Благородные газы электронное строение. Благородные газы. Другие названия «благородных» газов

  1. История открытия инертных газов……………………………………………………………………….2
  2. Физические свойства инертных газов………………………………………………………………….4
  3. Физиологическое действие инертных газов…………………………………………………………..4
  4. Химические свойства инертных газов………………………………………………………………….4
  5. Применение инертных газов……………………………………………………………………………..7
  6. Список литературы…………………………………………………………………………………………8

История открытия инертных газов.

К благородным газам относятся гелий, неон, аргон, криптон, ксенон и радон. По своим свойствам они не похожи ни на какие другие элементы и в периодической системе располагаются между типичными металлами и неметаллами. История открытия инертных газов представляет большой интерес: во-первых, как триумф введённых Ломоносовым количественных методов химии (открытие аргона), а во-вторых, как триумф теоретического предвидения (открытие остальных инертных газов), опирающегося на величайшее обобщение химии — периодический закон Менделеева.Открытие физиком Рэлеем и химиком Рамзаем первого благородного газа — аргона — произошло в то время, когда построение периодической системы казалось завершённым и в ней оставалось лишь несколько пустых клеток. Ещё 1785 году английский химик и физик Г. Кавендиш обнаружил в воздухе какой-то новый газ, необыкновенно устойчивый химически. На долю этого газа приходилась примерно одна сто двадцатая часть объема воздуха. Но что это за газ, Кавендишу выяснить не удалось. Об этом опыте вспомнили 107 лет спустя, когда Джон Уильям Стратт (лорд Рэлей) натолкнулся на ту же примесь, заметив, что азот воздуха тяжелее, чем азот, выделенный из соединений. Не найдя достоверного объяснения аномалии, Рэлей через журнал «Nature» обратился к коллегам-естествоиспытателям с предложением вместе подумать и поработать над разгадкой ее причин… Спустя два года Рэлей и У. Рамзай установили, что в азоте воздуха действительно есть примесь неизвестного газа, более тяжелого, чем азот, и крайне инертного химически. “Воздух при помощи раскалённой меди был лишён своего кислорода и затем нагрет с кусочками магния в трубочке. После того как значительное количество азота было поглощено магнием, была определена плотность остатка. Плотность оказалась в 15 раз больше плотности водорода, тогда как плотность азота только в 14 раз больше её. Эта плотность возрастала ещё по мере дальнейшего поглощения азота, пока не достигла 18. Этим было доказано, что воздух содержит газ, плотность которого больше плотности азота… Я получил 100 см3 этого вещества и нашёл его плотность равной 19,9. Оно оказалось одноатомным газом”. Когда они выступили с публичным сообщением о своем открытии, это произвело ошеломляющее впечатление. Многим казалось невероятным, чтобы несколько поколений ученых, выполнивших тысячи анализов воздуха, проглядели его составную часть, да еще такую заметную — почти процент! Кстати, именно в этот день и час, 13 августа 1894 года, аргон и получил свое имя, которое в переводе с греческого значит «недеятельный». Гелий впервые был идентифицирован как химический элемент в 1868 П. Жансеном при изучении солнечного затмения в Индии. При спектральном анализе солнечной хромосферы была обнаружена ярко-желтая линия, первоначально отнесенная к спектру натрия, однако в 1871 Дж. Локьер и П. Жансен доказали, что эта линия не относится ни к одному из известных на земле элементов. Локьер и Э. Франкленд назвали новый элемент гелием от греч. «гелиос», что означает солнце. В то время не знали, что гелий — инертный газ, и предполагали, что это металл. И только спустя почти четверть века гелий был обнаружен на земле. В 1895, через несколько месяцев после открытия аргона, У. Рамзай и почти одновременно шведские химики П. Клеве и Н. Ленгле установили, что гелий выделяется при нагревании минерала клевеита. Год спустя Г. Кейзер обнаружил примесь гелия в атмосфере, а в 1906 гелий был обнаружен в составе природного газа нефтяных скважин Канзаса. В том же году Э. Резерфорд и Т. Ройдс установили, что?