Распределительная хроматография на бумаге. Ученический проект хроматография. Черт.1. Камера для восходящей и нисходящей хроматографии

БУМАЖНАЯ ХРОМАТОГРАФИЯ, метод разделения, идентификации и количественного определения веществ; один из плоскостных вариантов жидкостной хроматографии, в котором в качестве неподвижной фазы или инертного носителя неподвижной фазы используют специальную бумагу. Метод бумажной хроматографии предложен А. Мартином и Р. Сингом в 1944 году для анализа смесей аминокислот.

Разделение компонентов смеси происходит вследствие распределения веществ между неподвижной фазой и подвижной (элюентом); равномерное продвижение элюента вдоль слоя неподвижной фазы обеспечивается капиллярной структурой бумаги. Перенос компонентов элюентом происходит с различными скоростями в соответствии с их коэффициентом распределения. В результате на хроматограмме вещества образуют отдельные зоны (пятна), положение которых характеризуется величинами R f - относительной скоростью перемещения. Экспериментально величину R f определяют как отношение расстояния, пройденного веществом, к расстоянию, пройденному за это же время элюентом; R f ≤1; величина R f зависит от природы вещества, состава подвижной фазы, типа бумаги, техники эксперимента и не должна зависеть от концентрации определяемого вещества и присутствия других веществ. Окрашенные зоны на хроматограмме наблюдают визуально, неокрашенные проявляют реагентами, образующими с компонентами разделяемой смеси окрашенные или флуоресцирующие соединения. Идентификация веществ может быть основана на сопоставлении величин R f исследуемого и стандартного растворов. Количественный анализ осуществляют непосредственно на хроматограмме (по размеру пятна, спектрам поглощения или отражения, с помощью денситометрии, радиометрии и пр.) или после отделения (например, экстрагированием) вещества хроматографической зоны от целлюлозной основы (для определения используют спектрофотометрические, флуориметрические, атомно-абсорбционные и другие методы).

Бумажные хроматограммы можно получать путём восходящего, нисходящего или горизонтального (радиального) движения элюента; используя повторное разделение, получают двухмерные хроматограммы. Разделение проводят в закрытых камерах (стаканах, цилиндрах и др.), насыщенных парами подвижной фазы. Для разделения гидрофильных соединений используют специальную хроматографическую бумагу (из целлюлозных волокон), содержащую в качестве неподвижной фазы воду или иониты. Для разделения нерастворимых в воде соединений бумагу гидрофобизируют ацетилированием или пропиткой гидрофобными веществами (парафин, каучук, органические реагенты и др.). В качестве элюентов используют различные растворители или их смеси, водные растворы органических и неорганических кислот, спиртов, электролитов и пр.

Методом бумажной хроматографии можно анализировать малые количества (10 -9 -10 -6 г) химических соединений практически всех классов. Благодаря технической простоте и доступности бумажную хроматографию используют при обнаружении легко разделяемых веществ, при проверке индивидуальности органических соединений, определении следов элементов в геохимическом анализе и пр.

Лит.: Хроматография на бумаге. М., 1962; Хроматография. Практическое приложение метода. М., 1986. Т. 1-2; Основы аналитической химии / Под редакцией Ю. А. Золотова. 2-е изд. М., 1999. Кн. 1.

В настоящее время получили развитие следующие виды хроматографии на бумаге: одномерная, двумерная, круговая и электрофоретическая. Одномерную и двумерную выполняют в двух вариантах (рис. 6); восходящим и нисходящим потоком растворителя.

Рис.6

Одномерная восходящая хроматография. (рис. 6 а). 1-5 мкл исследуемого раствора капилляром наносит на полосу хроматографической бумаги в 2 см от нижнего края. Если неподвижная фаза - вода, то бумагу специально не обрабатывают, так как воздушно-сухая бумага содержит до 20 - 22% влаги. Подвижную фазу, насыщенную неподвижной, наливают на дно сосуда для хроматографирования (в цилиндр или пробирку).

Полосу бумаги нижним карем опускают в жидкость, а верхний край закрепляют так, чтобы бумага свободно свисала вниз, не касаясь стенок сосуда. Под действием капиллярных сил подвижная жидкость поднимается вверх по бумаге и разделяет компоненты смеси, которые при различных значениях Rf движутся по слою бумаги с неодинаковыми скоростями. Опыт считается законченным, когда фронт подвижной фазы почти достигнет верхнего края бумажной полосы. После этого хроматограмму извлекают из сосуда, отмечают линию фронта, высушивают и проявляют.

Ширина полосы обычно 2 - 5 см в случае нанесения одной пробы. Длина ее определяется условиями разделения. При одновременном хроматографировании ряда растворов берут широкую полосу бумаги; вдоль ее нижнего края проводят линию старта, на которую наносят капилляром исследуемые растворы на расстоянии 2--3 см друг от друга.

Одномерная нисходящая хроматография.

В верхней части цилиндра (см. рис. 6б.) укрепляют небольшую ванночку, в которую наливают подвижный растворитель, насыщенный неподвижным. На дно цилиндра помещают бюкс с неподвижным растворителем, насыщенным подвижным. Это создает в цилиндре атмосферу насыщенных паров, предотвращающих испарениерастворителя с бумаги.

На, полоску бумаги на расстоянии 5 см от верхнего края наносят каплю исследуемого раствора; край полоски погружают в ванну с подвижной фазой. Растворитель из ванны стекает под действием капиллярных сил и силы тяжести вниз по бумаге. Опыт считается законченным, когда фронт растворителя, достигнет 3-- 5 см от нижнего края бумаги.

