Что такое статистическая вероятность. Статистическое определение вероятности

Чтобы количественно сравнивать между собой события по степени их возможности, очевидно, нужно с каждым событием связать определённое число, которое тем больше, чем более возможно событие. Такое число мы назовём вероятностью события. Таким образом, вероятность события есть численная мера степени объективной возможности этого события.

Первым по времени определением вероятности следует считать классическое, которое возникло из анализа азартных игр и применялось вначале интуитивно.

Классический способ определения вероятности основан на понятии равновозможных и несовместных событий, которые являются исходами данного опыта и образуют полную группу несовместных событий.

Наиболее простым примером равновозможных и несовместных событий, образующих полную группу, является появление того или иного шара из урны, содержащей несколько одинаковых по размеру, весу и другим осязаемым признакам шаров, отличающихся лишь цветом, тщательно перемешанных перед выниманием.

Поэтому об испытании, исходы которого образуют полную группу несовместных и равновозможных событий, говорят, что оно сводится к схеме урн, или схеме случаев , или укладывается в классическую схему.

Равновозможные и несовместные события, составляющие полную группу, будем называть просто случаями или шансами. При этом в каждом опыте наряду со случаями могут происходить и более сложные события.

Пример : При подбрасывании игральной кости наряду со случаями А i - выпадение i- очков на верхней грани можно рассматривать такие события, как В - выпадение чётного числа очков, С - выпадение числа очков, кратных трём …

По отношению к каждому событию, которое может произойти при осуществлении эксперимента, случаи делятся на благоприятствующие , при которых это событие происходит, и неблагоприятствующие, при которых событие не происходит. В предыдущем примере, событию В благоприятствуют случаи А 2 , А 4 , А 6 ; событию С - случаи А 3 , А 6 .

Классической вероятностью появления некоторого события называется отношение числа случаев, благоприятствующих появлению этого события, к общему числу случаев равновозможных, несовместных, составляющих полную группу в данном опыте:

где Р(А) - вероятность появления события А; m - число случаев, благоприятствующих событию А; n - общее число случаев.

Примеры:

1) (смотри пример выше) Р(В) = , Р(С) = .

2) В урне находятся 9 красных и 6 синих шаров. Найти вероятность того, что вынутые наугад один, два шара окажутся красными.

А - вынутый наугад шар красный:

m = 9, n = 9 + 6 = 15, P(A) =

B - вынутые наугад два шара красные:

Из классического определения вероятности вытекают следующие свойства (показать самостоятельно):


1) Вероятность невозможного события равна 0;

2) Вероятность достоверного события равна 1;

3) Вероятность любого события заключена между 0 и 1;

4) Вероятность события, противоположного событию А,

Классическое определение вероятности предполагает, что число исходов испытания конечно. На практике же весьма часто встречаются испытания, число возможных случаев которых бесконечно. Кроме того, слабая сторона классического определения состоит в том, что очень часто невозможно представить результат испытания в виде совокупности элементарных событий. Ещё труднее указать основания, позволяющие считать элементарные исходы испытания равновозможными. Обычно о равновозможности элементарных исходов испытания заключают из соображений симметрии. Однако такие задачи на практике встречаются весьма редко. По этим причинам наряду с классическим определением вероятности пользуются и другими определениями вероятности.

Статистической вероятностью события А называется относительная частота появления этого события в произведённых испытаниях:

где - вероятность появления события А;

Относительная частота появления события А;

Число испытаний, в которых появилось событие А;

Общее число испытаний.

В отличие от классической вероятности статистическая вероятность является характеристикой опытной, экспериментальной.

Пример : Для контроля качества изделий из партии наугад выбрано 100 изделий, среди которых 3 изделия оказались бракованными. Определить вероятность брака.

.

Статистический способ определения вероятности применим лишь к тем событиям, которые обладают следующими свойствами:

Рассматриваемые события должны быть исходами только тех испытаний, которые могут быть воспроизведены неограниченное число раз при одном и том же комплексе условий.

События должны обладать статистической устойчивостью (или устойчи- востью относительных частот). Это означает, что в различных сериях испытаний относительная частота события изменяется незначительно.

Число испытаний, в результате которых появляется событие А, должно быть достаточно велико.

Легко проверить, что свойства вероятности, вытекающие из классического определения, сохраняются и при статистическом определении вероятности.

Классическое определœение вероятности.

Различные определœения вероятности.

Алгебра событий.