-частицы, испускаемые радиоактивными элементами, представляют собой ядра гелия. После этого открытия Рамзай пришёл к выводу, что существует целая группа химических элементов, которая располагается в периодической системе между щелочными металлами и галогенами. После этого открытия Рамзай пришёл к выводу, что существует целая группа химических элементов, которая располагается в периодической системе между щелочными металлами и галогенами. Пользуясь периодическим законом и методом Менделеева, было определено количество неизвестных благородных газов и их свойства, в частности их атомные массы. Это позволило осуществить и целенаправленные поиски благородных газов. Вначале Рамзай и его сотрудники занялись минералами, природными водами, даже метеоритами. Результаты анализов неизменно оказывались отрицательными. Между тем, теперь мы это знаем — новый газ в них был. Но методами, существовавшими в конце прошлого века, эти «микроследы» не улавливались. Затем исследователи обратились к воздуху. Всего за четыре последующих года было открыто четыре новых элемента, при этом неон, криптон и ксенон были выделены из воздуха. Воздух, очищенный предварительно от углекислоты и влаги, сжижали, а затем начинали медленно испарять. Сначала «летят» более легкие газы. После испарения основной массы воздуха рассортировывают оставшиеся тяжелые инертные газы. Затем, полученные фракции исследовали. Одним из методов поиска был спектральный анализ: газ помещали в разрядную трубку, подключали ток и по линиям спектра определяли «кто есть кто». Когда в разрядную трубку поместили первую, самую легкую и низкокипящую фракцию воздуха, то в спектре наряду с известными линиями азота, гелия и аргона были обнаружены новые линии, из них особенно яркими были красные и оранжевые. Они придавали свету в трубке огненную окраску. В момент, когда Рамзай наблюдал спектр только что полученного газа, в лабораторию вошел его двенадцатилетний сын, успевший стать «болельщиком» отцовых работ. Увидев необычное свечение, он воскликнул: «new one!» Так возникло название газа «неон», по-древнегречески значит «новый». После того как были открыты гелий, неон и аргон, завершающие три первых периода таблицы Менделеева, уже не вызывало сомнений, что четвёртый, пятый и шестой периоды тоже должны оканчиваться инертным газом. Но найти их удалось не сразу. Это и неудивительно: в 1 м3 воздуха 9, 3 л аргона и всего лишь 0, 08 мл ксенона. Но к тому времени стараниями ученых, прежде всего англичанина Траверса, появилась возможность получать значительные количества жидкого воздуха. Стал доступен даже жидкий водород. Благодаря этому Рамзай совместно с Траверсом смог заняться исследованием наиболее труднолетучей фракции воздуха, получающейся после отгонки гелия, водорода, неона, кислорода, азота и аргона. Остаток содержал сырой (то есть неочищенный) криптон (“скрытый”). Однако после откачки его в сосуде неизменно оставался пузырек газа. Этот газ голубовато светился в электрическом разряде и давал своеобразный спектр с линиями в областях от оранжевой до фиолетовой. Характерные спектральные линии — визитная карточка элемента. У Рамзая и Траверса были все основания считать, что открыт новый инертный газ. Его назвали ксеноном, что в переводе с греческого значит «чужой»: в криптоновой фракции воздуха он действительно выглядел чужаком. В поисках нового элемента и для изучения его свойств Рамзай и Траверс переработали около ста тонн жидкого воздуха; индивидуальность ксенона как нового химического элемента они установили, оперируя всего 0,2 см3 этого газа. Необычайная для того времени тонкость эксперимента! Хотя содержание ксенона в атмосфере крайне мало, именно воздух — практически единственный и неисчерпаемый источник ксенона. Неисчерпаемый — потому, что почти весь ксенон возвращается в атмосферу. Заслуга открытия высшего представителя инертных газов принадлежит тому же Рамзаю. При помощи весьма тонких технических приёмов он доказал, что радиоактивное истечение из радия — эманация радия — представляет собой газ, подчиняющийся всем законам обычных газов, химически инертный и обладающий характерным спектром. Его молекулярный вес — около 220 — был Рамзаем измерен по скорости диффузии. Если предположить, что ядро атома эманации радия — это остаток ядра радия после выбрасывания из него ядра атома гелия — ?-частицы, то заряд его должен быть равен 88-2=86, т. е. новый элемент должен действительно быть инертным газом с атомным весом 226-4=222. Таким образом, после блестящих экспериментов 16 марта 1900 г. в Лондоне произошла встреча Менделеева и Рамзая, на которой было официально решено включить в периодическую систему новую группу химических элементов.

Страница 1
Благородные (инертные) газы.


