Что такое волновая функция и ее физический смысл. Волновая функция и ее физический смысл

4.4.1. Гипотеза де Бройля

Важным этапом в создании квантовой механики явилось обнаружение волновых свойств микрочастиц. Идея о волновых свойствах была первоначально высказана как гипотеза французским физиком Луи де Бройлем.

В физике в течение многих лет господствовала теория, согласно которой свет есть электромагнитная волна. Однако после работ Планка (тепловое излучение), Эйнштейна (фотоэффект) и других стало очевидным, что свет обладает корпускулярными свойствами.

Чтобы объяснить некоторые физические явления, необходимо рассматривать свет как поток частиц-фотонов. Корпускулярные свойства света не отвергают, а дополняют его волновые свойства.

Итак, фотон-элементарная частица света, обладающая волновыми свойствами.

Формула для импульса фотона

. (4.4.3)

По де Бройлю, движение частицы, например, электрона, подобно волновому процессу с длиной волны λ , определяемой формулой (4.4.3). Эти волны называют волнами де Бройля . Следовательно, частицы (электроны, нейтроны, протоны, ионы, атомы, молекулы) могут проявлять дифракционные свойства.

К.Дэвиссон и Л.Джермер впервые наблюдали дифракцию электронов на монокристалле никеля.

Может возникнуть вопрос: что происходит с отдельными частицами, как образуются максимумы и минимумы при дифракции отдельных частиц?

Опыты по дифракции пучков электронов очень малой интенсивности, то есть как бы отдельных частиц, показали, что при этом электрон не "размазывается" по разным направлениям, а ведет себя как целая частица. Однако вероятность отклонения электрона по отдельным направлениям в результате взаимодействия с объектом дифракции различная. Наиболее вероятно попадание электронов в те места, которые по расчету соответствуют максимумам дифракции, менее вероятно их попадание в места минимумов. Таким образом, волновые свойства присущи не только коллективу электронов, но и каждому электрону в отдельности.

4.4.2. Волновая функция и ее физический смысл

Так как с микрочастицей сопоставляют волновой процесс, который соответствует ее движению, то состояние частиц в квантовой механике описывается волновой функцией, зависящей от координат и времени: .

Если силовое поле, действующее на частицу, является стационарным, то есть не зависящим от времени, то ψ-функцию можно представить в виде произведения двух сомножителей, один из которых зависит от времени, а другой от координат:

Отсюда следует физический смысл волновой функции:

4.4.3. Соотношение неопределенностей

Одним из важных положений квантовой механики являются соотношения неопределенностей, предложенные В.Гейзенбергом.

Пусть одновременно измеряют положение и импульс частицы, при этом неточности в определениях абсциссы и проекции импульса на ось абсцисс равны соответственно Δx и Δр x .

В классической физике нет каких-либо ограничений, запрещающих с любой степенью точности одновременно измерить как одну, так и другую величину, то есть Δx→0 и Δр x→ 0.

В квантовой механике положение принципиально иное: Δx и Δр x , соответствующие одновременному определению x и р x , связаны зависимостью

Формулы (4.4.8), (4.4.9) называют соотношениями неопределенностей .

Поясним их одним модельным экспериментом.

При изучении явления дифракции было обращено внимание на то, что уменьшение ширины щели при дифракции приводит к увеличению ширины центрального максимума. Аналогичное явление будет и при дифракции электронов на щели в модельном опыте. Уменьшение ширины щели означает уменьшение Δ x (рис. 4.4.1), это приводит к большему "размазыванию" пучка электронов, то есть к большей неопределенности импульса и скорости частиц.


Рис. 4.4.1.Пояснение к соотношению неопределенности.

Соотношение неопределенностей можно представить в виде

, (4.4.10)

где ΔE - неопределенность энергии некоторого состояния системы; Δt -промежуток времени, в точение которого оно существует. Соотношение (4.4.10) означает, что чем меньше время существования какого-либо состояния системы, тем более неопределенно его значение энергии. Энергетические уровни Е 1 , Е 2 и т.д. имеют некоторую ширину (рис.4.4.2)), зависящую от времени пребывания системы в состоянии, соответствующем этому уровню.


Рис. 4.4.2.Энергетические уровни Е 1 , Е 2 и т.д. имеют некоторую ширину.

