Принципиальная схема парогазовых установок. Рекомендации по обслуживанию и ремонту пгу на автомобилях маз Принцип действия пгу с котлом утилизатором

К сожалению, переход на сооружение парогазовых ТЭЦ (ПГУ ТЭЦ) вместо паротурбинных привел к еще более резкому снижению теплофикации в общем производстве энергии. Это, в свою очередь, приводит к повышению энергоемкости ВВП и снижению конкурентоспособности отечественной продукции, а также увеличению затрат на жилищно-коммунальные нужды.

¦ высокий КПД выработки электроэнергии на ПГУ ТЭЦ по конденсационному циклу до 60%;

¦ трудности размещения ПГУ ТЭЦ в условиях плотной городской застройки, а также рост поставок топлива в города;

¦ по сложившейся традиции ПГУ ТЭЦ оснащаются, также как и паротурбинные станции, теплофикационными турбинами типа Т.

Строительство ТЭЦ с турбинами типа Р, начиная с 1990-х гг. прошлого века, было практически прекращено. В доперестроечное время около 60% тепловой нагрузки городов приходилось на долю промышленных предприятий. Их потребность в тепле для осуществления технологических процессов в течение года была достаточно стабильной. В часы утреннего и вечернего максимумов электропотребления городов пики электроснабжения сглаживались путем введения соответствующих режимов ограничения поставок электрической энергии промышленным предприятиям. Установка на ТЭЦ турбин типа Р была экономически оправдана из-за их меньшей стоимости и более эффективного расходования энергоресурсов по сравнению с турбинами типа Т. парогазовый энергоресурс топливо

Последние 20 лет из-за резкого спада промышленного производства существенно изменился режим энергоснабжения городов. В настоящее время городские ТЭЦ работают по отопительному графику, при котором летняя тепловая нагрузка составляет всего 15-20% расчетной величины. Суточный график электропотребления стал более неравномерным из-за включения электрической нагрузки населением в вечерние часы, который связан со шквальным ростом оснащения населения электрической бытовой техникой. Кроме того, выравнивание графика энергопотребления за счет введения соответствующих ограничений промышленных потребителей из-за их малой доли в общем энергопотреблении оказалось невозможным. Единственным не очень эффективным способом решения проблемы явилось сокращение вечернего максимума за счет введения сниженных тарифов в ночные часы .

Поэтому в паротурбинных ТЭЦ с турбинами типа Р, где выработка тепловой и электрической энергии жестко взаимосвязаны, применение таких турбин оказалось нерентабельным. Противодавленческие турбины производятся теперь только малой мощности для повышения эффективности работы городских паровых котельных путем перевода их в режим когенерации.

Такой установившийся подход сохранился и на сооружении ПГУ ТЭЦ. Вместе с тем при парогазовом цикле жесткая взаимосвязь между отпуском тепловой и электрической энергии отсутствует. На этих станциях с турбинами типа Р покрытие вечернего максимума электрической нагрузки может осуществляться путем временного увеличения отпуска электроэнергии в газотурбинном цикле. Кратковременное снижение отпуска тепла в систему теплоснабжения не сказывается на качестве отопления благодаря теплоаккумулирующей способности зданий и тепловой сети.

Принципиальная схема ПГУ ТЭЦ с противодавленческими турбинами включает две газовые турбины, котел-утилизатор, турбину типа Р и пиковый котел (рис. 2). Пиковый котел, который может быть установлен вне площадки ПГУ, на схеме не показан .

Из рис. 2 видно, что ПГУ ТЭЦ состоит из газотурбинной установки в составе компрессора 1, камеры сгорания 2 и газовой турбины 3. Выхлопные газы из ГТУ направляются в котел-утилизатор (КУ) 6 или в байпасную трубу 5 в зависимости от положения шибера 4 и проходят ряд теплообменников, в которых вода нагревается, пар сепарируется в барабанах низкого 7 и высокого давления 8, направляется в паротурбинную установку (ПТУ) 11. Причем насыщенный пар низкого давления поступает в промежуточный отсек ПТУ, а пар высокого давления предварительно перегревается в котле-утилизаторе и направляется в голову ПТУ Выходящий из ПТУ пар конденсируется в теплообменнике сетевой воды 12 и конденсатными насосами 13 направляется в газовой подогреватель конденсата 14, а затем направляется в деаэратор 9 и из него в КУ.

При тепловой нагрузке, не превышающей базовую, станция работает полностью по отопительному графику (АТЭЦ=1). Если тепловая нагрузка превышает базовую, включается пиковый котел. Потребное количество электроэнергии поступает от внешних источников генерации по городским электрическим сетям.