Круговая хроматография . Для получения круговой хроматограммы в центр круга хроматографической бумаги вносят каплю исследуемого раствора. Работу удобно проводить в эксикаторе. Диаметр бумажного круга должен быть на 2--3 см больше диаметра нижней узкой чисти эксикатора. Круг укладывают над узкой частью эксикатора, в которую налита смесь неподвижного и подвижного растворителей. Для подачи растворителя в круге вырезают полоску от края круга до центра («фитиль»), отгибают ее вниз и опускают в растворитель. На полученной хроматограмме разделяемые вещества образуют концентрические круги.

Двумерная хроматография. Если одним растворителем разделить сложную смесь не удается, применяют последовательно два растворителя с разными коэффициентами распределения.

Для двумерной хроматографии применяют квадратные листы бумаги размером 20X 20, 30X30, 40X40 см. В начале опыта исследуемый раствор наносят на бумагу в ее левом углу на расстоянии 5 см от левого и от нижнего краев. После высушивания пятна бумагу помещают в сосуд для хроматографирования, опускают нижний край в один из выбранных растворителей и хроматографируют по восходящему методу. После высушивания бумагу, повернув на 90° против часовой стрелки, помещают в новый сосуд для хроматографирования, содержащий второй растворитель, и хроматографируют по восходящему методу. После проявления получают двумерную хроматограмму.

Бумага для хроматографирования. В распределительной хроматографии к бумаге предъявляются следующие требования: она должна быть химически чистой, химически и адсорбционно нейтральной, однородной по плотности, обеспечивать определенную скорость движения растворителя. В СССР выпускают четыре сорта хроматографической бумаги: № 1, 2, 3, 4. Каждый номер отличается от другого по плотности, а следовательно, и по скорости движения растворителя. Бумага № 1 и 2 называется «быстрой», а № 3 и 4 -- «медленной». Хроматографическая бумага должна содержать достаточное количество неподвижной фазы. Обычные сорта бумаги гидрофильны, поэтому в случае применения воды в качестве неподвижной фазы не требуется специально увлажнять бумагу.

Для разделения некоторых смесей нерастворимых в воде органических соединений целесообразно гидрофильную бумагу превратить в гидрофобную. Для этого бумагу ацетилируют, обрабатывая 10 г бумаги смесью 9 мл уксусного ангидрида, 100 мл петролейного эфира и 8--10 капель концентрированной серной кислоты. После ацетилирований бумагу пропитывают различными гидрофобными веществами (1%-ный раствор парафина в петролейном эфире, 0,5%-ный раствор каучука в бензоле и т. п.). Первостепенное значение для разделения смеси хроматографическим путем на бумаге имеет правильный выбор растворителей. В табл. 7 приведены подвижные фазы, наиболее часто применяемые в бумажной хроматографии для разделения смесей (неподвижная фаза -- вода).

Проявление бумажных хроматограмм . В большинстве случаев хроматограмма на бумаге после высушивания остается бесцветной. Поэтому полученные хроматограммы проявляют. Для этой цели служат растворы различных веществ, при взаимодействии которых с компонентами анализируемой смеси образуются окрашенные соединения. Качественно обнаружить вещества в проявленной хроматограмме можно и по люминесценции в ультрафиолетовом свете.

Для идентификации компонентов смеси на хроматограмме применяют метод «свидетелей». Этот метод основан на том, что коэффициент распределения Rf практически не зависит от присутствия посторонних веществ.

Метод хроматографии на бумаге относится к плоскостной хроматографии, он основан на распределении анализируемых веществ между двумя несмешивающимися жидкостями.

В распределительной хроматографии разделение веществ происходит вследствие различия коэффициентов распределения компонентов между двумя несмешивающимися жидкостями. Вещество присутствует в обеих фазах в виде раствора. Неподвижная фаза удерживается в порах хроматографической бумаги, не взаимодействуя с ней, бумага выполняет функцию носителя неподвижной фазы.

Виды хроматографической бумаги:

    гидрофильная бумага удерживает в порах до 22 % воды; неподвижная фаза – вода, подвижная – органический растворитель; такая бумага применяется для определения водорастворимых веществ.

    гидрофобная бумага отталкивает воду, поэтому ее пропитывают неполярным органическим растворителем (неподвижная фаза); подвижная фаза – вода; такая бумага применяется для определения нерастворимых в воде соединений (жирорастворимые кислоты, витамины).

К хроматографической бумаге предъявляются следующие требования:

    химическая чистота;

    химическая и адсорбционная нейтральность по отношению к анализируемым веществам и подвижной фазе;

    однородность по плотности;

    одинаковая направленность волокон.

Для получения хроматограммы на бумагу наносят каплю анализируемой смеси. Бумагу помещают в хроматографическую камеру, ее конец погружают в сосуд с элюентом. Растворитель продвигается по бумаге, смесь анализируемых веществ распределяется между подвижной и неподвижной фазами и разделяется на бумаге в виде пятен или полос. Положение зон компонентов определяют проявлением хроматографической бумаги соответствующими реагентами, которые с компонентами разделяемой смеси образуют окрашенные соединения.

Для количественной оценки способности разделения веществ в хроматографической системе применяют коэффициент распределения К р – отношение концентрации вещества в неподвижной и подвижной фазах. Экспериментальное установление коэффициентов распределения в данном методе невозможно, для оценки способности разделения веществ на бумаге применяют коэффициент смещения (подвижности) R f . Коэффициент смещения равен отношению скорости движения вещества () к скорости движения подвижной фазы (
). Экспериментально величину R f находят как отношение расстояния Х, пройденного веществом, к расстоянию Х f , пройденному растворителем от старта до линии фронта:

.