"Размытость" уровней приводит к неопределенности энергии ΔE излучаемого фотона и его частоты Δν при переходе системы с одного энергетического уровня на другой:

,

где m- масса частицы; ; Е и Е n -ее полная и потенциальная энергии (потенциальная энергия определяется силовым полем, в котором находится частица, и для стационарного случая не зависит от времени)

Если частица перемещается только вдоль некоторой линии, например вдоль оси ОХ (одномерный случай), то уравнение Шредингера существенно упрощается и принимает вид

(4.4.13)

Одним из наиболее простых примеров на использование уравнения Шредингера является решение задачи о движении частицы в одномерной потенциальной яме.

4.4.5. Применение уравнения Шредингера к атому водорода. Квантовые числа

Описание состояний атомов и молекул с помощью уравнения Шредингера является достаточно сложной задачей. Наиболее просто она решается для одного электрона, находящегося в поле ядра. Такие системы соответствуют атому водорода и водородоподобным ионам (однократно ионизированный атом гелия, двукратно ионизированный атом лития и т.п.). Однако и в этом случае решение задачи является сложным, поэтому ограничимся лишь качественным изложением вопроса.

Прежде всего в уравнение Шредингера (4.4.12) следует подставить потенциальную энергию, которая для двух взаимодействующих точечных зарядов - e (электрон) и Ze (ядро), - находящихся на расстоянии r в вакууме, выражается следующим образом:

Это выражение является решением уравнения Шредингера и полностью совпадает с соответствующей формулой теории Бора (4.2.30)

На рис.4.4.3 показаны уровни возможных значений полной энергии атома водорода (Е 1 , Е 2 , Е 3 и т.д.) и график зависимости потенциальной энергии Е n от расстояния r между электроном и ядром. С возрастанием главного квантового числа n увеличивается r (см.4.2.26), а полная (4.4.15) и потенциальная энергии стремятся к нулю. Кинетическая энергия также стремится к нулю. Заштрихованная область (Е>0) соответствует состоянию свободного электрона.


Рис. 4.4.3. Показаны уровни возможных значений полной энергии атома водорода
и график зависимости потенциальной энергии от расстояния r между электроном и ядром.

Второе квантовое число - орбитальное l , которое при данном n может принимать значения 0, 1, 2, …., n-1. Это число характеризует орбитальный момент импульса L i электрона относительно ядра:

Четвертое квантовое число - спиновое m s . Оно может принимать только два значения (±1/2) и характеризует возможные значения проекции спина электрона:

.(4.4.18)

Состояние электрона в атоме с заданными n и l обозначают следующим образом: 1s, 2s, 2p, 3s и т.д. Здесь цифра указывает значение главного квантового числа, а буква - орбитальное квантовое число: символам s, p, d, f, соответствуют значения l=0, 1, 2. 3 и т.д.

В координатном представлении волновая функция зависит от координат (или обобщённых координат) системы. Физический смысл приписывается квадрату её модуля , который интерпретируется как плотность вероятности (для дискретных спектров - просто вероятность) обнаружить систему в положении, описываемом координатами в момент времени :

Тогда в заданном квантовом состоянии системы, описываемом волновой функцией , можно рассчитать вероятность того, что частица будет обнаружена в любой области конфигурационного пространства конечного объема : .

Следует также отметить, что возможно измерение и разницы фаз волновой функции, например, в опыте Ааронова - Бома.

Уравне́ние Шрёдингера - уравнение, описывающее изменение в пространстве (в общем случае, в конфигурационном пространстве) и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах. Играет в квантовой механике такую же важную роль, как уравнение второго закона Ньютона в классической механике. Его можно назвать уравнением движения квантовой частицы. Установлено Эрвином Шрёдингером в 1926 году.

Уравнение Шрёдингера предназначено для частиц без спина, движущихся со скоростями много меньшими скорости света. В случае быстрых частиц и частиц со спином используются его обобщения (уравнение Клейна - Гордона,уравнение Паули, уравнение Дирака и др.)

В начале XX века учёные пришли к выводу, что между предсказаниями классической теории и экспериментальными данными об атомной структуре существует ряд расхождений. Открытие уравнения Шрёдингера последовало за революционным предположением де Бройля, что не только свету, но и вообще любым телам (в том числе и любым микрочастицам) присущи волновые свойства.