Однако возможны ситуации, когда потребность в электроэнергии превышает объем ее подачи от внешних источников: в морозные дни при росте потребления электроэнергии бытовыми нагревательными приборами; при авариях на генерирующих мощностях и в электрических сетях. В таких ситуациях величина мощности газовых турбин при традиционном подходе тесно привязана к производительности котла- утилизатора, которая в свою очередь диктуется потребностью в тепловой энергии в соответствии с отопительным графиком и может оказаться недостаточной для удовлетворения возросшего спроса на электроэнергию.

Чтобы покрыть возникший дефицит электроэнергии, газовая турбина переключается частично на сброс отработанных продуктов сгорания помимо котла-утилизатора непосредственно в атмосферу. Таким образом, ПГУ ТЭЦ переводится временно в смешанный режим - с парогазовым и газотурбинным циклами.

Известно, что газотурбинные установки обладают высокой маневренностью (скорости набора и сброса электрической мощности). Поэтому еще в советское время их предполагалось наряду с гидроаккумулирующими станциями использовать для сглаживания режима электроснабжения.

Кроме того, надо отметить, что развиваемая ими мощность увеличивается с понижением температуры наружного воздуха и именно при низких температурах в самое холодное время года наблюдается максимум электропотребления. Это показано в таблице .

При достижении мощности, составляющей более 60% от расчетной величины, выбросы вредных газов NOx и CO минимальны (рис. 3).

В межотопительный период, чтобы не допустить снижения мощности газовых турбин более чем на 40%, одна из них отключается.

Повышение энергетической эффективности ТЭЦ может быть достигнуто за счет централизованного холодоснабжения городских микрорайонов . При аварийных ситуациях на ПГУ ТЭЦ целесообразно в отдельных зданиях строить газотурбинные установки малой мощности .

В районах плотной городской застройки крупных городов при реконструкции существующих ТЭЦ с паровыми турбинами, выработавшими свой ресурс, целесообразно создавать на их базе ПГУ ТЭЦ с турбинами типа Р. В результате высвобождаются значительные площади, занятые системой охлаждения (градирни и др.), которые могут быть использованы для других целей.

Сопоставление ПГУ ТЭЦ с турбинами с противодавлением (типа Р) и ПГУ ТЭЦ с конденсационно-отборными турбинами (типа Т) позволяет сделать следующие выводы.

  • 1. И в том, и в другом варианте коэффициент полезного использования топлива зависит от доли выработки электроэнергии на базе теплового потребления в общем объеме генерации.
  • 2. В ПГУ ТЭЦ с турбинами типа Т потери тепловой энергии в контуре охлаждения конденсата имеют место в течение всего года; наибольшие потери - в летний период, когда размер теплового потребления ограничен только горячим водоснабжением.
  • 3. В ПГУ ТЭЦ с турбинами типа Р КПД станции снижается только в ограниченный промежуток времени, когда необходимо покрыть возникший дефицит в электроснабжении.
  • 4. Маневренные характеристики (скорости набора и сброса нагрузки) газовых турбин многократно выше характеристик паровых турбин.

Таким образом, для условий строительства станций в центрах больших городов ПГУ ТЭЦ с противодавленческими турбинами (типа Р) превосходят парогазовые ТЭЦ с конденсационноотборными турбинами (типа Т) по всем показателям. Для их размещения требуется значительно меньшая территория, они более экономично расходуют топливо и их вредное воздействие на окружающую среду также меньше.

Однако, для этого необходимо внести соответствующие изменения в нормативную базу по проектированию парогазовых станций.

Практика последних лет показывает, что инвесторами, сооружающими загородные ПГУ ТЭЦ и на достаточно свободных территориях, приоритет отдается выработке электроэнергии, а отпуск тепла рассматривается ими как побочный вид деятельности. Объясняется это тем, что КПД станций даже в конденсационном режиме может достигать 60%, а сооружение теплотрасс требует дополнительных затрат и многочисленных согласований с разными структурами. В итоге коэффициент теплофикации АТЭЦ может быть меньше 0,3.

Поэтому при проектировании ПГУ ТЭЦ нецелесообразно для каждой отдельной станции закладывать в техническом решении оптимальное значение АТЭЦ. Задача заключается в нахождении оптимальной доли теплофикации в системе теплоснабжения всего города.

Сейчас вновь стала актуальной разработанная в советское время концепция строительства мощных ТЭЦ в местах добычи топлива, вдали от больших городов. Это диктуется как увеличением доли использования местных видов топлива в ТЭК регионов, так и созданием новых конструкций теплопроводов (воздушная прокладка) с практически ничтожным падением температурного потенциала при транспортировке теплоносителя.