2 He

10 Ne

18 Ar

36 Kr

54 Xe

86 Rn

Атомная масса

4,0026

20,984

39,948

83,80

131,30



Валентные электроны

1s 2

(2)2s 2 2p 6

(8)3s 2 3p 6

(18)4s 2 4p 6

(18)5s 2 5p 6

(18)6s 2 6p

Радиус атома

0,122

0,160

0,192

0,198

0,218

0,22

Энергия ионизации Э - → Э +

24,59

21,57

15,76

14,00

12,13

10,75

Содержание в земной атмосфере, %

5*10 -4

1,8*10 -3

9,3*10 -1

1,1*10 -4

8,6*10 -6

6*10 -20

Благородными (инертными) газами называют элементы главной подгруппы VIII группы: гелий(Не), неон(Nе), аргон(Аr), криптон (Кr), ксенон(Хе) и радон(Rn) (радиоактивный элемент). Каждый благородный газ завершает соответствующий период в Периодической системе и имеет устойчивый, полностью завершенный внешний электронный уровень – ns 2 np 6 . –этим объясняется уникальность свойств элементов подгруппы. Считается, что благородные газы полностью инертны. Отсюда происходит их второе название – инертные.

Все благородные газы входят в состав атмосферы, их содержание в атмосфере составляет по объёму (%): гелия – 4,6 * 10 -4 ; аргона – 0,93; криптона – 1,1* 10 -4 ; ксенона – 0,8 * 10 -6 и радона – 6 * 10 -8 . Все они при нормальных условиях – газы без запаха и цвета, плохо растворимые в воде. Их температуры кипения и плавления возрастают с увеличением размеров атомов. Молекулы одноатомны.



Свойства

He

Ne

Ar

Kr

Xe

Rn

Атомный радиус, нм

0,122

0,160

0,191

0,201

0,220

0,231

Энергия ионизации атомы, эВ

24,58

21,56

15,76

14,00

12,13

10,75

Температура кипения, о С

-268,9

-245,9

-185,9

-153,2

-181,2

Около

Температура плавления, о С

-272,6(под давлением)

-248,6

-189,3

-157,1

-111,8

Около

Растворимость в 1 л воды при 0 о С, мл

10

-

60

-

50

-

§1. Гелий

Гелий обнаружен в 1868г. Методом спектрального анализа солнечного излучения (Локьер и Франкленд, Англия; Жансен, Франция). На Земле Гелий был найден в 1894г. В минерале клевеите (Рамзай, Англия).

От греч. ἥλιος - «Солнце» (см. Гелиос ). Любопытен тот факт, что в названии элемента было использовано характерное для металлов окончание «-ий» (по лат. «-um» - «Helium»), так как Локьер предполагал, что открытый им элемент является металлом. По аналогии с другими благородными газами логично было бы дать ему имя «гелион» («Helion»). В современной науке название «гелион » закрепилось за ядром лёгкого изотопа гелия - гелия-3 .

Особая устойчивость электронной структуры атома отличает гелий от всех остальных химических элементов периодической системы.

Гелий по физическим свойствам наиболее близок к молекулярному водороду. Вследствие ничтожной поляризуемости атомов гелия, у него самые низкие температуры кипения и плавления.

Гелий хуже других газов растворяется в воде и в других растворителях. В Обычных условиях гелий химически инертен, но при сильном возбуждении атомов он может образовывать молекулярные ионы. В обычных условиях эти ионы неустойчивы; захватываю недостающий электрон, они распадаются на два нейтральных атома. Возможно также образование ионизированных молекул. Гелий – наиболее трудно сжимаемый из всех газов.

Гелий удаётся перевести в жидкое состояние только при температуре, приближающийся к абсолютному нулю, т.е. -273,15. Жидкий гелий при температура около 2К обладает уникальным свойством – сверхтекучестью, которая в 1938г. Была открыта П.Л. Капицей и теоретически обоснована Л.Д. Ландау, создавшим квантовую теорию свертекучести. Жидкий гелий существует в двух модификациях: гелий I, который ведет себя как обычная жидкость, и гелий II – сверхтеплопроводная и сверхлетучая жидкость. Гелий II проводит теплоту в 10 7 раз лучше, чем гелий I (и в 1000 раз лучше, чем серебро). Он практически не имеет никакой вязкости, мгновенно проходит через узкие капилляры, самопроизвольно переливается через стенки сосудов в виде тонкой плёнки. Атомы He в сверхтекучем состоянии ведут себя почти так же, как электроны в сверхпроводниках.

