоимость оптического дальномера влияют, в первую очередь, дополнительные функции. Если главное для вас - расстояние измерений, вы легко найдёте себе бюджетную модель, не опасаясь потерять в качестве. А если вы хотите купить оптический дальномер для ответственной работы или любимого хобби - все ваши вложения окупятся сторицей!