Коэффициент R f изменяется в пределах 0 – 1,00. Величина R f зависит от природы определяемого вещества, вида хроматографической бумаги, качества и природы растворителя, способа нанесения пробы, техники эксперимента и температуры. Коэффициент R f не зависит от концентрации определяемого вещества и присутствия других компонентов.

Идентификацию по хроматограмме выполняют следующими способами:

    визуальным сравнением характерной окраски зон веществ на исследуемой и стандартной хроматограммах;

    измерением коэффициентов подвижности R f для стандартного и анализируемого вещества в определенном растворителе. Хроматографирование и установление R f для исследуемой и стандартной смесей проводят на одинаковой бумаге и в одной камере в строго идентичных условиях. Сопоставляя коэффициенты R f , делают заключение о присутствии в анализируемой смеси тех или иных компонентов.

Количественное определение выполняют непосредственно по хроматограмме или при вымывании (элюировании) анализируемого вещества с бумаги.

Способы количественного анализа:

    визуальное сравнение интенсивности окраски пятен на исследуемой и стандартной хроматограммах (полуколичественное определение, точность 15 –20 %);

    измерение площади пятна, образованного данным компонентом, и нахождение концентрации вещества по градуировочному графику, построенному для серии стандартных растворов в координатах: площадь пятна – концентрация вещества; точность определения 5 – 10 %;

    элюирование определяемого вещества с поверхности хроматограммы и спектрофотометрическое или флуориметрическое измерение оптической плотности элюата (А); концентрацию вещества в растворе рассчитывают по формуле:

,

где К – коэффициент пропорциональности; S – площадь пятна, измеренная предварительно, мм 2 ; точность определения 1 %.

По способу хроматографирования различают восходящую (рис. 21), нисходящую (рис. 22), круговую (рис. 23), градиентную и двухмерную хроматографии.

Рис. 21. Камера для восходящей хроматографии: 1 – пробка; 2 – крючок; 3 – стеклянный сосуд; 4 – полоска бумаги; 5 – растворитель

Рис. 22. Хроматографическая камера для нисходящей хроматографии: 1 – растворитель; 2 – перекладина для бумаги; 3 – полоска бумаги; 4 – стеклянный сосуд; 5 – стекающий растворитель

Рис. 23. Разделение веществ методом круговой хроматографии: 1– хроматографическая бумага; 2 – крышка; 3 – чашка Петри; 4 – органический растворитель

Метод хроматографии на бумаге широко применяется для определения неорганических соединений, аминокислот, аминов, белков, углеводов, жирных кислот, фенолов, витаминов в химической, пищевой, фармацевтической промышленности, медицине, биохимии.

Метод нашел применение в анализе практически всех пищевых продуктов: в сахарном производстве – для определения углеводов; в хлебопекарном и кондитерском – аминокислот, органических кислот, углеводов, полисахаридов и карбонильных соединений; в виноделии – органических кислот и аминокислот; в производстве молока и молочных продуктов – аминокислот; в мясоперерабатывающей промышленности – фенолов, жирных и летучих кислот, аминокислот и карбонильных соединений.

Бумажная хроматография. Из первого слова вам понятно, что это нечто связанное с бумагой; а второе слово «хроматография» означает «цвет» (хрома) и «писать» (графия). Сложите их, и вы получите «писать цветом на бумаге» .

Бумажная хроматография является важнейшим тестом в науке. Тщательно проанализировав состав химического вещества по цвету, ученый может легко установить исходные вещества. Легко понять, что хроматография, действительно достойная изучения, работает именно за счет капиллярного эффекта – способа, которым вода распространяется в бумаге.

Колонка - содержит хроматографический сорбент, выполняет функцию разделения смеси на индивидуальные компоненты. Элюент - подвижная фаза: газ, жидкость или (реже) сверхкритический флюид. Неподвижная фаза - твердая фаза или жидкость, связанная на инертном носителе, в адсорбционной хроматографии - сорбент. Хроматограмма - результат регистрирования зависимости концентрации компонентов на выходе из колонки от времени. Детектор - устройство для регистрации концентрации компонентов смеси на выходе из колонки. Хроматограф - прибор для проведения хроматографии.

Нисходящая хроматография Метод, при котором подвижная фаза движется вниз Восходящая хроматография Метод, при котором подвижная фаза движется вверх Горизонтальная хроматография Метод, при котором подвижная фаза движется горизонтально Круговая хроматография Метод, при котором подвижная фаза движется из середины круга к его окружности Проточная хроматография Метод, при котором продвижение подвижной фазы продолжается и после достижения фронтом конца бумаги Повторная хроматография Метод, при котором по завершении первого продвижения подвижной фазы хроматограмму высушивают и хроматографирование повторяют (иногда несколько раз) Проявление Способ обнаружения веществ на хроматограмме Носитель Хроматографическая бумага

Неподвижная (стационарная) фаза Фаза, закрепленная на носителе Подвижная (мобильная) фаза Фаза, обеспечивающая перемещение разделяемых веществ по носителю с неподвижной фазой Старт Место, на которое наносится испытуемая проба

В бумажной хроматографии используют специальные сорта бумаги, различающиеся по номерам, с возрастанием которых плотность бумаги увеличивается. Бумага удерживает в порах воду, которая и является неподвижной жидкой фазой. Раствор пробы наносят в виде капель на лист бумаги на некотором расстоянии от края. После испарения растворителя край листа помещают в герметическую камеру, содержащую проявитель - подвижную жидкую фазу (например, спирты, кетоны, фенолы, четырёххлористый углерод, хлороформ и другие их смеси, а также смеси с неорганическими растворителями). При этом происходит передвижение исходного пятна по току проявителя и разделение смеси на компоненты. Если вещества не окрашены, то хроматограмму проявляют, например, опрыскиванием раствором индикатора, рассматривают в ультрафиолетовых лучах и пр. Отношение расстояния Rf, пройденного пятном I, к расстоянию, пройденному фронтом проявителя m, при одинаковых условиях эксперимента является постоянной величиной; Rf для различных веществ отличаются по значению и могут быть использованы для идентификации соединений.