Чтобы количественно сравнивать между собой события по степени их возможности, очевидно, нужно с каждым событием связать определённое число, ĸᴏᴛᴏᴩᴏᴇ тем больше, чем более возможно событие. Такое число мы назовём вероятностью события. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, вероятность события есть численная мера степени объективной возможности этого события.

Первым по времени определœением вероятности следует считать классическое, ĸᴏᴛᴏᴩᴏᴇ возникло из анализа азартных игр и применялось вначале интуитивно.

Классический способ определœения вероятности основан на понятии равновозможных и несовместных событий, которые являются исходами данного опыта и образуют полную группу несовместных событий.

Наиболее простым примером равновозможных и несовместных событий, образующих полную группу, является появление того или иного шара из урны, содержащей несколько одинаковых по размеру, весу и другим осязаемым признакам шаров, отличающихся лишь цветом, тщательно перемешанных перед выниманием.

По этой причине об испытании, исходы которого образуют полную группу несовместных и равновозможных событий, говорят, что оно сводится к схеме урн, или схеме случаев , или укладывается в классическую схему.

Равновозможные и несовместные события, составляющие полную группу, будем называть просто случаями или шансами. При этом в каждом опыте наряду со случаями могут происходить и более сложные события.

Пример : При подбрасывании игральной кости наряду со случаями А i - выпадение i- очков на верхней грани можно рассматривать такие события, как В - выпадение чётного числа очков, С - выпадение числа очков, кратных трём …

По отношению к каждому событию, ĸᴏᴛᴏᴩᴏᴇ может произойти при осуществлении эксперимента͵ случаи делятся на благоприятствующие , при которых это событие происходит, и неблагоприятствующие, при которых событие не происходит. В предыдущем примере, событию В благоприятствуют случаи А 2 , А 4 , А 6 ; событию С – случаи А 3 , А 6 .

Классической вероятностью появления некоторого события принято называть отношение числа случаев, благоприятствующих появлению этого события, к общему числу случаев равновозможных, несовместных, составляющих полную группу в данном опыте:

где Р(А) – вероятность появления события А; m - число случаев, благоприятствующих событию А; n - общее число случаев.

Примеры:

1) (смотри пример выше) Р(В) =, Р(С)= .

2) В урне находятся 9 красных и 6 синих шаров. Найти вероятность того, что вынутые наугад один, два шара окажутся красными.

А - вынутый наугад шар красный:

m =9, n =9+6=15, P(A) =

B - вынутые наугад два шара красные:

Из классического определœения вероятности вытекают следующие свойства (показать самостоятельно):

1) Вероятность невозможного события равна 0;

2) Вероятность достоверного события равна 1;

3) Вероятность любого события заключена между 0 и 1;

4) Вероятность события, противоположного событию А,

Классическое определœение вероятности предполагает, что число исходов испытания конечно. На практике же весьма часто встречаются испытания, число возможных случаев которых бесконечно. Вместе с тем, слабая сторона классического определœения состоит в том, что очень часто невозможно представить результат испытания в виде совокупности элементарных событий. Ещё труднее указать основания, позволяющие считать элементарные исходы испытания равновозможными. Обычно о равновозможности элементарных исходов испытания заключают из соображений симметрии. При этом такие задачи на практике встречаются весьма редко. По этим причинам наряду с классическим определœением вероятности пользуются и другими определœениями вероятности.

Статистической вероятностью события А принято называть относительная частота появления этого события в произведённых испытаниях:

где – вероятность появления события А;

– относительная частота появления события А;

Число испытаний, в которых появилось событие А;

Общее число испытаний.

В отличие от классической вероятности статистическая вероятность является характеристикой опытной, экспериментальной.

Пример: Для контроля качества изделий из партии наугад выбрано 100 изделий, среди которых 3 изделия оказались бракованными. Определить вероятность брака.

.

Статистический способ определœения вероятности применим лишь к тем событиям, которые обладают следующими свойствами:

· Рассматриваемые события должны быть исходами только тех испытаний, которые бывают воспроизведены неограниченное число раз при одном и том же комплексе условий.

· События должны обладать статистической устойчивостью (или устойчи- востью относительных частот). Это означает, что в различных сериях испытаний относительная частота события изменяется незначительно.

· Число испытаний, в результате которых появляется событие А, должно быть достаточно велико.

Легко проверить, что свойства вероятности, вытекающие из классического определœения, сохраняются и при статистическом определœении вероятности.