Подобные ТЭЦ могут создаваться как на основе паротурбинного цикла с непосредственным сжиганием местного топлива, так и парогазового цикла с использованием газа, получаемого на газогенераторных установках.


ПГУ Установка, предназначенная для одновременного преобразования энергии двух рабочих тел пара и газа, в механическую энергию. [ГОСТ 26691 85] парогазовая установка Устройство, включающее радиационные и конвективные поверхности нагрева,… …

Парогазовая установка - устройство, включающее радиационные и конвективные поверхности нагрева, генерирующие и перегревающие пар для работы паровой турбины за счет сжигания органического топлива и утилизации теплоты продуктов сгорания, используемых в газовой турбине в… … Официальная терминология

Парогазовая установка - ГТУ 15. Парогазовая установка Установка, предназначенная для одновременного преобразования энергии двух рабочих тел пара и газа, в механическую энергию Источник: ГОСТ 26691 85: Теплоэнергетика. Термины и определения оригинал документа 3.13 парог … Словарь-справочник терминов нормативно-технической документации

парогазовая установка с внутрицикловой газификацией биомассы - (в зависимости от используемой технологии газификации КПД достигает 36 45 %) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN biomass integrated gasification combined cycle plant … Справочник технического переводчика

парогазовая установка с внутрицикловой газификацией угля - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN gasification combined cycle plant … Справочник технического переводчика

парогазовая установка с внутрицикловой газификацией угля (ПГУ-ВГУ) - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN coal gasification power plantintegrated coal gasification combined cycle plant … Справочник технического переводчика

парогазовая установка с внутрицикловой газификацией угля на воздушном дутье - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN air blown integrated coal gasification combined cycle plant … Справочник технического переводчика

парогазовая установка с внутрицикловой газификацией угля на кислородном дутье - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN oxygen blown integrated coal gasification combined cycle plant … Справочник технического переводчика

парогазовая установка с дожиганием топлива - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN combined cycle plant with supplemenary firing … Справочник технического переводчика

парогазовая установка с дополнительным сжиганием топлива - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN supplementary fired combined cycle plant … Справочник технического переводчика

Парогазовая установка ПГУ является комбинированной установкой, состоящей из ГТУ, котла – утилизатора (КУ) и паровой турбины (ПТ). Реализация парового и газового циклов осуществляется в раздельных контурах, т. е., при отсутствии контакта между продуктами сгорания и парожидкостным рабочим телом. Взаимодействие рабочих тел осуществляется только в форме теплообмена в теплообменных аппаратах поверхностного типа.

Использование парогазовых установок является одним из возможных и перспективных направлений снижения топливно – энергетических затрат.

ПГУ термодинамически удачно объединяют в себе параметры ГТУ и паросиловых установок:

ГТУ работают в зоне повышенных температур рабочего тела;

Паросиловые – приводятся в действие уже отработавшими, уходящими из турбины продуктами сгорания, т.е. выполняют роль утилизаторов и используют бросовую энергию.

КПД установки повышается в результате термодинамической надстройки высокотемпературного газового цикла паровым циклом, что сокращает потери теплоты с уходящими газами в газовой турбине.

Таким образом, ПГУ можно рассматривать как третий этап усовершенствования турбинных агрегатов. ПГУ являются перспективными двигателями, как высокоэкономичные, с малыми капиталовложениями. Отличные качества парогазовых установок определили области их применения. ПГУ широко применяются в энергетике и др. областях ТЭК.

Сдерживает широкое применение таких установок отсутствие единой точки зрения о наиболее рациональных направлениях утилизации тепла ГТУ.

В настоящее время перспективной схемой ПГУ для использования на МГ также является чисто утилизационная схема ПГУ с полной надстройкой цикла, в которой парогенератор обогревается только отходящими газами газовой турбины (рис. 6.1).

По этой схеме продукты сгорания ГТУ после турбины низкого давления (ТНД) поступают в котел-утилизатор (КУ) для выработки пара высокого давления. Получаемый пар из КУ поступает в паровую турбину (ПТ), где расширяясь, совершает полезную работу, идущую на привод электрогенератора или нагнетателя. Отработанный пар после ПТ поступает в конденсатор К, где конденсируется и затем питательным насосом (ПН) снова подается в котел – утилизатор. Термодинамический цикл парогазовой установки приведен на рис. 6.2. Высокотемпературный газовый цикл ГТУ начинается с процесса сжатия воздуха в осевом компрессоре: 1 → 2. В камере сгорания (а также в регенераторе, если он есть) осуществляется подвод теплоты 2 → 3; генерированные продукты сгорания поступают в газовую турбину, где расширяясь, совершают работу, процесс 3 → 4; и наконец, отработавшие газы отдают свое тепло в котле утилизаторе, нагревая воду и пар, 4 → 5. Остаток низкотемпературного тепла остается неиспользованным и передается в окружающую среду, 5 → 1.