Классификация Бумажной хроматографию, как и хроматографию вообще, можно разделить распределительную адсорбционную Нормальный (метод применяется для разделения липофильных веществ.) ионообменную обращённо фазную препаративную аналитическую

Количественные определения различных веществ в пятнах хроматограммы ведутся обычными аналитическими методами. Различают: одномерные, двумерные, круговые, колоночные и электрофоретические хроматограммы.

I. Адсорбционная хроматография основана на избирательной адсорбции отдельных компонентов анализируемой смеси соответствующими адсорбентами. При работе этим методом анализируемый раствор пропускают через колонку, заполненную мелкими зернами адсорбента. Применяют адсорбционную хроматографию для разделения неэлектролитов, паров и газов. II. Распределительная хроматография основана на использовании различия коэффициентов сорбируемости отдельных компонентов анализируемой смеси между двумя несмешивающимися жидкостями. Одна из жидкостей (неподвижная) находится в порах пористого вещества (носителя), а вторая (подвижная) представляет собой другой растворитель, не смешивающийся с первым.

Этот растворитель пропускают через колонку с небольшой скоростью. Различные величины коэффициентов распределения обеспечивают неодинаковую скорость движения и разделения компонентов смеси. Коэффициент распределения вещества между двумя несмешивающимися растворителями есть отношение концентрации вещества в подвижном растворителе к концентрации того же вещества в неподвижном растворителе: (К = Сподв/Снеподв).

Иногда в качестве носителя для неподвижного растворителя вместо колонки используют полоски или листы фильтровальной бумаги, не содержащей минеральных примесей. В этом случае каплю испытуемого раствора наносят на край полоски бумаги, которую подвешивают в закрытой камере, опустив ее край с нанесенной на нее каплей испытуемого раствора в сосуд подвижным растворителем (движителем), который, перемещаясь по бумаге, смачивает ее. При этом каждое содержащееся в анализируемой смеси вещество перемещается с присущей ему скоростью в том же направлении, что и движитель.

Особым видом распределительной хроматографии является газожидкостная хроматография (ГЖК). В качестве неподвижной фазы используют различные нелетучие жидкости, нанесенные на инертный твердый носитель; в качестве подвижной фазы газообразные азот, водород, гелий, двуокись углерода и др. Разделение смесей методом ГЖК осуществляется в колонках, представляющих собой трубки с внутренним диаметром 1 6 мм и длиной 1 5 м, заполненные инертным носителем, например диатомитом, пропитанным нелетучей жидкостью, или стальные и стеклянные капилляры диаметром 0, 2 0, 3 мм и длиной 25 100 м с жидкой фазой, нанесенной на стенки этих капилляров (капиллярная газожидкостная хроматография).

. Ионообменная хроматография основана на использовании ионообменных процессов, протекающих между подвижными ионами адсорбента и ионами электролита при пропускании раствора анализируемого вещества через колонку, заполненную ионообменным веществом (ионитом). Иониты представляют собой нерастворимые неорганические и органические высокомолекулярные соединения, содержащие активные (ионогенные) группы. Подвижные ионы этих групп способны при контакте с растворами электролитов обмениваться на катионы или анионы растворенного вещества. В качестве ионитов применяют окись алюминия (для хроматографии), пермутин, сульфоуголь и разнообразные ионообменные вещества ионообменные смолы. Иониты делят на катиониты, способные к катионному обмену (содержат активные группы: SO 3 H, COOH, OH); аниониты, способные к анионному обмену (активные группы: NH 2, =NH); амфолиты – ионообменные вещества, обладающие амфотерными свойствами.

IV. Осадочная хроматография основана на различной растворимости осадков, образуемых различными компонентами анализируемой смеси со специальными реактивами, нанесенными на высокодисперсное вещество. Анализируемые растворы пропускают через колонку, заполненную пористым веществом (носителем). Носитель пропитан реактивом осадителем, который образует с ионами раствора осадки, имеющие различную растворимость. Образовавшиеся осадки в зависимости от растворимости располагаются в определенной последовательности по высоте колонки.

V. Эксклюзионная (молекулярно ситовая) хроматография основана на разной проницаемости молекул компонентов в неподвижную фазу (высокопористый неионогенный гель). Эксклюзионная хроматография подразделяется на гельпроникающую (ГПХ), в которой элюент – неводный растворитель, и гель фильтрацию, где элюент – вода.

Внося в центр листка смоченной фильтровальной бумаги каплю смеси красных и синих чернил и аккуратно нанося по кап лям чистую воду, вы скоро получите точно такую же картинку. Внизу- кольцевая хроматограмма на бумаге слож ной смеси шести различных аминокислот,

прояв ленная четырьмя разными реактивами. Вверху справа- двухмерная хроматограмма еще более сложной смеси четырнадцати различных аминокис лот. Эта хроматограмма получена из одной капли раствора смеси кислот, нанесенной в точку, обозна ченную кружочком. Проявление велось поочередно в двух направлениях разными реактивами. Каждая метка пятно принадлежит одной аминокислоте. По окраске и положению пятна можно совершенно точно установить природу вещества. Вверху сле ва - хроматограмма обыкновенного чернильного пятна кляксы на промокательной бумаге.