Статистическое определение вероятности. - понятие и виды. Классификация и особенности категории "Статистическое определение вероятности." 2017, 2018.

  • - Статистическое определение вероятности.

    Пусть произведено N испытаний, при этом событие A наступило ровно M раз. Отношение называется относительной частотой события A и обозначается. За вероятность события A принимается число, около которого группируются наблюдаемые значения относительной частоты: . ... .


  • - Статистическое определение вероятности.

    Относительная частота. Пусть A есть случайное событие, которое может наступить в данном опыте. Напомним, что мы рассматриваем опыты, удовлетворяющие условиям а),б) пункта 2. Предположим, что после повторения опыта N раз, событие A произошло M раз. Определение... .




  • - Статистическое определение вероятности

    Существует большой класс событий, вероятности которых не могут быть вычислены с помощью классического определения. В первую очередь это события с неравновозможными исходами (например, игральная кость «нечестная», монета сплющена и т.д.). В таких случаях может помочь... [читать подробнее] .


  • - Относительная частота. Статистическое определение вероятности.

    Классическое определение вероятности. Предмет теории вероятностей. Случайные события. Алгебра событий. Относитель-ная частота и вероятность случайного события. Полная группа событий. Классичес-кое определение вероятности. Основные свойства вероятности.... .


  • Для практической деятельности необходимо уметь сравнивать события по степени возможности их наступления. Рассмотрим классический случай. В урне находится 10 шаров, 8 из них белого цвета, 2 черного. Очевидно, что событие «из урны будет извлечен шар белого цвета» и событие «из урны будет извлечен шар черного цвета» обладают разной степенью возможности их наступления. Поэтому для сравнения событий нужна определенная количественная мера.

    Количественной мерой возможности наступления события является вероятность . Наиболее широкое распространение получили два определения вероятности события: классическое и статистическое.

    Классическое определение вероятности связано с понятием благоприятствующего исхода. Остановимся на этом подробнее.

    Пусть исходы некоторого испытания образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Такие исходы называют элементарными исходами , или случаями . При этом говорят, что испытание сводится к схеме случаев или «схеме урн », т.к. любую вероятностную задачу для подобного испытания можно заменить эквивалентной задачей с урнами и шарами разных цветов.

    Исход называется благоприятствующим событию А , если появление этого случая влечет за собой появление события А .

    Согласно классическому определению вероятность события А равна отношению числа исходов, благоприятствующих этому событию, к общему числу исходов , т.е.

    , (1.1)

    где Р(А) – вероятность события А ; m – число случаев благоприятствующих событию А ; n – общее число случаев.

    Пример 1.1. При бросании игральной кости возможны шесть исходов – выпадение 1, 2, 3, 4, 5, 6 очков. Какова вероятность появления четного числа очков?

    Решение. Все n = 6 исходов образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Событию А – «появление четного числа очков» – благоприятствуют 3 исхода (случая) – выпадение 2, 4 или 6 очков. По классической формуле вероятности события получаем

    Р(А) = = .

    Исходя из классического определения вероятности события, отметим ее свойства:

    1. Вероятность любого события заключена между нулем и единицей, т.е.

    0 ≤ Р (А ) ≤ 1.

    2. Вероятность достоверного события равна единице.

    3. Вероятность невозможного события равна нулю.

    Как было сказано ранее, классическое определение вероятности применимо только для тех событий, которые могут появиться в результате испытаний, обладающих симметрией возможных исходов, т.е. сводящихся к схеме случаев. Однако существует большой класс событий, вероятности которых не могут быть вычислены с помощью классического определения.

    Например, если допустить, что монета сплющена, то очевидно, что события «появление герба» и «появление решки» нельзя считать равновозможными. Поэтому формула для определения вероятности по классической схеме в данном случае неприменима.

    Однако существует другой подход при оценке вероятности событий, основанный на том, насколько часто будет появляться данное событие в произведенных испытаниях. В этом случае используется статистическое определениевероятности.

    Статистической вероятностью события А называется относительная частота (частость) появления этого события в n произведенных испытаниях, т.е.

    , (1.2)

    где Р * (А) – статистическая вероятность события А ; w(A) – относительная частота события А ; m – число испытаний, в которых появилось событие А ; n – общее число испытаний.