Рисунок 6.1 - Принципиальная схема ПГУ с котлом – утилизатором

Рисунок 6.2 - Схема цикла парогазовой установки в координатах Т-S

Парогазовый цикл образован последовательностью процессов: 1" – 2" - 3" – 4"- 5" – 1" (рис. 6.2). Условно цикл начинается процесса 1" – 2" –подвода теплоты в экономайзере. Вода, поступившая из конденсатора, имеет низкую температуру, равную 39 °С (при давлении в конденсаторе Р нп = 0,007 МПа). Нагревается она до температуры кипения, порядка 170…210 °С, при постоянном давлении, соответствующем рабочему давлению котла 0,8…2,0 МПа. 2" – 3" – процесс испарения воды в испарителе и превращения ее в насыщенный пар. 3" – 4" – перегрев пара в перегревателе; 4" – 5" – процесс расширения пара в паровой турбине с совершением работы и потерей температуры; 5" – 1" – пар конденсируется в конденсаторе К, и образовавшаяся вода вновь подается в котел - утилизатор КУ. Цикл замыкается.

Мощность собственно паровой турбины (ПТ) зависит от действительного теплоперепада, или энтальпии, по паровой турбине и расхода пара. Расход пара и параметры пара определяются работой котла-утилизатора. Принципиальная схема котла – утилизатора показана на рис. 6.3.

Котел – утилизатор – это паровой котел с принудительной циркуляцией, не имеющий собственной топки и обогреваемый уходящими газами какой – либо энергетической установки.

Поэтому бросовой теплоты выхлопных газов ГТУ, с температурой порядка 400 °С, вполне достаточно для эффективной работы утилизационных установок.

По ходу котла устанавливаются последовательно теплообменные аппараты: водяной экономайзер "Э", испаритель "И" и пароперегреватель "П".

Водяной экономайзер - это теплообменник, в котором вода подогревается низкотемпературными горячими газами (продуктами сгорания) перед ее подачей в барабан котла (сепаратор).

Генерация пара производится в ходовой части котла следующим образом. Питательная вода, предварительно нагретая в экономайзере до температуры кипения уходящими газами, поступает в барабан котла. Температура горячих газов в хвостовой части котла не должна опускаться ниже 120 °С *.

В режиме генерации пара вода циркулирует через испаритель. В испарителе идет интенсивное поглощение тепла, за счет которого и происходит парообразование. Процесс парообразования в испарителе происходит при температуре кипения питательной воды, соответствующей определенному давлению насыщения.

Как и в любом другом автомобиле, на котором используется похожее устройство, главная задача сцепления, это облегчение жизни водителю, а если конкретней, то пневмогидравлический усилитель делает так, что водителю приходится тратить меньше усилий при выжимании педали сцепления. И для большегрузных автомобилей подобное облегчение очень кстати.

Рассмотрим на примере, устройство сцепления и других моделей МАЗ. Принцип работы выглядит следующим образом - нажатие педали вызывает повышение давления на гидравлический поршень, и такое же давление испытывает поршень следящего устройства. Как только это происходит, включается автоматика следящего устройства и меняет уровень давления в силовом пневматическом цилиндре. Крепится само устройство на фланце картера.

Вариантов усилителей достаточно много, но если говорить конкретно по минским грузовикам, то большинство из них объединяет одна не слишком приятная особенность – часто так случается, что в процессе эксплуатации из ПГУ начинает подтекать жидкость. Естественно, что первая приходящая мысль - это может быть признаком поломки, случившейся из-за перегрузок, причем серьезной.

Если же подобных перегрузок после установки (замены) усилителя не было, сразу возникает другая версия – подсунули бракованный! А что, сегодня подделывают все, хоть отдельные или 238, хоть Brabus SV12 в сборе к «мерину» шестисотому. Не подделывают, наверное, только комплектующие к русской «калине» и украинской «таврии» - материал дороже получается.


Но шутки в сторону, тем более что вытекание жидкости из пневмогидравлического усилителя симптом серьезный. На самом деле все не так трагично, дело в том, что это может быть свидетельством не поломки, а всего лишь неправильной регулировки. «Всего лишь», потому что ремонт ПГУ МАЗ сцепления, не сложен и при определенных навыках не займет много времени.




Самое главное, это определить рабочих ход для штока усилителя. Чтобы это сделать, потребуется сам шток оттянуть от рычага, отводя его при этом в сторону, так чтобы он полностью вышел из корпуса. После рычаг сцепления необходимо повернуть по направлению от штока, выбирая все возможные зазоры. Затем измеряется расстояние между поверхностью рычага и концом штока.