Исторически окончательной формулировке уравнения Шрёдингера предшествовал длительный период развития физики. Оно является одним из важнейших уравнений физики, объясняющих физические явления. Квантовая теория, однако, не требует полного отказа от законов Ньютона, а лишь определяет границы применимости классической физики. Следовательно, уравнение Шрёдингера должно согласовываться с законами Ньютона в предельном случае . Это подтверждается при более глубоком анализе теории: если размер и масса тела становятся макроскопическими и точность слежения за его координатой много хуже стандартного квантового предела, прогнозы квантовой и классическойтеорий совпадают, потому что неопределённый путь объекта становится близким к однозначной траектории.

Зависимое от времени уравнение

Наиболее общая форма уравнения Шрёдингера - это форма, включающая зависимость от времени :

Пример нерелятивистского уравнения Шрёдингера в координатном представлении для точечной частицы массы , движущейся в потенциальном поле c потенциалом :

Зависящее от времени уравнение Шрёдингера

Формулировка

Общий случай

В квантовой физике вводится комплекснозначная функция , описывающая чистое состояние объекта, которая называется волновой функцией. В наиболее распространенной копенгагенской интерпретации эта функция связана с вероятностью обнаружения объекта в одном из чистых состояний (квадрат модуля волновой функции представляет собой плотность вероятности). Поведение гамильтоновой системы в чистом состоянии полностью описывается с помощью волновой функции.

Отказавшись от описания движения частицы с помощью траекторий, получаемых из законов динамики, и определив вместо этого волновую функцию, необходимо ввести в рассмотрение уравнение, эквивалентное законам Ньютона и дающее рецепт для нахождения в частных физических задачах. Таким уравнением является уравнение Шрёдингера.

Пусть волновая функция задана в n-мерном конфигурационном пространстве, тогда в каждой точке с координатами , в определенный момент времени t она будет иметь вид . В таком случае уравнение Шрёдингера запишется в виде:

где , - постоянная Планка; - масса частицы, - внешняя по отношению к частице потенциальная энергия в точке в момент времени , - оператор Лапласа (или лапласиан), эквивалентен квадрату оператора набла и в n-мерной системе координат имеет вид:

30 вопрос Фундаментальные физические взаимодействия. Понятие физического вакуума в современной научной картине мира.

Взаимодействие. Все многообразие взаимодействий подразделяется в современной физической картине мира на 4 типа: сильное, электромагнитное, слабое и гравитационное. По современным представлениям все взаимодействия имеют обменную природу, т.е. реализуются в результате обмена фундаментальными частицами – переносчиками взаимодействий. Каждое из взаимодействий характеризуется так называемой константой взаимодействия, которое определяет его сравнительную интенсивность, временем протекания и радиусом действия. Рассмотрим кратко эти взаимодействия.

1. Сильное взаимодействие обеспечивает связь нуклонов в ядре. Константа взаимодействия равна приблизительно 10 0 , радиус действия порядка

10 -15 , время протекания t »10 -23 с. Частицы – переносчики - p-мезоны.

2. Электромагнитное взаимодействие: константа порядка 10 -2 , радиус взаимодействия не ограничен, время взаимодействия t » 10 -20 с. Оно реализуется между всеми заряженными частицами. Частица – переносчик – фотон.

3. Слабое взаимодействие связано со всеми видами b-распада, многие распады элементарных частиц и взаимодействие нейтрино с веществом. Константа взаимодействия порядка 10 -13 , t » 10 -10 с. Это взаимодействие, как и сильное, является короткодействующим: радиус взаимодействияr»10 -18 м. (Частица – переносчик - векторный бозон).

4. Гравитационное взаимодействие является универсальным, однако в микромире учитывается, так как его константа равна 10 -38 , т.е. из всех взаимодействий является самым слабым и проявляется только при наличии достаточно больших масс. Его радиус действия не ограничен, время также не ограничено. Обменный характер гравитационного взаимодействия до сих пор остается под вопросом, так как гипотетическая фундаментальная частица гравитон пока не обнаружена.