    В отличие от математической вероятности Р(А) , рассматриваемой в классическом определении, статистическая вероятность Р * (А) является характеристикой опытной , экспериментальной . Иначе говоря, статистической вероятностью события А называется число, относительно которого стабилизируется (устанавливается) относительная частота w(А) при неограниченном увеличении числа испытаний, проводимых при одном и том же комплексе условий.

    Например, когда про стрелка говорят, что он попадает в цель с вероятностью 0,95, то это означает, что из сотни выстрелов, произведенных им при определенных условиях (одна и та же цель на том же расстоянии, та же винтовка и т.д.), в среднем бывает примерно 95 удачных. Естественно, не в каждой сотне будет 95 удачных выстрелов, иногда их будет меньше, иногда больше, но в среднем при многократном повторении стрельбы в тех же условиях этот процент попаданий будет оставаться неизменным. Цифра 0,95, служащая показателем мастерства стрелка, обычно очень устойчива , т.е. процент попаданий в большинстве стрельб будет для данного стрелка почти один и тот же, лишь в редких случаях отклоняясь сколько-нибудь значительно от своего среднего значения.

    Еще одним недостатком классического определения вероятности (1.1 ), ограничивающим его применение, является то, что оно предполагает конечное число возможных исходов испытания. В некоторых случаях этот недостаток можно преодолеть, используя геометрическое определение вероятности, т.е. находя вероятность попадания точки в некоторую область (отрезок, часть плоскости и т.п.).

    Пусть плоская фигура g составляет часть плоской фигуры G (рис. 1.1). На фигуру G наудачу бросается точка. Это означает, что все точки области G «равноправны» в отношении попадания на нее брошенной случайной точки. Полагая, что вероятность события А – попадания брошенной точки на фигуру g – пропорциональна площади этой фигуры и не зависит ни от ее расположения относительно G , ни от формы g , найдем

    Рис. 1.1 Рис 1.2

    Пример 1.2. Два студента условились встретиться в определенном месте между 10 и 11 часами дня. Пришедший первым ждет второго в течение 15 минут, после чего уходит. Найти вероятность того, что встреча состоится, если каждый студент наудачу выбирает момент своего прихода между 10 и 11 часами.

    Решение. Обозначим моменты прихода в определенное место первого и второго студентов соответственно через x и y . В прямоугольной системе координат Oxy возьмем за начало отсчета 10 часов, а за единицу измерения – 1 час. По условию 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Этим неравенствам удовлетворяют координаты любой точки, принадлежащей квадрату OKLM со стороной, равной 1 (рис. 1.2). Событие А – встреча двух студентов – произойдет, если разность между x и не y превзойдет 1/4 часа (по абсолютной величине), т.е. |y x | ≤ 0,25.

    Решение этого неравенства есть полоса x – 0,25 ≤ y x + 0,25, которая внутри квадрата G представляет заштрихованную область g . По формуле (1.3)

    Вероятностью наступления события A называется число, равное отношению числа случаев, благоприятствующих событию A , к общему числу случаев (исходов, шансов или элементарных событий).

    Вероятность (Р )

    Где n ‒ общее число случаев, m ‒ число случаев, благоприятствующих событию А .

    Вероятность невозможного события:

    Вероятность достоверного события:

    Вероятность любого случайного события:

    0 ≤ P (A ) ≤ 1

    Статистическое определение вероятности

    Статистической вероятностью события A называется относительная частота появления события в n ‒ произведенных испытаниях.

    Опытная (экспериментальная) вероятность:

    Следовательно,– есть доля тех фактически произведённых испытаний, в которых событиеA появилось. При ,P (A ) ≈ (A )

    Пример 1.

    В коробке лежит 7 синих, 8 красных и 5 зеленых шаров.

    Решение:

    Событие A ‒ шар зеленый;

    Пример 2.

    В коробке лежат 100 электроламп, из них 5 бракованных.

    Решение:

    Событие A ‒ на удачу, выбранные 2 электролампы исправны.

    Пример 3.

    В коробке лежит 10 шаров: 6 белых и 4 черных.

    Найти:

    Вероятность того, что из пяти взятых наугад шаров будет 4 белых.

    Решение:

    Найдем число благоприятных исходов: число способов, которыми можно взять 4 белых шара из 6 имеющихся шаров, равно:

    Общее число исходов определяется числом сочетаний из 10 по 5:

    Искомая вероятность P = 15/252 ≈ 0,06.

    Геометрическая вероятность , то есть вероятность попадания точки в некоторую область, отрезок, часть плоскости.

    Геометрической вероятностью события A называют отношение меры области, благоприятствующей появлению события A , к мере всей области.