Проявление хроматограмм Проявление компонентов на хроматограмме проводят одним из способов, приведенных ниже. Физические методы(Визуально, при дневном свете, отмечают на хроматограмме положение пятен цветных веществ. При наличии флуоресцирующих веществ проявление проводят в УФ свете.) Химические методы(Хроматограммы проявляют жидкими и газообразными проявителями, используя реакцию имеющихся на хроматограмме соединений с подходящим реагентом проявителем с образованием окрашенного или флуоресцирующего вещества. Жидкие проявители наносят пульверизатором или используют реагенты в аэрозольной упаковке, газообразные применяют, поместив хроматограмму в пары проявителя.)

Хроматограмму кладут горизонтально на лист фильтровальной бумаги или оставляют подвешенной на стеклянной палочке и опрыскивают как можно более мелкими каплями (туманом) проявителя всю площадь хроматограммы вначале с одной, а потом с другой стороны. При проявлении газообразным проявителем хроматограмму подвешивают в камере, в которую помещен летучий реагент (например, кристаллы йода), или на дне которой проявитель получают химическим путем (например, оксиды азота получают путем добавления твердого нитрита натрия к раствору соляной кислоты).

Биологические методы Хроматограммы проявляют, используя биологическую активность хроматографируемых веществ. Качественная оценка хроматограммы заключается в определении положения пятна или полосы, которое характеризуется значением R f=a/b, где a расстояние от центра пятна пробы до стартовой линии, мм; b расстояние от фронта растворителя до стартовой линии, мм, или значением Rx: Rx= a/c, где c расстояние от центра пятна вещества сравнения до стартовой линии, мм.

Определение количества искомого компонента в пробе проводят путем сравнения размеров и интенсивности окраски его пятна с пятнами вещества сравнения, нанесенными на бумагу в интервале значений концентрации, указанных в нормативно технической документации на испытуемый реактив, и обработанными в условиях испытания. Оценку проводят визуально или с помощью аппаратуры (например, денситометра, устройства для сканирования пятен компонентов на бумаге), или путем элюирования пятен и последующего фотометрического определения оптической плотности растворов. Хроматограммы хранят в условиях, препятствующих появлению взаимных оттисков хроматограмм (например, с прокладками из фильтровальной бумаги). Если характер пятен позволяет, то на хроматограммы наносят слой быстросохнущего лака. В случае необходимости проводят зарисовку контура хроматограммы или фотографирование.

ПРИМЕРЫ ОБОРУДОВАНИЯ ДЛЯ БУМАЖНОЙ ХРОМАТОГРАФИИ И СПОСОБОВ ЕГО ИСПОЛЬЗОВАНИЯ Камера для восходящей и нисходящей хроматографии 1. Камера для восходящей и нисходящей хроматографии (Рис 1) Черт. 2. Камера для горизонтальной хроматографии (Рис2) (Рис2)1 камера; 2 решетка из стеклянных палочек; 3 стеклянная палочка для прижатия конца хроматограммы; 4 крышка; 5 хроматограмма; 6 растворитель

Черт. 3. Камера для круговой хроматограммы (две чашки Петри) (Рис 3) 1 бумажный фитиль; 2, 4 чашки Петри; 3 круговая хроматограмма; 5 растворитель Черт. 4. Способы расположения хроматограммы при восходящей хроматографии (Рис 4) 1 хроматограмма; 2 хроматографическая камера; 3 растворитель

Черт. 5. Способ вкладывания бумажной хроматограммы в желобок 1 хроматограмма; 2 старт; 3 стеклянная палочка; 4 загнутая палочка для прижатия хроматограммы в желобке; 5 желобок

Двумерную хроматограмму получают разделением пятен одномерной хроматограммы другим проявителем в направлении, перпендикулярном первому ряду пятен. На круговой хроматограмме пятно, помещённое в центре листа, размывают по концентрическим окружностям. В колоночной бумажной хроматографии разделение проводят на бумажных дисках, плотно вставленных в цилиндрическую колонку. Для получения электрофоретических хроматограмм бумажный лист пропитывают электролитом, закрепляют между электродами, наносят анализируемую смесь, подключают электроды к источнику постоянного тока и одновременно на бумагу подают подвижный растворитель в направлении, перпендикулярном направлению силовых линий электрического тока.

В этом методе разделение компонентов происходит вследствие их неодинакового распределения между двумя жидкими фазами и разной скорости перемещения веществ под действием электрического поля. Бумажную хроматографию используют для разделения и анализа неорганических и органических веществ в природных и промышленных материалах (например, определяют смолы в нефтепродуктах, редкоземельные элементы в горных породах и минералах).

Хроматографические методы незаменимы в контроле качества пищевых продуктов. Пищевую ценность продуктов определяют, анализируя аминокислотный состав белков, изомерный состав жирных кислот и глицеридов в жирах, углеводы, органические кислоты и витамины. В последние годы многие из этих анализов выполняются с помощью высокоэффективной жидкостной хроматографии. Для оценки безопасности продуктов в них выявляют пищевые добавки (консерванты, антиоксиданты, подслащивающие вещества, красители и др.), определяют свежесть продуктов, устанавливают ранние стадии порчи и допустимые сроки хранения.

В пищевых продуктах методами хроматографии можно обнаружить такие загрязняющие вещества, как пестициды, нитрозамины, микотоксины (афлатоксины, охратоксин А, зеараленон и др.), полиядерные ароматические соединения, биогенные амины, нитраты и др. Загрязнение пищевых продуктов возможно и вследствие проникновения вредных веществ из материалов упаковки, в частности, хлористого винила, бензола, пластификаторов и др. В мясных продуктах определяют анаболитические стероиды, гормоны и другие типы фармацевтических препаратов, злоупотребление которыми характерно для интенсивного животноводства. Отдельная область применения газовой хроматографии анализ состава аромата пищевых продуктов. Обнаружены тысячи летучих компонентов, из которых лишь несколько десятков определяют характер запаха, остальные придают запаху и вкусу продукта индивидуальность.