В земной коре гелий накапливается за счёт распада частиц радиоактивных элементов, содержится растворенным в минералах, в самородных металлах.

Ядра гелия чрезвычайно устойчивы и широко используются для проведения различных ядерных реакций.

В промышленности гелий в основном выделяют из природных газов методом глубокого охлаждения. При этом он, как самое низкокипящее вещество, остается в виде газа, тогда как все остальные газы конденсируются.

Газообразный гелий применяется для создания инертной атмосферы при сварке металлов, при консервации пищевых продуктов и др. Жидкий гелий применяется в лаборатории в качестве хладоагента в физике низких температур.

§2. Неон


Неон открыли в июне 1898 года шотландский химик Уильям Рамзай и английский химик Морис Траверс . Они выделили этот инертный газ «методом исключения», после того, как кислород, азот , и все более тяжёлые компоненты воздуха были превращены в жидкость . Элементу дали незамысловатое название «неон», что в переводе с греческого означает «новый». В декабре 1910 года французский изобретатель Жорж Клод сделал газоразрядную лампу, заполненную неоном.

Название происходит от греч. νέος - новый.

Существует легенда, согласно которой название элементу дал тринадцатилетний сын Рамзая - Вилли, который спросил у отца, как тот собирается назвать новый газ, заметив при этом, что хотел бы дать ему имя novum (лат. - новый). Его отцу понравилась эта идея, однако он посчитал, что название neon , образованное от греческого синонима, будет звучать лучше.

Неон, как и гелий, обладает очень высоким ионизационным потенциалом(21,57 эВ), поэтому соединений валентного типа не образует. Основное отличие его от гелия обуславливается относительно большей поляризуемостью атом, т.е. несколько большей склонностью образовывать межмолекулярную связь.

Неон имеет очень низкие температуры кипения (-245,9 о С) и плавления (-248,6 о С), уступая лишь гелию и водороду. По сравнению с гелием у неона несколько большая растворимость и способность адсорбироваться.

Как и гелий, неон при сильном возбуждении атомов образует молекулярные ионы типа Ne 2 + .

Неон получают совместно с гелием в качестве побочного продукта в процессе сжижения и разделения воздуха. Разделение гелия и неона осуществляется за счёт адсорбции или конденсации. Адсорбированный метод основан на способности неона в отличии от гелия адсорбироваться активированным углём, охлаждённым жидким азотом. Конденсационный способ основан на вымораживании неона при охлаждении смеси жидким водородом.

Неон применяется в электровакуумной технике для наполнения стабилизаторов напряжения, фотоэлементов и других приборов. Различные типы неоновых ламп с характерным красным свечением употребляют на маяках и в других осветительных устройствах, в световой рекламе и т.п.

Природный неон состоит из трёх стабильных изотопов: 21 Ne и 22 Ne.

В мировой материи неон распределен неравномерно, однако в целом по распространенности во Вселенной он занимает пятое место среди всех элементов - около 0,13 % по массе. Наибольшая концентрация неона наблюдается на Солнце и других горячих звездах , в газовых туманностях , в атмосфере внешних планет Солнечной системы - Юпитера , Сатурна , Урана , Нептуна . В атмосфере многих звезд неон занимает третье место после водорода и гелия. Из всех элементов второго периода неон - самый малочисленный на Земле. В рамках восьмой группы неон по содержанию в земной коре занимает третье место - после аргона и гелия. Газовые туманности и некоторые звезды содержат неона во много раз больше, чем его находится на Земле.

На Земле наибольшая концентрация неона наблюдается в атмосфере - 1,82·10 −3 %по объему, а его общие запасы оцениваются в 7,8·10 14 м³. В 1 м³ воздуха содержится около 18,2 см³ неона (для сравнения: в том же объеме воздуха содержится только 5,2 см³ гелия). Среднее содержание неона в земной коре мало − 7·10 −9 % по массе. Всего на нашей планете около 6,6·10 10 т неона. В изверженных породах находится около 10 9 т этого элемента. По мере разрушения пород газ улетучивается в атмосферу. В меньшей мере атмосферу снабжают неоном и природные воды.