Физический вакуум

Под физическим вакуумом в квантовой физике понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. При этом такое состояние вовсе не обязательно соответствует пустоте: поле в низшем состоянии может быть, например, полем квазичастиц в твёрдом теле или даже в ядре атома, где плотность чрезвычайно высока. Физическим вакуумом называют также полностью лишённое вещества пространство, заполненное полем в таком состоянии. Такое состояние не является абсолютной пустотой. Квантовая теория поля утверждает, что, в согласии с принципом неопределённости, в физическом вакууме постоянно рождаются и исчезают виртуальные частицы: происходят так называемые нулевые колебания полей. В некоторых конкретных теориях поля вакуум может обладать нетривиальными топологическими свойствами. В теории могут существовать несколько различных вакуумов, различающихся плотностью энергии или другими физическими параметрами (в зависимости от применяемых гипотез и теорий). Вырождение вакуума приспонтанном нарушении симметрии приводит к существованию непрерывного спектра вакуумных состояний, отличающихся друг от друга числом голдстоуновских бозонов. Локальные минимумы энергии при разных значениях какого-либо поля, отличающиеся по энергии от глобального минимума, носят название ложных вакуумов; такие состояния метастабильны и стремятся распасться с выделением энергии, перейдя в истинный вакуум или в один из нижележащих ложных вакуумов.

Некоторые из этих предсказаний теории поля уже были успешно подтверждены экспериментом. Так, эффект Казимира и лэмбовский сдвиг атомных уровней объясняется нулевыми колебаниями электромагнитного поля в физическом вакууме. На некоторых других представлениях о вакууме базируются современные физические теории. Например, существование нескольких вакуумных состояний (упомянутых выше ложных вакуумов) является одной из главных основ инфляционной теории Большого взрыва.

31 вопрос Структурные уровни материи. Микромир. Макромир. Мегамир.

Структурные уровни материи

(1) - Характерной чертой материи является ее структура, поэтому одной из важнейших задач естествознания является исследование этой структуры.

В настоящее время принято, что наиболее естественным и наглядным признаком структуры материи являются характерный размер объекта на данном уровне и его масса. В соответствии с этими представлениями выделяются следующие уровни:

(3) - Понятие «микромир» охватывает фундаментальные и элементарные частицы, ядра, атомы и молекулы. Макромир представлен макромолекулами, веществами в различных агрегатных состояниях, живыми организмами, начиная с элементарное единицей живого – клетки, человеком и продуктами его деятельности, т.е. макротелами . Наиболее крупные объекты (планеты, звезды, галактики и их скопления образуют мегамир. Важно сознавать, что жестких границ между этими мирами нет, а речь идет лишь о различных уровнях рассмотрения материи.

Для каждого из рассмотренных основных уровней, в свою очередь, можно выделить подуровни, характеризуемые свой структурой, своими особенностями организации.

Изучение материи на ее различных структурных уровнях требует своих специфических средств и методов.

32 вопрос Эволюция Вселенной (Фридман, Хаббл, Гамов) и реликтовое излучение.

Волнова́я фу́нкция , или пси-фу́нкция ψ {\displaystyle \psi } - комплекснозначная функция , используемая в квантовой механике для описания чистого состояния системы . Является коэффициентом разложения вектора состояния по базису (обычно координатному):

| ψ (t) ⟩ = ∫ Ψ (x , t) | x ⟩ d x {\displaystyle \left|\psi (t)\right\rangle =\int \Psi (x,t)\left|x\right\rangle dx}

где | x ⟩ = | x 1 , x 2 , … , x n ⟩ {\displaystyle \left|x\right\rangle =\left|x_{1},x_{2},\ldots ,x_{n}\right\rangle } - координатный базисный вектор, а Ψ (x , t) = ⟨ x | ψ (t) ⟩ {\displaystyle \Psi (x,t)=\langle x\left|\psi (t)\right\rangle } - волновая функция в координатном представлении.

Нормированность волновой функции

Волновая функция Ψ {\displaystyle \Psi } по своему смыслу должна удовлетворять так называемому условию нормировки, например, в координатном представлении имеющему вид:

∫ V Ψ ∗ Ψ d V = 1 {\displaystyle {\int \limits _{V}{\Psi ^{\ast }\Psi }dV}=1}

Это условие выражает тот факт, что вероятность обнаружить частицу с данной волновой функцией где-либо в пространстве равна единице. В общем случае интегрирование должно производиться по всем переменным, от которых зависит волновая функция в данном представлении.

Принцип суперпозиции квантовых состояний

Для волновых функций справедлив принцип суперпозиции , заключающийся в том, что если система может пребывать в состояниях, описываемых волновыми функциями Ψ 1 {\displaystyle \Psi _{1}} и Ψ 2 {\displaystyle \Psi _{2}} , то она может пребывать и в состоянии, описываемом волновой функцией

Ψ Σ = c 1 Ψ 1 + c 2 Ψ 2 {\displaystyle \Psi _{\Sigma }=c_{1}\Psi _{1}+c_{2}\Psi _{2}} при любых комплексных c 1 {\displaystyle c_{1}} и c 2 {\displaystyle c_{2}} .