В последние годы возникло новое направление энантиоселективный анализ компонентов пищи. По соотношению оптических изомеров аминокислот, оксикислот и некоторых иных соединений можно однозначно установить, является ли данный продукт натуральным или содержит синтетические имитаторы и добавки. Энантиомерный анализ показал, что микроволновая обработка пищевых продуктов, в отличие от жесткой термической, не приводит к рацемизации аминокислот. Однако все молочные продукты, подвергнутые процессам брожения, содержат немало (нетоксичных) D аланина и D аспарагиновой кислоты продуктов жизнедеятельности молочнокислых бактерий.

В природных жирах преобладают цис изомеры жирных кислот. Недавно обнаружено, что транс изомеры повышают содержание липопротеинов низкой плотности и уменьшают концентрацию липопротеинов высокой плотности в крови, что может способствовать развитию атеросклероза. Разработка методики газохроматографического разделения и анализа всех изомеров жирных кислот заставила производителей в несколько раз снизить содержание транс изомеров ненасыщенных кислот в маргарине.

Методом газовой хроматографии в некоторых сырах выявлено много нежелательных физиологически активных биогенных аминов, и эти сорта сыра были запрещены. В Японии в пищевых продуктах используется L триптофан, полученный с помощью генной инженерии и биотехнологии. И когда у тысяч людей обнаружили неизвестное ранее заболевание и десятки заболевших умерли, хроматографическими методами было установлено, что эти трагические последствия вызваны наличием токсичных загрязнений в триптофане (выявлено 60 примесей). Газохроматографическому анализу подвергаются вина, коньяки и другая спиртосодержащая продукция.

Теперь опять вернемся к фальшивому сливочному маслу. Есть такое масло - «Крестьянское» . С виду - масло как масло. Пахнет как сливочное. Вкусное. Для начала решено было проверить сколько в нем триглицеридов. В настоящем масле триглицеридов от массы всех липидов - большинство. В среднем - 98%. Для проверки применяем метод тонкослойной хроматографии. Используем пластинки Sorbfil. Хроматографическая система самая простая - бензол.

Хроматографический процесс, протекающий на листе фильтровальной бумаги при перемещении по ее капиллярам и поверхности подвижной фазы,

называется хроматографией на бумаге.

Неподвижной фазой является либо сама бумага, либо вещества, пред-

варительно нанесенные на ее волокна. Механизм хроматографии на бумаге может быть распределительным, адсорбционным или ионообменным. Пере-

мещение подвижной фазы происходит либо только под действием капилляр-

ных сил (восходящая хроматография), либо под действием капиллярных сил и силы тяжести (нисходящая хроматография).

При хроматографировании анализируемые вещества образуют на бу-

маге круглые или овальные пятна (зоны). Совокупность пятен, полученных при хроматографировании данного анализируемого образца, называется хро-

матограммой.

Подвижность вещества при хроматографировании характеризуется ве-

личиной R f , представляющей собой отношение расстояния от линии старта до центра пятна определяемого вещества к расстоянию от линии старта до линии фронта подвижной фазы (см. ОФС «Хроматография»).

Подлинность анализируемого вещества определяется при одновремен-

ном хроматографировании на одном листе бумаги анализируемого и стан-

дартного вещества. Если образцы идентичны, соответствующие им пятна на хроматограммах имеют одинаковый вид и равные значения R f . Для иденти-

фикации иногда целесообразно хроматографировать смесь равных количеств анализируемого и стандартного вещества. На хроматограмме должно набл ю-

даться одно пятно. Условия хроматографирования следует подбирать так,

чтобы значения R f были отличны от 0 и 1.

При испытаниях на чистоту примеси и основное вещество должны иметь разные значения R f . При этом можно судить о степени чистоты анали-

зируемого вещества по величине и интенсивности окраски (или поглощения)

обнаруживаемых на хроматограмме пятен примесей. Содержание примесей может быть определено полуколичественно. Для этого на одном листе бума-

ги одновременно хроматографируют определенное количество анализируе-

мого вещества и несколько образцов определяемой примеси (свидетеля) c

различными, точно известными концентрациями. Содержание примеси в анализируемом образце оценивают, сравнивая ее пятно на хроматограмме по совокупности площади пятна и интенсивности окраски (или поглощения) с

пятнами свидетеля. При достаточном сходстве пятен примеси по форме и ок-

раске с пятнами основного вещества, взятого в том же количестве, допуска-

ется использование соответствующих количеств основного вещества в каче-

стве свидетеля.

Для количественного анализа применяют спектрофотометрические или видеоденситометры. Для обработки хроматограмм в видимой области спе к-

тра целесообразно использовать планшетные сканеры и соответствующее программное обеспечение.

Можно также провести количественное определение веществ после их экстракции с хроматограммы. Для этого пятна вырезают и экстрагируют оп-

ределяемое вещество. Содержание анализируемого вещества в извлечении или сухом остатке после отгонки растворителя находят любым методом,

пригодным для определения малых концентраций.

ОБОРУДОВАНИЕ

Для проведения хроматографии на бумаге используют герметизиро-

ванные камеры, изготовленные из инертного материала и позволяющие на-

блюдать за ходом процесса разделения при закрытой крышке камеры. Часто в качестве камер используют стеклянные стаканы или цилиндры с пришли-

фованной крышкой и дополнительно герметизированные. На крышке могут быть входные отверстия (шлюзы) для добавления растворителя или снятия избыточного давления в камере.