Причину неоновой бедности нашей планеты ученые усматривают в том, что некогда Земля потеряла свою первичную атмосферу, которая и унесла с собой основную массу инертных газов, которые не могли, как кислород и другие газы, химически связаться с другими элементами в минералы и тем самым закрепиться на планете.

В 1892 году британский ученый Джон Стретт, более известный нам как лорд Рэлей (см. Критерий Рэлея ), занимался одной из тех однообразных и не слишком увлекательных работ, без которых тем не менее не может существовать экспериментальная наука. Он исследовал оптические и химические свойства атмосферы, поставив перед собой цель измерить массу литра азота с точностью, которой до него никому не удавалось достичь.

Однако результаты этих измерений казались парадоксальными. Масса литра азота, полученного методом удаления из воздуха всех других известных тогда веществ (таких, как кислород), и масса литра азота, полученного посредством химической реакции (пропусканием аммиака над нагретой до красного каления медью) оказывались разными. Получалось, что азот из воздуха на 0,5% тяжелее азота, полученного химическим путем. Это расхождение не давало Рэлею покоя. Убедившись, что никаких ошибок в эксперименте допущено не было, Рэлей опубликовал в журнале Nature письмо, в котором спрашивал, не может ли кто-нибудь объяснить причину этих расхождений.

Сэр Уильям Рамзай (Рэмзи) (Sir William Ramsay, 1852–1916), работавший в то время в Университетском колледже в Лондоне, ответил Рэлею на это письмо. Рамзай предположил, что в атмосфере может присутствовать не открытый еще газ, и для выделения этого газа предложил использовать новейшее оборудование. В проведенном эксперименте обогащенный кислородом воздух, смешанный с водой, подвергался воздействию электрического разряда, что вызывало соединение атмосферного азота с кислородом и растворение образующихся окислов азота в воде. К концу эксперимента, после того как весь азот и кислород из воздуха уже были исчерпаны, в сосуде все еще оставался маленький пузырек газа. Когда через этот газ пропустили электрическую искру и подвергли его спектроскопии, ученые увидели неизвестные ранее спектральные линии (см. Спектроскопия ). Это означало, что был открыт новый элемент. Рэлей и Рамзай опубликовали свои результаты в 1894 году, назвав новый газ аргоном , от греческого «ленивый», «безразличный». А в 1904 году оба они за эту работу получили Нобелевскую премию. Однако она не была разделена между учеными, как это принято в наше время, а каждый получил премию в своей области - Рэлей по физике, а Рамзай - по химии.

Имел место даже своего рода конфликт. В то время многие ученые полагали, что «владеют» отдельными областями исследований, и не было до конца ясно, давал ли Рэлей Рамзаю разрешение работать над этой проблемой. К счастью, оба ученых оказались достаточно мудры, чтобы осознать преимущества совместной работы, и, сообща опубликовав ее результаты, они исключили возможность неприятной борьбы за первенство.

Аргон - одноатомный газ. Имея относительно больший размер атома, аргон более склонен к образованию межмолекулярных связей, чем гелий и неон. Поэтому аргон в виде просо вещества характеризуется несколько более высокими температурами кипения (при нормальном давлении) −185,9 °C (немного ниже, чем у кислорода , но немного выше, чем у азота ) и плавления(-184,3°C). В 100 мл воды при 20 °C растворяется 3,3 мл аргона, в некоторых органических растворителях аргон растворяется значительно лучше, чем в воде.

Аргон образует межмолекулярные соединения включения – клатраты примерного состава Ar*6H 2 0 представляет собой кристаллическое вещество, разлагающееся при атмосферном давлении и температуре -42,8 °C. Его можно получить непосредственно взаимодействием аргона с водой при 0°C и давлении порядка 1,5*10 7 Па. С соединениями H 2 S, SO 2 , CO 2 , HCl аргон даёт двойные гидраты, т.е. смешанные клатраты.

Аргон получают при разделении жидкого воздуха, а также из отходов газов синтеза аммиака. Аргон применяют в металлургических и химических процессах, требующих инертной атмосферы, в светотехнике, электротехнике, ядерной энергетике и т.п.

Аргон (вместе с неоном ) наблюдается на некоторых звездах и в планетарных туманностях . В целом его в космосе больше, чем кальция , фосфора , хлора , в то время как на Земле существуют обратные отношения.