Если это расстояние меньше 50 мм, то это означает, что в работе плунжер штока будет выходить до упора, тем самым, открывая выход жидкости. Все что требуется, это переставить рычаг на один шлиц ближе к усилителю. Если же расстояние больше, то причина подтекания в другом, и лучше провести более детальную проверку в автосервисе. Впрочем, повторимся, но чаще всего регулировки будет предостаточно.

Устройство, схема ПГУ МАЗ



1 6430-1609205 Корпус цилиндра
2 6430-1609324 Манжета
3 6430-1609310 Кольцо
4 6430-1609306 Шайба
5 6430-1609321 Манжета
6 6430-1609304 Втулка
7 Кольцо 033-036-19-2-2 Кольцо 033-036-19-2-2
8 6430-1609325 Манжета
9 Кольцо 018-022-25-2-2 Кольцо 018-022-25-2-2
10 6430-1609214 Поршень следящий
11 Кольцо 025-029-25-2-2 Кольцо 025-029-25-2-2
12 6430-1609224 Пружина
13 Кольцо 027-03 0-19-2-2 Кольцо 027-03 0-19-2-2
14 6430-1609218 Седло
15 500-3515230-10 Клапан усилителя сцепления
16 842-8524120 Пружина
17 Кольцо 030-033-19-2-2 Кольцо 030-033-19-2-2
18 6430-1609233 Опора
19 6430-1609202 Цилиндр
20 373165 Шпилька М10х40
21 6430-1609203 Гильза
22 375458 Шайба 8 ОТ
23 201458 Болт М8-6gх25
24 6430-1609242 Пружина
25 6430-1609322 Манжета
26 6430-1609207 Поршень
27 6430-1609302 Кольцо
28 Кольцо 020-025-30-2-2 Кольцо 020-025-30-2-2
29 6430-1609236 Вал
30 6430-1609517 Уплотнитель
31 6430-1609241 Шток
32 6430-1609237 Крышка
33 6430-1609216 Пластина цилиндра
34 220050 Винт М4-6gх8
34 220050 Винт М4-6gх8
35 64221-1602718 Колпак защитный
36 378941 Заглушка М14х1,5
37 101-1609114 Клапан перепускной
38 12-3501049 Колпачок клапана
39 378942 Заглушка М16х1,5
40 6430-1609225 Сапун
41 252002 Шайба 4
42 252132 Шайба 14
43 262541 Пробка кг 1/8"
43 262541 Пробка кг 1/8"
44 Кольцо 008-012-25-2-2 Кольцо 008-012-25-2-2
45 6430-1609320 Трубка
46 6430-1609323 Уплотнитель
Ссылка на эту страницу: http://www..php?typeauto=2&mark=11&model=293&group=54

Парогазовыми называются энергетические установки (ПГУ) , в которых теплота уходящих газов ГТУ прямо или косвенно используется для выработки электроэнергии в паротурбинном цикле.

На рис. 4.10 показана принципиальная схема простейшей парогазовой установки, так называемого утилизационного типа. Уходящие газы ГТУ поступают в котёл-утилизатор - теплообменник противоточного типа, в котором за счет тепла горячих газов получают пар высоких параметров, направляемый в паровую турбину.

Рисунок 4.10. Принципиальная схема простейшей парогазовой установки

Котёл-утилизатор представляет собой шахту прямоугольного сечения , в которой размещены поверхности нагрева, образованные сребрёнными трубами, внутрь которых подаётся рабочее тело паротурбинной установки (вода или пар). В простейшем случае поверхности нагрева котла-утилизатора состоят из трёх элементов: экономайзера 3, испарителя 2 и пароперегревателя 1. Центральным элементом является испаритель , состоящий из барабана 4 (длинного цилиндра, заполняемого наполовину водой), нескольких опускных труб 7 и достаточно плотно установленных вертикальных труб собственно испарителя 8. Испаритель работает на принципе естественной конвекции . Испарительные трубы находятся в зоне более высоких температур, чем опускные. Поэтому в них вода нагревается, частично испаряется и поэтому становится легче и поднимается вверх в барабан. Освобождающееся место заполняется более холодной водой по опускным трубам из барабана. Насыщенный пар собирается в верхней части барабана и направляется в трубы пароперегревателя 1. Расход пара из барабана 4 компенсируется подводом воды из экономайзера 3. При этом поступающая вода, прежде чем испариться полностью, многократно пройдет через испарительные трубы. Поэтому описанный котёл-утилизатор называется котлом с естественной циркуляцией .