    где mes ‒мера (длина, площадь, объём области).

    4.Алгебра событий. Операции над случайными событиями.

    Определение 1. Суммой двух событий A и B называется событие C , состоящее в осуществлении хотя бы одного из событий A или B .

    Возможны два случая:

    1. Если A и B несовместны, тогда A +B означает, что произойдет или A , или В .

    2. Если A и B совместны, тогда A +B означает, что произойдет или A , или B , или A и B одновременно.

    Определение 2. Произведением двух событий A и B называется событие C , состоящее в одновременном осуществлении событий A и B .

    Пример 1. Из колоды карт наудачу вынули одну карту.

    Событие A ‒ карта дама.

    Событие B ‒ карта пиковой масти.

    Тогда A + B ‒ вынутая карта или дама, или карта пиковой масти, или пиковая дама.

    AB ‒ вынутая карта пиковая дама.

    Правило произведения событий.

    Если какой ни будь объект A можно выбрать m ‒ способами и после каждого такого выбора другой объект B можно выбрать k ‒ способами, то пары объектов «A и B одновременно» можно выбрать mk ‒ способами.

    Пример 2.

    В лотерее из 50 билетов 8 выигрышных билетов.

    Найти вероятность того, что среди первых 5‒ти наугад выбранных билетов 2 будут выигрышными.

    Решение:

    50 ‒ 8 = 42 ‒ билета невыигрышных.

    Событие A ‒ среди первых 5‒ти билетов 2 выигрышных.

    Пример3.

    В ящике находится 10 стандартных и 5 нестан­дартных деталей.

    Какова вероятность, что среди наугад взя­тых 6 деталей будет 4 стандартных и 2 нестандартных?

    Решение:

    Общее число исходов равно

    Число благо­приятных исходов определяется произведением

    где пер­вый сомножитель соответствует числу вариантов изъятия из ящика 4‒х стандартных деталей из 10, а второй ‒ числу вари­антов изъятия из ящика 2‒х нестандартных деталей из пяти. Отсюда следует, что искомая вероятность равна

    Вероятность проявляет себя, когда один и то же случайный эксперимент проводится много раз, причем так, что результаты уже проведенных экспериментов никак не влияют на последующие. При этих условиях частота наступления события при неограниченном возрастании числа экспериментов стремится к вероятности события.

    Рассмотрим случайный эксперимент, заключающийся в том, что подбрасывается игральная кость, сделанная из неоднородного материала. Ее центр тяжести не находится в геометрическом центре. В этом случае мы не можем считать исходы (выпадение единицы, двойки и т.д.) равновероятными. Из физики известно, что кость чаще будет падать на ту грань, которая ближе к центру тяжести. Как определить вероятность выпадения, например, трех очков? Единственное, что можно сделать, это подбросить эту кость n раз (где n -достаточно большое число, скажем n =1000 или n =5000), подсчитать число выпадений трех очков n 3 и считать вероятность исхода, заключающегося в выпадении трех очков, равной n 3 /n - относительной частоте выпадения трех очков. Аналогичным образом можно определить вероятности остальных элементарных исходов - единицы, двойки, чет­верки и т.д.

    Классическое определение вероятности предполагает, что все элементарные исходы равновозможны. О равновозможности исходов опыта заключают в силу соображений симметрии (как в случае монеты или игрального кубика). Задачи, в которых можно исходить из соображений симметрии, на практике встречаются редко. Во многих случаях трудно указать основания, позволяющие считать, что все элементарные исходы равновозможны. В связи с этим появилась необходимость введения еще одного определения вероятности, называемого статистическим. Чтобы дать это определение, предварительно вводят понятие относительной частоты события.

    Определение 18.2.2. Относительной частотой события, или частотой , называется отношение

    числа опытов, в которых появилось это событие, к числу всех произведенных опытов. Обозначим частоту события А через W(A), тогда по определению W(A)= m/n ,

    где m - число опытов, в которых появилось событие А; n - число всех произведенных опытов.

    Частота события обладает следующими свойствами.

    1. Частота случайного события есть число, заключенное между нулем

    и единицей:

    0< W(A) < 1

    2. Частота достоверного события Ω равна единице:

    W(Ω) = 1

    3. Частота невозможного события Ø равна:

    W(Ø)=0.