Аргон - третий по содержанию после азота и кислорода компонент воздуха , его среднестатистическое содержание в атмосфере Земли составляет 0,934 % по объему и 1,288 % по массе, его запасы в атмосфере оцениваются в 4·10 14 т. Аргон - самый распространённый инертный газ в земной атмосфере, в 1 м³ воздуха содержится 9,34 л аргона (для сравнения: в том же объеме воздуха содержится 18,2 см³ неона , 5,2 см³ гелия , 1,1 см³ криптона , 0,09 см³ ксенона ).

§4. Криптон

В 1898 году английский учёный У.Рамзай выделил из жидкого воздуха (предварительно удалив кислород, азот и аргон) смесь, в которой спектральным методом были открыты два газа: криптон («скрытый», «секретный») и ксенон («чуждый», «необычный»).

От греч. κρυπτός - скрытый.

Находится в атмосферном воздухе. Образуется при ядерном делении, в том числе и в результате естественных процессов, происходящих в рудах радиоактивных металлов. Криптон получают как побочный продукт при воздуха разделении .

Газообразный кислород , содержащий Kr и Хе, из конденсатора установки для получения О 2 подается на ректификацию в т. наз. криптоновую колонну, в к-рой Kr и Хе извлекаются из газообразного О 2 при промывке его флегмой , образующейся в верх, конденсаторе криптоновой колонны. Кубовая жидкость при этом обогащается Kr и Хе; ее затем практически полностью испаряют, неиспаривщаяся часть -т. наз. бедный жрилтонксеноновый концентрат (менее 0,2% Kr и Хе) - непрерывно поступает через испаритель в газгольдер . При оптимальном флегмовом числе 0,13 степень извлечения Kr и Хе составляет 0,90. Выделенный концентрат сжимают до 0,5-0,6 МПа и через теплообменник подают в нагретый до ~1000 К контактный аппарат с СuО для выжигания содержащихся в нем углеводородов . После охлаждения в водяном холодильнике газовую смесь очищают от примесей СО 2 и воды с помощью КОН сначала в скрубберах , а затем в баллонах. Выжигание и очистку повторяют неск. раз. Очищенный концентрат охлаждают и непрерывно подают в ректификац. колонну под давлением 0,2-0,25 МПа. При этом Kr и Хе накапливаются в кубовой жидкости до содержания 95-98%. Эту т. наз. сырую криптон-ксeноновую смесь через газификатор, аппарат для выжигания углеводородов и систему очистки направляют в газгольдеры . Из газгольдера газовая смесь поступает в газификатор, где ее конденсируют при 77 К. Часть этой смеси подвергают фракционированному испарению . В результате послед. очистки от О 2 в контактном аппарате с СuО получают чистый криптон. Оставшуюся газовую смесь подвергают адсорбции в аппаратах с активир. углем при 200-210 К; при этом выделяется чистый криптон, а Хе и часть криптона поглощаются углем . Адсорбированные Kr и Хе разделяют фракционированной десорбцией . При мощности 20000 м 3 /ч перерабатываемого воздуха (273 К, 0,1 МПа) получают в год 105 м 3 криптона. Его добывают также из метановой фракции продувочных газов в произ-ве NH 3 . Выпускают чистый криптон (более 98,9% по объему криптона), техн. (более 99,5% смеси Kr и Хе) и крип-тон-ксеноновую смесь (менее 94,5% криптона). Используют криптон для наполнения ламп накаливания, газоразрядных и рентгеновских трубок. Радиоактивный изотоп 85 Kr используют как источник b-излучения в медицине, для обнаружения течей в вакуумных установках, как изотопный индикатор при исследованиях коррозии, для контроля износа деталей. Хранят и транспортируют криптон и его смеси с Хе под давлением 5-10 МПа при 20°С в герметичных стальных баллонах черного цвета соотв. с одной желтой полосой и надписью "криптон" и двумя желтыми полосами и надписью "криптон-ксенон". Криптон открыли в 1898 У. Рамзай и М. Траверс. Лит.

§5. Ксенон

Открыт в 1898 году английскими учеными У.Рамзаем и У. Рэлей как небольшая примесь к криптону .

От греч. ξένος - чужой.

Температура плавления −112 °C,температура кипения −108 °C,свечение в разряде фиолетовым цветом.