В экономайзере происходит нагрев поступающей питательной воды практически до температуры кипения . Из барабана сухой насыщенный пар поступает в пароперегреватель, где перегревается сверх температуры насыщения. Температура получаемого перегретого пара t 0 всегда, конечно, меньше, чем температура газов q Г , поступающих из газовой турбины (обычно на 25 - 30 °С).

Под схемой котла-утилизатора на рис. 4.10 показано изменение температур газов и рабочего тела при их движении навстречу друг другу. Температура газов плавно уменьшается от значения q Г на входе до значения q ух температуры уходящих газов. Движущаяся навстречу питательная вода повышает в экономайзере свою температуру до температуры кипения (точка а ). С этой температурой (на грани кипения) вода поступает в испаритель. В нём происходит испарение воды. При этом её температура не изменяется (процесс a - b ). В точке b рабочее тело находится в виде сухого насыщенного пара. Далее в пароперегревателе происходит его перегрев до значения t 0 .

Образующийся на выходе из пароперегревателя пар направляется в паровую турбину, где, расширяясь, совершает работу. Из турбины отработанный пар поступает в конденсатор, конденсируется и с помощью питательного насоса 6 , повышающего давление питательной воды, направляется снова в котёл-утилизатор.

Таким образом, принципиальное отличие паросиловой установки (ПСУ) ПГУ от обычной ПСУ ТЭС состоит только в том, что топливо в котле-утилизаторе не сжигается, а необходимая для работы ПСУ ПГУ теплота берётся от уходящих газов ГТУ. Общий вид котла – утилизатора приведен на рис.4.11.

Рисунок 4.11. Общий вид котла – утилизатора

Электростанция с ПГУ показана на рис. 4.12, на котором изображена ТЭС с тремя энергоблоками. Каждый энергоблок состоит из двух рядом стоящих ГТУ 4 типа V94.2 фирмы Siemens , каждая из которых свои уходящие газы высокой температуры направляет в свой котёл-утилизатор 8 . Пар, генерируемый этими котлами, направляется в одну паровую турбину 10 с электрогенератором 9 и конденсатором, расположенным в конденсационном помещении под турбиной. Каждый такой энергоблок имеет суммарную мощность 450 МВт (каждая ГТУ и паровая турбина имеют мощность примерно 150 МВт). Между выходным диффузором 5 и котлом-утилизатором 8 установлена байпасная (обводная) дымовая труба 12 и газоплотный шибер 6 .

Рисунок 4.12. Электростанция с ПГУ

Основные преимущества ПГУ.

1. Парогазовая установка - в настоящее время самый экономичный двигатель, используемый для получения электроэнергии.

2. Парогазовая установка - самый экологически чистый двигатель. В первую очередь это объясняется высоким КПД - ведь вся та теплота, содержащаяся в топливе, которую не удалось преобразовать в электроэнергию, выбрасывается в окружающую среду и происходит её тепловое загрязнение. Поэтому уменьшение тепловых выбросов ПГУ по сравнению с паросиловой примерно соответствует уменьшению расхода топлива на производство электроэнергии.

3. Парогазовая установка - очень маневренный двигатель, с которым в маневренности может сравниться только автономная ГТУ. Потенциально высокая маневренность ПТУ обеспечивается наличием в её схеме ГТУ, изменение нагрузки которой происходит в течение нескольких минут.

4. При одинаковой мощности паросиловой и парогазовой ТЭС потребление охлаждающей воды ПГУ примерно втрое меньше. Это определяется тем, что мощность паросиловой части ПГУ составляет 1/3 от общей мощности, а ГТУ охлаждающей воды практически не требует.

5. ПГУ имеет более низкую стоимость установленной единицы мощности, что связано с меньшим объёмом строительной части, с отсутствием сложного энергетического котла, дорогой дымовой трубы, системы регенеративного подогрева питательной воды, использованием более простых паровой турбины и системы технического водоснабжения.

ЗАКЛЮЧЕНИЕ

Главным недостатком всех тепловых электростанций является то, что все виды применяемого топлива являются невосполнимыми природными ресурсами, которые постепенно заканчиваются. Кроме того, ТЭС потребляют значительное количество топлива (ежедневно одна ГРЭС мощностью 2000 МВт сжигает за сутки два железнодорожных состава угля) и являются самыми экологически «грязными» источниками электроэнергии, особенно если они работают на высокозольных сернистых топливах. Именно поэтому в настоящее время, наряду с использованием атомных и гидравлических электростанций, ведутся разработки электрических станций, использующих восполняемые или другие альтернативные источники энергии. Однако, несмотря ни на что ТЭС являются основными производителями электроэнергии в большинстве стран мира и останутся таковыми, как минимум в ближайшие 50 лет.

КОНТРОЛЬНЫЕ ВОПРОСЫ К ЛЕКЦИИ 4

1. Тепловая схема ТЭЦ – 3 балла.

2. Технологический процесс производства электроэнергии на ТЭС – 3 балла.

3. Компоновка современных ТЭС – 3 балла.

4. Особенности ГТУ. Структурная схема ГТУ. КПД ГТУ – 3 балла.

5. Тепловая схема ГТУ – 3 балла.

6. Особенности ПГУ. Структурная схема ПГУУ. КПД ПГУ – 3 балла.

7. Тепловая схема ПГУ – 3 балла.


ЛЕКЦИЯ 5

АТОМНЫЕ ЭЛЕКТРИЧЕСКИЕ СТАНЦИИ. ТОПЛИВО ДЛЯ АЭС. ПРИНЦИП РАБОТЫ ЯДЕРНОГО РЕАКТОРА. ПРОИЗВОДСТВО ЭЛЕКТРОЭНЕРГИИ НА АЭС С ТЕПЛОВЫМИ РЕАКТОРАМИ. РЕАКТОРЫ НА БЫСТРЫХ НЕЙТРОНАХ. ДОСТОИНСТВА И НЕДОСТАТКИ СОВРЕМЕННЫХ АЭС

Основные понятия

Атомная электростанция (АЭС) это электростанция, вырабатывающая электрическую энергию путём преобразования тепловой энергии, выделяющейся в ядерном реакторе (реакторах) в результате управляемой цепной реакции деления (расщепления) ядер атомов урана. Принципиальное отличие АЭС от ТЭС только в том, что вместо парогенератора используется ядерный реактор - устройство, в котором осуществляется управляемая цепная ядерная реакция, сопровождающаяся выделением энергии.

Радиоактивные свойства у урана впервые обнаружил французский физик Антуан Беккерель в 1896 году. Английский физик Эрнест Резерфорд впервые осуществил искусственную ядерную реакцию под действием – частиц в 1919 году. Немецкие физики Отто Ган и Фриц Штрасман открыли в 1938 году, чтоделение тяжёлых ядер уранапри бомбардировке нейтронами сопровождается выделением энергии. Реальное использование этой энергии стало делом времени.

Первый ядерный реактор построен в декабре 1942 года в США группой физиков Чикагского университета под руководством итальянского физика Энрико Ферми . Впервые была реализована незатухающая реакция деления ядер урана. Ядерный реактор, названный СР-1, состоял из графитовых блоков, между которыми были расположены шары из природного урана и его двуокиси. Быстрые нейтроны, появляющиеся после деления ядер 235 U , замедлялись графитом до тепловых энергий, а затем вызывали новые деления ядер. Реакторы, в которых основная доля делений происходит под действием тепловых нейтронов, называют реакторами на тепловых (медленных) нейтронах; в таких реакторах замедлителя значительно больше чем урана.

В Европе первый ядерный реактор Ф-1 был изготовлен и запущен в декабре 1946 года в Москве группой физиков и инженеров во главе с академиком Игорем Васильевичем Курчатовым . Реактор Ф-1 был набран из графитовых блоков и имел форму шара диаметром примерно 7,5 м. В центральной части шара диаметром 6 м в отверстиях графитовых блоков были размещены урановые стержни. Реактор Ф-1, как и СР-1, не имел системы охлаждения, поэтому работал на малых уровнях мощности: от долей до единиц ватта.

Результаты исследований на реакторе Ф-1 послужили основой проектов для промышленных реакторов. В 1948 году под руководством И. В. Курчатова начались работы по практическому применению энергии атома для получения электроэнергии.

Первая в мире промышленная атомная электростанция мощностью 5 МВт была запущена 27 июня 1954 года в г. Обнинске Калужской области . В 1958 г. была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 МВт (полная проектная мощность 600 МВт). В том же году развернулось строительство Белоярской промышленной АЭС, а в апреле 1964 г. генератор 1-й очереди дал электроэнергию потребителям. В сентябре 1964 года был пущен 1-й блок Нововоронежской АЭС мощностью 210 МВт. Второй блок мощностью 350 МВт запущен в декабре 1969 года. В 1973 году запущена Ленинградская АЭС.

В Великобритании первая АЭС промышленного назначения мощностью 46 МВт была введена в эксплуатацию в 1956 году в Колдер-Холле. Через год вступила в строй АЭС мощностью 60 МВт в Шиппингпорте (США).