    4. Частота суммы двух несовместных событий А и В равна сумме



    частот этих событий:

    W(A + В) = W(A) + W(B)

    Наблюдения позволили установить, что относительная частота обладает свойствами статистической устойчивости: в различных сериях многочленных испытаний (в каждом из которых может появиться или не появиться это событие) она принимает значения, достаточно близкие к некоторой постоянной. эту постоянную, являющуюся объективной числовой характеристикой явления, считают вероятностью данного события.

    Определение 18.2.3.(Статистической) вероятностью события называется число, около которого группируются значения частоты данного события в различных сериях большого числа испытаний.

    Более строго, статистическая вероятность P( w i) определяется как предел относительной частоты появления исхода w i в процессе неограниченного увеличения числа случайных экспериментов n , то есть

    где m n (w i ) – число случайных экспериментов (из общего числа n произведенных случайных экспериментов), в которых зарегистрировано появление элементарного исхода w i .

    В случае статистического определения вероятность обладает теми же свойствами, что и вероятность, определенная по классической схеме:

    свойствами: 1) вероятность достоверного события равна единице;

    2) вероятность невозможного события равна нулю; 3) вероятность

    случайного события заключена между нулем и единицей; 4) вероятность

    суммы двух несовместных событий равна сумме вероятностей этих событий.

    Пример . Из 500 взятых наудачу деталей оказалось 10 бракованных. Какова частота бракованных деталей?

    W = 10/500 = 1/50 = 0,2

    Геометрическая вероятность

    Классическое определение вероятности предполагает, что число элементарных исходов конечно. На практике встречаются опыты, для которых множество таких исходов бесконечно.

    Чтобы преодолеть недостаток классического определения вероятности, состоящий в том, что оно неприменимо к испытаниям с бесконечным числом исходов, вводят геометрические вероятности – вероятности попадания точки в область.



    Пусть эксперимент состоит в случайном выборе точки из некоторой области. Полагаем выбор любой точки равновозможным. Заданную в пространстве область обозначим W. В эксперименте, связанном со случайным выбором только одной точки из W, множество W является пространством элементарных событий. Случайными событиями в этом случае можно считать разные подмножества из W. Будем говорить, что случайное событие А наступило, если наугад выбранная точка x принадлежит подмножеству А, т.е.

    Определение 18.2.4.

    Пусть W – некоторый отрезок, L – его длина. А – отрезок длины l, принадлежащий W . Событие А состоит в попадании точки, брошенной в большой отрезок в А. Тогда

    Аналогично, если множествомW элементарных исходов случайного эксперимента является фигура на плоскости площади S, а область А, ее подмножество, куда может попасть случайно брошенная на W точка, имеет площадь s, соответствующая вероятность события А – попадания в область А тогда

    И, наконец, если речь идет об объемных фигурах, соответственно, W объема V и входящей в нее области А объема v

    Замечание 18.2.3. . Строго говоря, рассматриваемый здесь подход требует введения более общей характеристики (функции) множества – его меры (mes (A) ), частными случаями которой являются длина, площадь и объем, и тогда вероятность события А будет отношением меры множества А к мере множества W

    Пример 1. В квадрат вписан круг. Точка случайным образом бросается в квадрат. Какова вероятность того, что она попадет в круг? Согласно приведенной формуле соответствующая вероятность будет отношением площади круга к площади квадрата.

    Пример 2. Два человека обедают в кафе в обеденный перерыв, который начинается у них в одно время и продолжается 1 час, от 12 до 13 часов. Каждый из них приходит в произвольный момент времени и обедает в течение 10 минут. Какова вероятность их встречи?

    Пусть x - время прихода в кафе первого, а y - время прихода второго . Встретиться они могут только тогда, когда оба находятся в кафе.

    Если второй пришел не позже первого (x ³ y ), то встреча произойдет при условии 0 £ x - y £ 1/6..

    Таким образом, в первом случае нас будет удовлетворять условие y £ x + 1/6 , а во втором

    y ≥ x - 1/6 . Область, удовлетворяющая этим двум условиям заштрихована на рис. 2

    Иными словами, в терминах геометрической вероятности, вероятность встречи есть отношение площади заштрихованной «полосы» между прямыми y = x + 1/6 и y = x - 1/6 внутри квадрата к площади самого квадрата.

    Искомая вероятность p равна отношению площади заштрихованной области к площади всего квадрата.. Площадь квадрата равна единице, а площадь заштрихованной области можно определить как разность единицы и суммарной площади двух треугольников, изображенных на рисунке 7. Отсюда следует: