Влияние природы реагирующих веществ скорость. Скорость реакции, ее зависимость от различных факторов. Поверхность соприкосновения реагирующих веществ

Скорость химической реакции зависит от природы реагирующих веществ и условий протекания реакции: концентрации с, температуры />t/> , />присутствия катализаторов, а также от некоторых других факторов (например, от давления — для газовых реакций, от измельчения — для твердых веществ, от радиоактивного облучения)./>

Влияние концентраций реагирующих веществ. />Чтобы осуществля­лось химическое взаимодействие веществ А и В, их молекулы (части­цы) должны столкнуться. Чем больше столкновений, тем быстрее протекает реакция. Число же столкновений тем больше, чем выше концентрация реагирующих веществ. Отсюда на основе обширного экспериментального материала сформулирован основной за­кон химической кинетики, устанавливающий зависимость скорости реакции от концентрации реагирующих веществ:/>

Cкорость химической реакции пропорциональна произведению концентра­ций реагирующих веществ.

Для реакции (/> I/>) этот закон выразится уравнением/>

v/> = />kc A /> />c B /> , /> (1)/>

где с А и с В — концентрации веществ А и В, моль/л; />k/> — />коэффициент/> пропорциональности, называемый константой скорости реакции. Основной закон химической кинетики часто называют законом действующих масс . />

Из уравнения (1) нетрудно установить физический смысл константы скорости />k/> : она численно равна скорости реакции, когда концентрации каждого из реагирующих веществ сос­тавляют 1 моль/л или когда их произведение равно единице./>

Константа скорости реакции />k/> />зависит от природы реагирующих веществ и от температуры, но не зависит от их концентраций./>

Уравнение (1), связывающее скорость реакции с концентрацией реагирующих веществ, называется кинетическим уравнением реакции . Если опытным путем определено кинетическое уравнение реакции, то с его помощью можно вычислять скорости при других концентрациях тех же реагирующих веществ./>

Влияние температуры/> ./>

Зависимость скорости реакции от температу­ры определяется правилом Вант-Гоффа :/>

При повышении температуры на каждые 10 о скорость большинства реакций увеличивается в 2-4 раза.

Математически эта зависимость выражается соотношением/>

v t />/> 2/> = />v t /> 1/> γ/> , />

где />v t /> 1/> />, />v t /> 2/> — />скорости реакции соответственно при начальной (/> t/> 1/>) и конечной (/> t/> 2/>) температурах, а />γ/> — />температурный коэффициент скоро­сти реакции, который показывает, во сколько раз увеличивается ско­рость реакции с повышением температуры реагирующих веществ на 10°./>

Правило Вант-Гоффа является приближенным и применимо лишь для ориентировочной оценки влияния температуры на скорость реак­ции. Температура влияет на скорость химической реакции, увеличивая константу скорости./>

Скорость химической реакции зависит от многих факторов, включая природу реагирующих веществ, концентрацию реагирующих веществ, температуру, наличие катализаторов. Рассмотрим эти факторы.

1). Природа реагирующих веществ . Если идёт взаимодействие между веществами с ионной связью, то реакция протекает быстрее, чем между веществами с ковалентной связью.

2.) Концентрация реагирующих веществ . Чтобы прошла химическая реакция, необходимо столкновение молекул реагирующих веществ. То есть молекулы должны настолько близко подойти друг к другу, чтобы атомы одной частицы испытывали на себе действие электрических полей другой. Только в этом случае будут возможны переходы электронов и соответствующие перегруппировки атомов, в результате которых образуются молекулы новых веществ. Таким образом, скорость химических реакций пропорциональна числу столкновений, которое происходит между молекулами, а число столкновений, в свою очередь, пропорционально концентрации реагирующих веществ. На основании экспериментального материала норвежские учёные Гульдберг и Вааге и независимо от них русский учёный Бекетов в 1867 году сформулировали основной закон химической кинетики – закон действующих масс (ЗДМ): при постоянной температуре скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степени их стехиометрических коэффициентов. Для общего случая:

закон действующих масс имеет вид:

Запись закона действующих масс для данной реакции называют основным кинетическим уравнением реакции . В основном кинетическом уравнении k – константа скорости реакции, которая зависит от природы реагирующих веществ и температуры.

Большинство химических реакций является обратимыми. В ходе таких реакций продукты их по мере накопления реагируют друг с другом с образованием исходных веществ:

Скорость прямой реакции:

Скорость обратной реакции:

В момент равновесия:

Отсюда закон действующих масс в состоянии равновесия примет вид:

где K – константа равновесия реакции.