Мировыми лидерами по производству ядерной электроэнергии являются:США (788,6 млрд. кВт ч/год), Франция (426,8 млрд. кВт ч/год), Япония (273,8 млрд. кВт ч/год), Германия (158,4 млрд. кВт ч/год) и Россия (154,7 млрд. кВт ч/год). На начало 2004 года в мире действовал 441 энергетический ядерный реактор, российское ОАО «ТВЭЛ» поставляет топливо для 75 из них.

Крупнейшая АЭС в Европе - Запорожская АЭС г. Энергодар (Украина) - 6 атомных реакторов суммарной мощностью 6 ГВт. Крупнейшая в мире АЭС - Касивадзаки-Карива (Япония) - пять кипящих ядерных реакторов (BWR ) и два продвинутых кипящих ядерных реактора (ABWR ), суммарная мощность которых составляет 8,2 ГВт.

В настоящее время в России работают АЭС: Балаковская, Белоярская, Билибинская, Ростовская, Калининская, Кольская, Курская, Ленинградская, Нововоронежская, Смоленская.

В разработках проекта Энергетической стратегии России на период до 2030 года предусмотрено увеличение производства электроэнергии на атомных электростанциях в 4 раза.

Атомные электростанции классифицируются в соответствии с установленными на них реакторами:

l реакторы на тепловых нейтронах , использующие специальные замедлители для увеличения вероятности поглощения нейтрона ядрами атомов топлива;

l реакторы на быстрых нейтронах .

По виду отпускаемой энергии атомные станции делятся на:

l атомные электростанции (АЭС), предназначенные для выработки только электроэнергии;

l атомные теплоэлектроцентрали (АТЭЦ), вырабатывающие как электроэнергию, так и тепловую энергию.

В настоящее только в России рассматриваются варианты строительства атомных станций теплоснабжения.

АЭС не использует воздух для окисления топлива, не даёт выбросов золы, оксидов серы, углерода и т.д. в атмосферу, имеет радиоактивный фон ниже, чем на ТЭС, но, как и ТЭС, потребляет огромное количество воды для охлаждения конденсаторов.

Топливо для АЭС

Главное отличие АЭС от ТЭС состоит в использовании ядерного горючего вместо органического топлива . Ядерное горючее получают из природного урана, который добывают либо в шахтах (Нигер, Франция, ЮАР), либо в открытых карьерах (Австралия, Намибия), либо способом подземного выщелачивания (Канада, Россия, США). Уран широко распространён в природе, но богатых по содержанию залежей урановых руд нет. Уран содержится в различных горных породах и воде в рассеянном состоянии. Природный уран это смесь в основном неделящегося изотопа урана 238 U (более 99%) и делящегося изотопа 235 U (примерно 0,71%) , который и представляет собой ядерное горючее (1 кг 235 U выделяет энергию равную теплоте сгорания примерно 3000 т каменного угля).

Для работы реакторов АЭС требуется обогащение урана . Для этого природный уран направляется на обогатительный завод, после переработки, на котором 90% природного обеднённого урана направляется на хранение, а 10% обогащается до 3,3 - 4,4 %.

Из обогащённого урана (точнее диоксида урана UO 2 или окиси-закиси урана U 2 O 2 ) изготавливают тепловыделяющие элементы - ТВЭЛы - цилиндрические таблетки диаметром 9 мм и высотой 15-30 мм. Эти таблетки помещают в герметические циркониевые (поглощение нейтронов цирконием в 32,5 раза меньше чем сталью) тонкостенные трубки длиной около 4 м. ТВЭЛы собирают в тепловыделяющие сборки (ТВС) по несколько сотен штук.

Все дальнейшие процессы расщепления ядер 235 U с образованием осколков деления, радиоактивных газов и т.д. происходят внутри герметичных трубок ТВЭЛов .

После постепенного расщепления 235 U и уменьшения его концентрации до 1,26%, когда мощность реактора существенно уменьшается, ТВС извлекают из реактора , некоторое время хранят в бассейне выдержки, а затем направляют на радиохимический завод для переработки.

Таким образом, в отличие от ТЭС, где топливо стремятся сжигать полностью, на АЭС невозможно расщепить ядерное топливо на 100%. Поэтому на АЭС нельзя рассчитать КПД по удельному расходу условного топлива. Для оценки эффективности работы энергоблока АЭС используется КПД нетто

,

где - выработанная энергия, - выделившееся в реакторе тепло заодно и тоже время.

Подсчитанный таким образом КПД АЭС составляет 30 - 32 %, но сравнивать его с КПД ТЭС, составляющим 37 - 40 %, не вполне правомочно.

Кроме изотопа урана 235 в качестве ядерного топлива также используются:

  • изотоп урана 233 ( 233 U ) ;
  • изотоп плутония 239 ( 239 Pu );
  • изотоп тория 232 ( 232 Th ) (посредством преобразования в 233 U ).