Первый инертный газ , для которого были получены настоящие химические соединения. Примерами соединений могут быть дифторид ксенона , тетрафторид ксенона , гексафторид ксенона , триоксид ксенона .

Получают ксенон как побочный продукт при воздуха разделении . Его выделяют из криптон-ксенонового концентрата (см. Криптон ). Выпускают ксенон чистый (99,4% по объему) и высокой чистоты (99,9%).Ксенон получают как побочный продукт производства жидкого кислорода на металлургических предприятиях.

В промышленности ксенон получают как побочный продукт разделения воздуха на кислород и азот . После такого разделения, которое обычно проводится методом ректификации , получившийся жидкий кислород содержит небольшие количества криптона и ксенона. Дальнейшая ректификация обогащает жидкий кислород до содержания 0.1-0.2 % криптоноксеноновой смеси, которая отделяется адсорбированием на силикагель или дистилляцией . В заключение, ксеноно-криптоновый концентрат может быть разделен дистилляцией на криптон и ксенон.

Из-за своей малой распространенности, ксенон гораздо дороже более легких инертных газов .

Несмотря на высокую стоимость, ксенон незаменим в ряде случаев:


  • Ксенон используют для наполнения ламп накаливания, мощных газоразрядных и импульсных источников света (высокая атомная масса газа в колбах ламп препятствует испарению вольфрама с поверхности нити накаливания).

  • Радиоактивные изотопы (127 Xe, 133 Xe, 137 Xe, и др.) применяют в качестве источников излучения в радиографии и для диагностики в медицине, для обнаружения течи в вакуумных установках.

  • Фториды ксенона используют для пассивации металлов.

  • Ксенон как в чистом виде, так и с небольшой добавкой паров цезия-133, является высокоэффективным рабочим телом для электрореактивных (главным образом - ионных и плазменных) двигателей космических аппаратов.

  • С конца XX века ксенон стал применяться как средство для общего наркоза (достаточно дорогой, но абсолютно нетоксичный, точнее - как инертный газ - не вызывает химических последствий). Первые диссертации о технике ксенонового наркоза в России - 1993 г., в качестве лечебного наркоза эффективно применяется для снятия острых абстинентных состояний и лечения наркомании, а также психических и соматических расстройств.

  • Жидкий ксенон иногда используется как рабочая среда лазеров.

  • Фториды и оксиды ксенона предложены в качестве мощнейших окислителей ракетного топлива, а так же в качестве компонентов газовых смесей для лазеров.

  • В изотопе 129 Xe возможно поляризовать значительную часть ядерных спинов для создания состояния с сонаправленными спинами - состояния называемого гиперполяризацией.

  • Ксенон используется в конструкции ячейки Голея.

  • В качестве химических катализаторов.

  • Для транспортировки фтора, проявляющего сильные окисляющие свойства.
Ксенон относительно редок в атмосфере Солнца , на Земле , в составе астероидов и комет . Концентрация ксенона в атмосфере Марса аналогична земной: 0.08 миллионной доли , хотя содержание 129 Xe на Марсе выше, чем на Земле или Солнце. Поскольку данный изотоп образуется в процессе радиоактивного распада, полученные данные могут свидетельствовать о потере Марсом первичной атмосферы, возможно, в течение первых 100 миллионов лет после формирования планеты. У Юпитера , напротив, необычно высокая концентрация ксенона в атмосфере - почти в два раза выше, чем у Солнца.

Ксенон находится в земной атмосфере в крайне незначительных количествах, 0.087±0.001 миллионной доли (μL/L), а также встречается в газах, испускаемых некоторыми минеральными источниками . Некоторые радиоактивные изотопы ксенона, например, 133 Xe и 135 Xe, получаются как результат нейтронного облучения ядерного топлива в реакторах .

Английский ученый Э. Резерфорд в 1899 году отметил, что препараты тория испускают, кроме α-частиц, и некое неизвестное ранее вещество, так что воздух вокруг препаратов тория постепенно становится радиоактивным. Это вещество он предложил назвать эмана́цией (от латинского emanatio - истечение) тория и дать ему символ Em. Последующие наблюдения показали, что и препараты радия также испускают некую эманацию, которая обладает радиоактивными свойствами и ведет себя как инертный газ.