3) Влияние температуры на скорость реакции . Скорость химических реакций, как правило, при превышении температуры возрастает. Рассмотрим это на примере взаимодействия водорода с кислородом.

2Н 2 + О 2 = 2Н 2 О

При 20 0 С скорость реакции практически равна нулю и понадобилось бы 54 млрд.лет, чтобы взаимодействие прошло на 15%. При 500 0 С для образования воды потребуется 50 минут, а при 700 0 С реакция протекает мгновенно.

Зависимость скорости реакции от температуры выражается правилом Вант-Гоффа : при увеличении температуры на 10 о скорость реакции увеличивается в 2 – 4 раза. Правило Вант-Гоффа записывается:


4) Влияние катализаторов . Скорость химических реакций можно регулировать с помощью катализаторов – веществ, изменяющих скорость реакции и остающихся после реакции в неизменном количестве. Изменение скорости реакции в присутствии катализатора называется катализом. Различают положительный (скорость реакции увеличивается) и отрицательный (скорость реакции уменьшается) катализ. Иногда катализатор образуется в ходе реакции, такие процессы называют автокаталитическими. Различают гомогенный и гетерогенный катализ.

При гомогенном катализе катализатор и реагирующие вещества находятся в одной фазе. Например:

При гетерогенном катализе катализатор и реагирующие вещества находятся в разных фазах. Например:

Гетерогенный катализ связан с ферментативными процессами. Все химические процессы, протекающие в живых организмах, катализируются ферментами, которые представляют собой белки с определёнными специализированными функциями. В растворах, в которых идут ферментативные процессы, нет типичной гетерогенной среды, в связи с отсутствием чётко выраженной поверхности раздела фаз. Такие процессы относят к микрогетерогенному катализу.

Скорость химической реакции - изменение количества одного из реагирующих веществ за единицу времени в единице реакционного пространства.

На скорость химической реакции оказывают влияние следующие факторы:

  • природа реагирующих веществ;
  • концентрация реагирующих веществ;
  • поверхность соприкосновения реагирующих веществ (в гетерогенных реакциях);
  • температура;
  • действие катализаторов.

Теория активных столкновений позволяет объяснить влияние некоторых факторов на скорость химической реакции. Основные положения этой теории:

  • Реакции происходят при столкновении частиц реагентов, которые обладают определённой энергией.
  • Чем больше частиц реагентов, чем ближе они друг к другу, тем больше шансов у них столкнуться и прореагировать.
  • К реакции приводят лишь эффективные соударения, т.е. такие при которых разрушаются или ослабляются «старые связи» и поэтому могут образоваться «новые». Для этого частицы должны обладать достаточной энергией.
  • Минимальный избыток энергии, необходимый для эффективного соударения частиц реагентов, называется энергией активации Еа.
  • Активность химических веществ проявляется в низкой энергии активации реакций с их участием. Чем ниже энергия активации, тем выше скорость реакции. Например, в реакциях между катионами и анионами энергия активации очень мала, поэтому такие реакции протекают почти мгновенно

Влияние концентрации реагирующих веществ на скорость реакции

При повышении концентрации реагирующих веществ скорость реакции возрастает. Для того чтобы вступить в реакцию, две химические частицы должны сблизиться, поэтому скорость реакции зависит от числа столкновений между ними. Увеличение числа частиц в данном объеме приводит к более частым столкновениям и к возрастанию скорости реакции.

К увеличению скорости реакции протекающей в газовой фазе приведет повышение давления или уменьшение объема, занимаемого смесью.

На основе экспериментальных данных в 1867 г. норвежские учёные К. Гульдберг, и П Вааге и независимо от них в 1865 г. русский учёный Н.И. Бекетов сформулировали основной закон химической кинетики, устанавливающий зависимость скорости реакции от концентраций реагирующих веществ-

Закон действующих масс (ЗДМ) :

Скорость химической реакции пропорциональна произведению концентраций реагирующих веществ, взятых в степенях равных их коэффициентам в уравнении реакции. («действующая масса» – синоним современного понятия «концентрация»)

аА + bВ = cС + dD, где k – константа скорости реакции

ЗДМ выполняется только для элементарных химических реакций, протекающих в одну стадию. Если реакция протекает последовательно через несколько стадий, то суммарная скорость всего процесса определяется самой медленной его частью.