При проведении нисходящей хроматографии в верхней части камеры помещают сосуд для подвижной фазы (лодочку). Лодочка должна вмещать объем подвижной фазы, достаточный для проведения, по крайней мере, од-

нократного хроматографирования. Длина лодочки должна превышать шири-

ну листа хроматографической бумаги. Камера должна быть снабжена уст-

ройствами для закрепления листа хроматографической бумаги в рабочем по-

ложении и для ввода в лодочку подвижной фазы.

При проведении восходящей хроматографии подвижную фазу поме-

щают либо в лодочку, установленную в нижней части камеры, либо налива-

ют на дно камеры.

Внутренние стенки камеры обкладывают фильтровальной бумагой, что способствует более быстрому и полному ее насыщению парами растворите-

лей, входящих в состав подвижной фазы.

Подготовку оборудования, хроматографической бумаги и подвижной фазы приводят в частных фармакопейных статьях.

1.2. ТОНКОСЛОЙНАЯ ХРОМАТОГРАФИЯ (ОФС 42-0094-09)

Хроматографический процесс в тонком слое сорбента, нанесенном на инертную твердую подложку (стеклянную, металлическую или полимер-

ную), называется тонкослойной хроматографией или хроматографией в тон-

ком слое сорбента (ТСХ).

Разделение может осуществляться по нескольким механизмам: адсорб-

ционному, распределительному, ион-парному, ионообменному, эксклюзион-

ному (гель-проникающему), хиральному или какой-либо их комбинации.

В результате движения анализируемого вещества и элюента под дейст-

вием капиллярных сил происходит разделение смеси исследуемых веществ на ее компоненты. При разделении вещества образуют на поверхности сор-

бента круглые или эллипсовидные пятна или полосы (хроматографические зоны).

Подвижность вещества при разделении характеризуется величиной R f

и R s (см. ОФС «Хроматография», уравнение 6 и рис. 1.4).

Параметры R f и R s используются для идентификации веществ и для оценки разделительной способности системы.

Испытание на подлинность (идентификация) анализируемых ве-

ществ проводится при одновременном хроматографировании одинакового количества анализируемого вещества и стандартного образца на одной и той же хроматограмме. При этом если вещества идентичны, то соответствующие им хроматографические зоны имеют одинаковую форму, интенсивность по-

глощения или окраски и равные величины R f .

При испытаниях на чистоту основное вещество и примеси в условиях хроматографирования должны иметь разные значения R f . При этом можно судить о степени чистоты анализируемого вещества по величине и интенсив-

ности пятен обнаруживаемых на хроматограмме примесей. Их содержание может быть определено полуколичественно. Для этого на пластинку наносят определенные количества анализируемого вещества и свидетелей. Для опре-

деления идентифицированных примесей в качестве свидетелей используют стандартные образцы идентифицированных примесей в количествах, соот-

ветствующих их предельному содержанию. Для определения неидентифици-

рованных примесей чаще всего используют растворы сравнения, приготов-

ленные путем разведения испытуемого раствора, как указано в частной фар-

макопейной статье. Содержание примеси в анализируемом веществе оцени-

вают, сравнивая зону примеси по совокупности величины и интенсивности с соответствующими пятнами свидетеля.

Количественное определение веществ на хроматограмме проводят,

как правило, денситометрически.

Основные приборы и материалы:

пластинки с закрепленным слоем сорбента различных модификаций;

хроматографические камеры;

калиброванные капилляры и микрошприцы;

устройства для нанесения на хроматограммы обнаруживающих реаген -

тов (пульверизаторы для опрыскивания, камеры для погружения хро-

матограмм в раствор и др.);

вещества-стандарты, растворители, реагенты для обнаружения хрома-

тографических зон;

ультрахемископы с УФ-лампами на 254 нм и 365 нм.

Используемая лампа должна удовлетворять следующему тесту.

Проверка работы лампы. На пластинку силикагель G наносят 5 мкл

0,04 % раствора натрия салицилата в спирте 96 % для ламп с максимумом и з-

лучения при 254 нм или 5 мкл 0,2 % раствора натрия салицилата в спирте

96 % для ламп с максимумом излучения при 365 нм в виде пятна диаметром около 5 мм; пятно должно светиться.

При проведении анализов расстояние между лампой и хроматографи-

ческой пластинкой не должно превышать расстояния, используемого при проверке работы лампы.

Примечание. Используемый спирт должен быть свободен от флуоресцирующих веществ.

Хроматографические пластинки

Пластинка для ТСХ представляет собой твердую подложку (стеклян-

ную, металлическую или полимерную) с нанесенным слоем сорбента. Тол-

щина слоя сорбента от 0,1 до 0,25 мм для аналитического варианта и от 0,5

до 2,0 мм для препаративного.

Готовые хроматографические пластинки могут содержать флуоресци-

рующий индикатор для детектирования веществ, поглощающих в УФ-

области спектра при 254 и 365 нм.

Размер частиц сорбента для аналитического варианта ТСХ составляет

5–20 мкм. Наряду с такими пластинками можно использовать высокоэффек-

тивные хроматографические пластинки, содержащие сорбент с частицами размером 5–7 мкм. Такие пластинки позволяют увеличить эффективность разделения и уменьшить предел обнаружения хроматографических зон.

Выпускаются также пластинки с монолитными сорбентами и пластин-

ки с концентрирующей зоной (двухфазовые пластинки). Последние исполь-

зуются в фармацевтическом анализе для разделения сложных и гетерогенных смесей (экстракты из растительного лекарственного сырья, растворы табле-

ток со вспомогательными компонентами, мягкие лекарственные формы, сме-

Хроматографические камеры

Используют хроматографические камеры для вертикального или гори-

зонтального элюирования с герметичными крышками. Камеры для горизон-

тального элюирования снабжены также устройствами для подачи элюента на пластинку. Перед проведением анализа обычно внутренние стенки камеры обкладывают фильтровальной бумагой, смоченной подвижной фазой. Для вертикального элюирования применяют камеры с перегородкой в центре дна.