Очевидно, что можно говорить и о суперпозиции (сложении) любого числа квантовых состояний, то есть о существовании квантового состояния системы, которое описывается волновой функцией Ψ Σ = c 1 Ψ 1 + c 2 Ψ 2 + … + c N Ψ N = ∑ n = 1 N c n Ψ n {\displaystyle \Psi _{\Sigma }=c_{1}\Psi _{1}+c_{2}\Psi _{2}+\ldots +{c}_{N}{\Psi }_{N}=\sum _{n=1}^{N}{c}_{n}{\Psi }_{n}} .

В таком состоянии квадрат модуля коэффициента c n {\displaystyle {c}_{n}} определяет вероятность того, что при измерении система будет обнаружена в состоянии, описываемом волновой функцией Ψ n {\displaystyle {\Psi }_{n}} .

Поэтому для нормированных волновых функций ∑ n = 1 N | c n | 2 = 1 {\displaystyle \sum _{n=1}^{N}\left|c_{n}\right|^{2}=1} .

Условия регулярности волновой функции

Вероятностный смысл волновой функции накладывает определенные ограничения, или условия, на волновые функции в задачах квантовой механики. Эти стандартные условия часто называют условиями регулярности волновой функции.

Волновая функция в различных представлениях используется состояния в различных представлениях - будет соответствовать выражению одного и того же вектора в разных системах координат. Остальные операции с волновыми функциями так же будут иметь аналоги на языке векторов. В волновой механике используется представление, где аргументами пси-функции является полная система непрерывных коммутирующих наблюдаемых, а в матричной используется представление, где аргументами пси-функции является полная система дискретных коммутирующих наблюдаемых. Поэтому функциональная (волновая) и матричная формулировки очевидно математически эквивалентны.

Исходя из представления о наличии у электрона волновых свойств. Шредингер в 1925 г. предположил, что состояние движущегося в атоме электрона должно описываться известным в физике уравнением стоячей электромагнитной волны. Подставив в это уравнение вместо длины волны ее значение из уравнения де Бройля , он получил новое уравнение, связывающее энергию электрона с пространственными координатами и так называемой волновой функцией , соответствующей в этом уравнении амплитуде трехмерного волнового процесса.

Особенно важное значение для характеристики состояния электрона имеет волновая функция . Подобно амплитуде любого волнового процесса, она может принимать как положительные, так и отрицательные значения. Однако величина всегда положительна. При этом она обладает замечательным свойством: чем больше значение в данной области пространства, тем выше вероятность того, что электрон проявит здесь свое действие, т. е. что его существование будет обнаружено в каком-либо физическом процессе.

Более точным будет следующее утверждение: вероятность обнаружения электрона в некотором малом объеме выражается произведением . Таким образом, сама величина выражает плотность вероятности нахождения электрона в соответствующей области пространства.

Рис. 5. Электронное облако атома водорода.

Для уяснения физического смысла квадрата волновой функции рассмотрим рис. 5, на котором изображен некоторый объем вблизи ядра атома водорода. Плотность размещения точек на рис. 5 пропорциональна значению в соответствующем месте: чем больше величина , тем гуще расположены точки. Если бы электрон обладал свойствами материальной точки, то рис. 5 можно было бы получить, многократно наблюдая атом водорода и каждый раз отмечая местонахождение электрона: плотность размещения точек на рисунке была бы тем больше, чем чаще обнаруживается электрон в соответствующей области пространства или, иначе говоря, чем больше вероятность обнаружения его в этой области.

Мы знаем, однако, что представление об электроне как о материальной точке не соответствует его истинной физической природе. Поэтому рис. 5 правильнее рассматривать как схематическое изображение электрона, «размазанного» по всему объему атома в виде так называемого электронного облака: чем плотнее расположены точки в том или ином месте, тем больше здесь плотность электронного облака. Иначе говоря, плотность электронного облака пропорциональна квадрату волновой функции.