Выражения для скоростей различных типов реакций

ЗДМ относится к гомогенным реакциям. Если реакция геторогенная (реагенты находятся в разных агрегатных состояниях), то в уравнение ЗДМ входят только жидкие или только газообразные реагенты, а твердые исключаются, оказывая влияние только на константу скорости k.

Молекулярность реакции – это минимальное число молекул, участвующих в элементарном химическом процессе. По молекулярности элементарные химические реакции делятся на молекулярные (А →) и бимолекулярные (А + В →); тримолекулярные реакции встречаются чрезвычайно редко.

Скорость гетерогенных реакций

  • Зависит от площади поверхности соприкосновения веществ , т.е. от степени измельчения веществ, полноты смешивания реагентов.
  • Пример — горение древесины. Целое полено горит на воздухе сравнительно медленно. Если увеличить поверхность соприкосновения дерева с воздухом, расколов полено на щепки, скорость горения увеличится.
  • Пирофорное железо высыпают на лист фильтровальной бумаги. За время падения частицы железа раскаляются и поджигают бумагу.

Влияние температуры на скорость реакции

В XIX веке голландский ученый Вант-Гофф опытным путем обнаружил, что при повышении температуры на 10 о С скорости многих реакций возрастают в 2-4 раза.

Правило Вант-Гоффа

При повышении температуры на каждые 10 ◦ С скорость реакции увеличивается в 2-4 раза.

Здесь γ (греческая буква «гамма») — так называемый температурный коэффициент или коэффициент Вант-Гоффа, принимает значения от 2 до 4.

Для каждой конкретной реакции температурный коэффициент определяется опытным путем. Он показывает, во сколько именно раз возрастает скорость данной химической реакции (и ее константа скорости) при повышении температуры на каждые 10 градусов.

Правило Вант-Гоффа используется для приближенной оценки изменения константы скорости реакции при повышении или понижении температуры. Более точное соотношение между константой скорости и температурой установил шведский химик Сванте Аррениус:

Чем больше E a конкретной реакции, тем меньше (при данной температуре) будет константа скорости k (и скорость) этой реакции. Повышение Т приводит к увеличению константы скорости, это объясняется тем, что повышение температуры приводит к быстрому увеличению числа «энергичных» молекул, способных преодолевать активационный барьер E a .

Влияние катализатора на скорость реакции

Можно изменить скорость реакции, используя специальные вещества, которые изменяют механизм реакции и направляют ее по энергетически более выгодному пути с меньшей энергией активации.

Катализаторы – это вещества, участвующие в химической реакции и увеличивающие ее скорость, но по окончании реакции остающиеся неизменными качественно и количественно.

Ингибиторы – вещества, замедляющие химические реакции.

Изменение скорости химической реакции или ее направления с помощью катализатора называют катализом .

Влияние природы реагирующих частиц определяется их атомным составом, пространственным строением и молекулярными свойствами. Скорость химической реакции определяется скоростью разрыва одних и образованием других химических связей. Эти превращения происходят в элементарном акте реакции. Известно, что изменение длины химической связи, валентных углов и других геометрических параметров молекулы сопровождается изменением ее потенциальной энергии. Поэтому и взаимодействие частиц в элементарном акте реакции также должно характеризоваться изменением потенциальной энергии всей системы. Поскольку реагирующие молекулы обычно содержат много атомов, то элементарный акт химической реакции характеризуется многомерной поверхностью потенциальной энергии. На этой поверхности потенциальной энергии отражается влияние изменения каждого геометрического параметра одной молекулы на энергии ее взаимодействия с другой молекулой и наоборот.

Однако взаимодействие обычно происходит в одном конкретном месте молекулы – ее реакционном центре. Поэтому можно проследить изменение потенциальной энергии реагирующей системы, рассматривая ограниченное число параметров, связанных только с реакционным центром. Это могут быть, например, длины двух связей: образующейся и разрывающейся, валентный угол между ними. Тогда вместо поверхности потенциальной энергии можно рассмотреть изменение потенциальной энергии реагирующей системы относительно этого ограниченного набора ее координат, называемого координатой реакции.

Влияние температуры на скорость реакций.

С повышением температуры скорость химической реакции возрастает. В уравнении химической кинетики  = С А С В влияние температуры практически сказывается на изменении константы скорости реакции . С возрастанием температуры растет величина константы , следовательно, увеличивается сама скорость реакции.