Использование камеры для горизонтального элюирования позволяет осуществлять одновременное элюирование с противоположных сторон пла-

стинки, что увеличивает производительность анализа в два раза по сравне-

нию с использованием камеры для вертикального элюирования. При этом также уменьшается расход подвижной фазы приблизительно в 10 раз. В го-

ризонтальной камере движение подвижной фазы по пластинке происходит только за счет капиллярных сил, вклад гравитации при этом отсутствует, что повышает эффективность разделения по сравнению с камерами для верти-

кального элюирования.

Подвижные фазы (ПФ)

Подвижные фазы (элюенты) должны быть предпочтительно малоток-

ции ни с сорбентом (НФ, неподвижной фазой), ни с компонентами разделяе-

мой смеси. ПФ должны также достаточно быстро испаряться с поверхности хроматограмм после элюирования.

Для подавления диссоциации полярных молекул компонентов разде-

ляемой смеси к ПФ добавляют вещества кислого или основного характера

(модификаторы).

Нанесение проб

Если это указано в частных фармакопейных статьях, пластинки предва-

рительно промывают растворителем и активируют нагреванием в течение 1 ч

при 100–105 С в сушильном шкафу. Перед нанесением проб пластинки должны храниться в герметично закрытом эксикаторе. Нанесение проб осу-

ществляют:

калиброванными капиллярами с тупым концом;

поршневыми микрошприцами с тупым концом иглы;

полуавтоматическими или автоматическими аппликаторами.

Нанесение осуществляют двумя способами: в виде пятен (2–5 мм диа-

метром) с промежутками между пятнами не менее 10 мм и в виде полос дли-

ной от 10 до 20 мм с промежутком между ними не менее 10 мм. Расстояние линии старта от нижнего края пластинки должно составлять не менее 10 мм.

Во избежание «краевых эффектов» размывания фронта ПФ в процессе элюи-

рования перед нанесением проб соскабливают с обеих боковых сторон пла-

стинки слой сорбента шириной 2–3 мм. Расстояния на стартовой линии от боковых краев пластинки до мест нанесения первой и последней проб долж-

ны составлять не менее 10 мм. В процессе нанесения проб недопустимо по-

вреждение сорбента на линии старта. Подсушивание нанесенных проб осу-

ществляют в токе холодного или теплого воздуха, либо на специальном столе с электроподогревом.

Способы элюирования

Используют следующие способы элюирования: восходящее элюирова-

ние (одно- и многоступенчатое, одномерное и двумерное – с поворотом пла-

стинки на 90 или 180) и горизонтальное.

Восходящая хроматография

Если не указано иначе в частной фармакопейной статье, пластинку с нанесенными пробами помещают вертикально в камеру, предварительно на-

сыщенную парами ПФ в течение 1 ч при 20–25 С. Уровень ПФ должен быть расположен ниже линии старта. Камеру закрывают и проводят процесс при

20–25 С в защищенном от света месте. После прохождения фронта ПФ рас-

стояния, указанного в частной фармакопейной статье, пластинку вынимают из камеры, сушат и проявляют в предписанных условиях.

При проведении двумерной хроматографии пластинку высушивают после хроматографирования в первом направлении и хроматографируют в направлении, перпендикулярном первому.

Горизонтальная хроматография

Пластинку с нанесенными пробами помещают в камеру и направляют по-

ток ПФ из лотка в камеру согласно инструкции к прибору для горизонтального элюирования. Процесс проводят при 20–25 С (если это указано в частной фар-

макопейной статье, одновременно с противоположных сторон пластинки). Ко-

гда ПФ пройдет расстояние, указанное в частной фармакопейной статье, пла-

стинку вынимают, сушат и проявляют в предписанных условиях.

Двумерную хроматографию выполняют как указано в разделе «Восхо-

дящая хроматография».

Способы обнаружения

Обнаружение (детектирование) хроматографических зон после прове-

дения качественной и полуколичественной ТСХ осуществляют следующими способами:

– наблюдением под УФ-светом;

опрыскиванием растворами обнаруживающих реагентов;

выдерживанием в парах обнаруживающего реагента;

погружением в растворы обнаруживающих реагентов в специальных камерах.

Высокоэффективная тонкослойная хроматография (ВЭТСХ)

Эффективность разделения увеличивается как вследствие увеличения площади раздела подвижной и неподвижной фазы за счет уменьшения диа-

метра частиц сорбента, так и благодаря большей однородности размеров этих частиц. Применяют ВЭТСХ-пластинки, выполненные как в нормально-

фазовом (полярная НФ), так и в обращенно-фазовом (неполярная НФ) вари-

По сравнению с классической ТСХ использование высокоэффективных пластинок позволяет:

увеличить число анализируемых проб за счет уменьшения диаметра стартовых пятен (до 1–2 мм) или длины полос (до 5–10 мм);

уменьшить промежутки между стартовыми пятнами (до 5 мм);

уменьшить время хроматографирования за счет уменьшения пробега фронта подвижной фазы (ПФ);

уменьшить расход (объем) ПФ;

– снизить пределы обнаружения пятен и количественного определения определяемых веществ в 10–100 раз.

Применение ВЭТСХ обеспечивает получение более компактных пятен разделяемых соединений, что улучшает метрологические характеристики коли-

чественного определения с помощью сканирующей хроматоденситометрии.