Представление о состоянии электрона как о некотором облаке электрического заряда оказывается очень удобным, хорошо передает основные особенности поведения электрона в атомах и молекулах и будет часто использоваться в последующем изложении. При этом, однако, следует иметь в виду, что электронное облако не имеет определенных, резко очерченных границ: даже на большом расстоянии от ядра существует некоторая, хотя и очень малая, вероятность обнаружения электрона. Поэтому под электронным облаком условно будем понимать область пространства вблизи ядра атома, в которой сосредоточена преобладающая часть (например, ) заряда и массы электрона. Более точное определение этой области пространства дано на стр. 75.

Дифракционная картина, наблюдающаяся для микрочастиц, характеризуется неодинаковым распределением потоков микрочастиц в различных направлениях - имеются минимумы и максимумы в других направлениях. Наличие максимумов в дифракционной картине означает, что в этих направлениях распределяются волны де Бройля с наибольшей интенсивностью. А интенсивность будет максимальной, если в этом направлении распространяется максимальное число частиц. Т.е. дифракционная картина для микрочастиц является проявлением статистической (вероятностной) закономерности в распределении частиц: где интенсивность волны де Бройля максимальная, там и частиц больше.

Волны де Бройля в квантовой механике рассматриваются как волны вероятности, т.е. вероятность обнаружить частицу в различных точках пространства меняется по волновому закону (т.е. е - iωt ). Но для некоторых точек пространства такая вероятность будет отрицательной (т.е. частица не попадает в эту область). М. Борн (немецкий физик) предположил, что по волновому закону меняется не сама вероятность, а амплитуда вероятности, которую также называют волновой функцией или -функцией (пси - функцией).

Волновая функция - функция координат и времени.

Квадрат модуля пси-функции определяет вероятность того, что частица будет обнаружена в пределах объема dV - физический смысл имеет не сама пси-функция, а квадрат ее модуля.

Ψ * - функция комплексно сопряженная с Ψ

(z = a +ib, z * =a- ib, z * - комплексно сопряженное)

Если частица находится в конечном объеме V, то возможность обнаружить ее в этом объеме равна 1, (достоверное событие)

Р = 1 

В квантовой механике принимается, что Ψ и АΨ, где А = const , описывают одно и то же состояние частицы. Следовательно,

Условие нормировки

интеграл по , означает, что он вычисляется по безграничному объему (пронстранству).

 - функция должна быть

1) конечной (так как Р не может быть больше1),

2) однозначной (нельзя обнаружить частицу при неизменных условиях с вероятностью допустим 0,01 и 0,9, так как вероятность должна быть однозначной).

    непрерывной (следует из неприрывности пространства. Всегда имеется вероятность обнаружить частицу в разных точках пространства, но для разных точек она будет разная),

    Волновая функция удовлетворяет принципу суперпозиции : если система может находится в различных состояниях, описываемых волновыми функциями  1 , 2 ... n , то она может находится в состоянии , описываемой линейной комбинаций этих функций:

С n (n=1,2...) - любые числа.

С помощью волновой функции вычисляются средние значения любой физической величины частицы

§5 Уравнение Шредингера

Уравнение Шредингера, как и другие основные уравнения физики (уравнения Ньютона, Максвелла), не выводится, а постулируется. Его следует рассматривать как исходное основное предположение, справедливость которого доказывается тем, что все вытекающие из него следствия точно согласуются с экспериментальными данными.

(1)

Временное уравнение Шредингера.

Набла - оператор Лапласа

Потенциальная функция частицы в силовом поле,

Ψ(y,z,t) - искомая функция

Если силовое поле, в котором движется частица, стационарно (т.е. не изменяется с течением времени), то функция U не зависит от времени и имеет смысл потенциальной энергии. В этом случае решение уравнения Шредингера (т.е. Ψ - функция) может быть представлено в виде произведения двух сомножителей - один зависит только от координат, другой - только от времени:

(2)

Е - полная энергия частицы, постоянная в случае стационарного поля.

Подставив (2)  (1):

(3)

Уравнение Шредингера для стационарных состояний.

Имеется бесконечно много решений. Посредством наложения граничных условий отбирают решения, имеющие физический смысл.

Граничные условия:

волновые функции должны быть регулярными , т.е.

1)конечными;

2) однозначными;

3) непрерывными.

Решения, удовлетворяющие уравнению Шредингера, называются собственными функциями, а соответствующие им значения энергии - собственными значениями энергии. Совокупность собственных значений называется спектром величины. Если Е n принимает дискретные значения, то спектр - дискретный , если непрерывные - сплошной или непрерывный .