Если через  Т обозначить константу скорости данной реакции при температуре Т, а через  Т+10К – константу скорости той же реакции при температуре (Т + 10К), отношение второй величины к первой даст так называемый температурный коэффициент скорости реакции ():

 =  Т+10К /  Т (22.)

Согласно приближенному (эмпирическому) правилу Вант-Гоффа величина температурного коэффициента  колеблется в пределах 2–4, т.е. при повышении температуры на 10 К скорость химической реакции возрастает в два–четыре раза.

Рис.1. зависимость температурного коэффициента скорости реакций от температуры в реакциях

образования (1) и разложения HI (2).

По правилу Вант-Гоффа температурный коэффициент скорости  для каждой химической реакции должен являться величиной постоянной. Однако в действительности он сильно уменьшается при повышении температуры, что хорошо видно из рис.1, где приведены кривые  = f (T) для реакций образования и разложения иодистого водорода. Повышение температуры на 30 К (от743 до 773 К) влечет за собой уменьшение температурного коэффициента первой реакции в 1,64 раза, второй – в 1,71 раза. Для этих реакций правило Вант-Гоффа справедливо лишь в сравнительно узком интервале температур.

Более точная зависимость константы скорости химической реакции от температуры была найдена Аррениусом (1889). Уравнение Аррениуса имеет вид

ln  = B  A / T, (23.)

где  - константа скорости реакции; А и В – постоянные, характерные для данной реакции; Т – термодинамическая температура.

Из уравнения (6.) видно, что логарифм константы скорости находится в линейной зависимости от обратной температуры.

Скорость любой химической реакции зависит от числа столкновений реагирующих молекул, так как число столкновений пропорционально концентрациям реагирующих веществ. Однако не все столкновения молекул сопровождаются взаимодействием. Очевидно, скорость реакции зависит не только от числа столкновений, но и от каких-то свойств сталкивающихся молекул. Это явление находит объяснение в теории активации Аррениуса.

Согласно этой теории реакционноспособны только те молекулы, которые обладают запасом энергии, необходимым для осуществления той или иной реакции, т.е. избыточной энергией по сравнению со средней величиной энергии молекулы. Такие молекулы получили название активных молекул. Эта избыточная энергия активной молекулы, благодаря которой становится возможной химическая реакция, носит название энергии активации. Эту энергию обычно выражают в кДж/кмоль. Энергия активации бывает меньше энергии разрыва связей в молекуле, так как для того чтобы молекула прореагировала, вовсе не требуется полного разрыва связей, их достаточно лишь ослабить.

Величина энергии активации зависит от строения молекулы и от того, в какую реакцию эта молекула вступает, т.е. каждая химическая реакция характеризуется свойственной ей величиной энергии активации. Она может быть снижена под воздействием внешних факторов: повышение температуры, лучистой энергии, катализаторов и др. Энергия активации проявляется в активных молекулах по-разному: активные молекулы могут обладать большей скоростью движения, повышенной энергией колебания атомов в молекуле и др.

Скорость химической реакции зависит от величины энергии активации: чем она больше, тем медленнее будет протекать данная реакция. С другой стороны, Чем меньше энергетический барьер реакции, тем большее число молекул будет обладать необходимой избыточной энергией и тем быстрее будет протекать эта реакция. Итак, Скорость химической реакции в конечном итоге зависит от соотношения между числом активных и неактивных молекул.

В теории активных соударений Аррениус показал, что количество активных молекул может быть вычислено по закону Максвелла-Больцмана:

N a = N общ e  E / RT , (24.)

где N a – число активных молекул; N общ – общее число молекул; e – основание натуральных логарифмов; Е – энергия активации; Т - термодинамическая температура; R – универсальная газовая постоянная.

Таким образом, рост скорости реакции с повышением температуры объясняется тем, что с увеличением температуры увеличивается не только средняя кинетическая энергия молекул, но и одновременно резко возрастает доля молекул, обладающих энергией выше определенного уровня, т.е. доля активных молекул, способных к реакции.

Природа реагирующих веществ – это не только их состав, но и вид частиц, которые непосредственно участвуют в реакции: атомы, молекулы, ионы или радикалы. Реакции между молекулами протекают обычно медленно, а между ионами и радикалами – быстро.

Влияние концентрации реагентов.

Зависимость скорости реакций от концентрации реагирующих веществ описывается основным закоом химической кинетики , устанавливающий: скорость химической реакции пропорциональна произведению концентраций реагирующих веществ.

Для реакции, протекающей по уравнению А + В = С + Д, этот закон выразится уравнением:

V = k · C A ∙ C B , (1)

где С А и С В – молярные концентрации вещества А и В; k – константа скорости реакции. Физический смысл константы скорости - она численно равна скорости реакции, когда концентрации каждого из реагирующих веществ составляют 1моль/л или когда их произведение равно единице.

Основной закон химической кинетики часто называют законом действующих масс.

Константа скорости реакции зависит от природы реагирующих веществ, температуры, присутствия катализатора, но не зависит от концентрации вещества.

Уравнение (1), связывающее скорость реакции с концентрацией реагирующих веществ, называется кинетическим уравнением реакции .Для реакции, записанной в общем виде , кинетическим уравнением будет

V = k · C m A ∙ C n B , (2)

где m и n – показатели степени, которые устанавливаются опытным путем и в большинстве случаев не равны стехиометрическим коэффициентам а и b в уравнении реакции.

Уравнение (2) является общим алгебраическим выражением закона действующих масс: скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, равных стехиометрическим коэффициентам соответствующих веществ в уравнении реакции.

Сумма m + n называется порядком реакции и, как правило, имеет значение от 0 до 3 (не исключены и дробные значения и даже отрицательные).

Порядок реакции – формально-кинетическая характеристика процесса, не отражает механизма реакции, лишь характеризует зависимость скорости от концентрации.

Основной закон химической кинетики не учитывает концентрации реагирующих веществ в твердом состоянии, ибо их концентрации постоянны и они реагируют лишь на поверхности, которая остается неизменной.

Молекулярность реакции – это молекулярно-кинетическая характеристика процесса, отражающая его механизм. Определяется числом частиц, одновременно взаимодействующих в элементарном акте.

В зависимости от количества молекул, принимающих участие в элементарном акте реакции, различают моно-, би- и тримолекулярные реакции.

Лишь для одностадийных (элементарных) реакций порядок совпадает с молекулярностью. Для простых реакций стехиометрическое уравнение отражает истинный механизм.

Влияние температуры.

Зависимость скорости реакции от температуры определяется правилом Вант-Гоффа , согласно которому при повышении температуры на каждые 10 градусов скорость большинства реакций увеличивается в 2-4 раза .

Математически эта зависимость выражается соотношением

где Vt 2 , Vt 1 - скорость реакции соответственно при начальной (t 1) и конечной (t 2) температурах, а γ - температурный коэффициент скорости реакции, принимающий значение от 2 до 4. Более точно зависимость скорости реакции от температуры выражается уравнением Аррениуса:

где k - константа скорости реакции, моль/л с; А - константа, не зависящая от температуры; Т - температура, К; R - универсальная газовая постоянная, равная 8,314 Дж/моль К; Еа - энергия активизации кДж/моль.

Энергия активации это минимальная энергия взаимодействующих частиц, достаточная для того, чтобы все частицы вступили в химическую реакцию.

Энергия активации зависит от природы реагирующих веществ и пути протекания реакции и не зависит от температуры, если с ее изменением не произошло изменение механизма реакции.

Энергию активации определяют опытным путем и установлено, что реакции с Е а < 50 кДж/моль при 298К идут с высокой скоростью, а если Е а > 100 кДж/моль, то скорость неизмеримо мала.

Влияние катализатора

Катализом называется изменение скорости химических реакций в присутствии веществ – катализаторов.

Катализатор – это вещество, изменяющее скорость реакции за счет участия в промежуточном химическом взаимодействии с компонентами реакции, но восстанавливающее после каждого цикла промежуточного взаимодействия свой химический состав.

Различают положительный и отрицательный катализ. В случае положительного катализа скорость химической реакции при введении катализатора возрастает. При отрицательном катализе, – наоборот, уменьшается. Отрицательный катализ часто называют ингибированием, а отрицательные катализаторы, снижающие скорость реакции, ингибиторами (механизм действия последних отличен от катализаторов).

Химические реакции, протекающие в присутствии катализаторов, называются каталитическими. Различают два вида катализа – гомогенный (однородный) и гетерогенный (неоднородный) катализ.

При гомогенном катализе реагирующие вещества и катализатор образуют однородную систему – газовую или жидкую. В этом случае между катализатором и реагирующими веществами отсутствует поверхность раздела. Примером может служить действие разнообразных ферментов в биологических процессах. Для гомогенного катализа установлено, что скорость химической реакции пропорциональна концентрации катализатора.

При гетерогенном катализе реагирующие вещества и катализаторы образуют систему из разных фаз. В этом случае между катализатором и реагирующими веществами существует поверхность раздела. Обычно катализатор является твердым веществом, а реагирующие вещества – газами или жидкостями. Например, окисление аммиака (газообразная фаза) в присутствии платины (твердая фаза). Все реакции при гетерогенном катализе протекают на поверхности катализатора. Поэтому активность твердого катализатора будет зависеть и от свойств его поверхности (размера, химического состава, строения и состояния).

Действие положительных катализаторов сводится к уменьшению энергии активации реакции.

Некоторые вещества снижают или полностью уничтожают активность твердого катализатора. Такие вещества называются каталитическими ядами .

В качестве примера можно привести соединения мышьяка, ртути, свинца, цианиды, к которым особенно чувствительны платиновые катализаторы.

Однако имеются и такие вещества, которые усиливают действие катализаторов данной реакции, хотя сами катализаторами не являются. Эти вещества называются промоторами (например, промотирование платиновых катализаторов добавками железами, алюминия и др.).

Роль катализаторов в химическом производстве исключительно велика, но не менее важны биологические катализаторы – ферменты - особые веществам животного или растительного происхождения, являющихся белками. Они обладают каталитическим действием по отношению к некоторым биохимическим реакциям за счет понижения их очередной инактивации.

Химическое равновесие. Принцип Ле – Шателье

Реакции, которые протекают в одном направлении и идут до конца, называются необратимыми. Их не так много. Большинство реакций являются обратимыми, т.е. они протекают в противоположных направлениях и не идут до конца. Например, реакция J 2 + H 2 D 2HJ при 350°С является типичной обратимой реакцией. В этом случае устанавливается подвижное химическое равновесие и скорости прямого процесса и обратного делаются равными.

Химическое равновесие – такое состояние системы реагирующих веществ, при котором скорости прямой и обратной реакций равны между собой.

Химическое равновесие называют динамическим равновесием. При равновесии протекают и прямая, и обратная реакции, их скорости одинаковы, вследствие чего изменений в системе не заметно.

Концентрации реагирующих веществ, которые устанавливаются при химическом равновесии, называются равновесными концентрациями. Обычно их обозначают при помощи квадратных скобок, например, , , .

Количественной характеристикой химического равновесия служит величина, называемая константной химического равновесия. Для реакции в общем виде: mA + nB = pC + qD

Константа химического равновесия имеет вид:

Она зависит от температуры и природы реагирующих веществ, но не зависит от их концентрации. Константа равновесия показывает, во сколько раз скорость прямой реакции больше скорости обратной реакции, если концентрации каждого из реагирующих веществ равна 1 моль/л. В этом физический смысл К.

Направление смещения химического равновесия при изменениях концентрации реагирующих веществ, температуры и давления (в случае газовых реакций) определяется общим положением, известным под названием принципа подвижного равновесия или принципа Ле Шателье : если на систему, находящуюся в равновесии, производится какое-либо внешнее воздействие (изменяется концентрация, температура, давление), то оно благоприятствует протеканию одной из двух противоположных реакций, которая ослабляет воздействие.

Следует отметить, что все катализаторы одинаково ускоряют как прямую, так и обратную реакции и поэтому на смещение равновесия влияние не оказывают, а только способствуют более быстрому его достижению.

Примеры решения задач

Пример 1.

Рассчитайте температурный коэффициент скорости реакции, зная, что с повышением температуры на 70 °С скорость возрастает в 128 раз.

Решение:

Для расчета используем правило Вант-Гоффа:

Ответ: 2

Пример 2.

При какой температуре закончится некоторая реакция за 0,5 мин, если при 70°С она заканчивается за 40 мин? Температурный коэффициент реакции равен 2,3.

Решение:

Для расчета используем правило Вант-Гоффа. Находим t 2:

Ответ: 122,6 0 С

Пример 3.

Во сколько раз изменится скорость прямой реакции N 2 (г)+3Н 2 (г)=NH 3 (г), если давление в системе увеличить в 2 раза?

Решение:

Увеличение давления в системе в 2 раза равносильно уменьшению объема системы в 2 раза. При этом концентрации реагирующих веществ возрастут в 2 раза. Согласно закону действия масс, начальная скорость реакции равна V н = k·· 3 .