Первоначально эманацию тория называли торо́ном, а эманацию радия - радо́ном. Было доказано, что все эманации на самом деле представляют собой радионуклиды нового элемента - инертного газа, которому отвечает атомный номер 86. Впервые его выделили в чистом виде Рамзай и Грей в 1908 году, они же предложили назвать газ нитон (от лат. nitens, светящийся). В 1923 году газ получил окончательное название радон и символ Em был сменен на Rn.

Радон - радиоактивный одноатомный газ без цвета и запаха. Растворимость в воде 460 мл/л; в органических растворителях, в жировой ткани человека растворимость радона в десятки раз выше, чем в воде. Газ хорошо просачивается сквозь полимерные плёнки. Легко адсорбируется активированным углем и силикагелем .

Собственная радиоактивность радона вызывает его флюоресценцию . Газообразный и жидкий радон флюоресцирует голубым светом, у твёрдого радона при охлаждении до азотных температур цвет флюоресценции становится сперва жёлтым, затем красно-оранжевым.

Радон образует клатраты , которые, хотя и имеют постоянный состав, химических связей с участием атомов радона в них нет. С фтором радон при высоких температурах образует соединения состава RnF n , где n = 4, 6, 2. Так, дифторид радона RnF 2 является белым нелетучим кристаллическим веществом. Фториды радона могут быть получены также под действием фторирующих агентов (например, фторидов галогенов). При гидролизе тетрафторида RnF 4 и гексафторида RnF 6 образуется оксид радона RnO 3 . Получены также соединения с катионом RnF + .

Для получения радона через водный раствор любой соли радия продувают воздух, который уносит с собой образующийся при радиоактивном распаде радия радон. Далее воздух тщательно фильтруют для отделения микрокапель раствора, содержащего соль радия, которые могут быть захвачены током воздуха. Для получения собственно радона из смеси газов удаляют химически активные вещества (кислород, водород, водяные пары и т. д.), остаток конденсируют жидким азотом, затем из конденсата отгоняют азот и другие инертные газы (аргон, неон и т.д).

Радон используют в медицине для приготовления радоновых ванн . Радон используется в сельском хозяйстве для активации кормов домашних животных [ источник не указан 272 дня ] , в металлургии в качестве индикатора при определении скорости газовых потоков в доменных печах, газопроводах. В геологии измерение содержания радона в воздухе и воде применяется для поиска месторождений урана и тория , в гидрологии - для исследования взаимодействия грунтовых и речных вод. Динамика концентрации радона в подземных водах может применяться для прогноза землетрясений.

Входит в состав радиоактивных рядов 238 U, 235 U и 232 Th. Ядра радона постоянно возникают в природе при радиоактивном распаде материнских ядер. Равновесное содержание в земной коре 7·10 −16 % по массе. Ввиду химической инертности радон относительно легко покидает кристаллическую решётку «родительского» минерала и попадает в подземные воды, природные газы и воздух. Поскольку наиболее долгоживущим из четырёх природных изотопов радона является 222 Rn, именно его содержание в этих средах максимально.

Концентрация радона в воздухе зависит в первую очередь от геологической обстановки (так, граниты, в которых много урана, являются активными источниками радона, в то же время над поверхностью морей радона мало), а также от погоды (во время дождя микротрещины, по которым радон поступает из почвы, заполняются водой; снежный покров также препятствует доступу радона в воздух). Перед землетрясениями наблюдалось повышение концентрации радона в воздухе, вероятно, благодаря более активному обмену воздуха в грунте ввиду роста микросейсмической активности.

(Галина Афанасьевна – HELP с криптоном,ксеноном, аргоном!может ещё чтото добавить? И что писать дальше?)

страница 1

Открытие:

В 1893 г. было обращено внимание на несовпа­дение плотностей азота из воздуха и азота, получаемого при разло­жении азотных соединений: литр азота из воздуха весил 1,257 г, а по­лученного химическим путем-1,251 г. Произведенное для выяснения этого загадочного обстоятельства очень точное изучение состава воз­духа показало, что после удаления всего кислорода и азота получался небольшой остаток (около 1%), который ни с чем химически не реагировал.

Открытие нового элемента, названного аргоном (по-гре­чески - недеятельный), представило, таким образом, «торжество третьего десятичного знака». Молекулярный вес аргона оказался рав­ным 39,9 г/моль.

Следующий по времени открытия инертный газ - гелий («солнеч­ный») был обнаружен на Солнце раньше, чем на Земле. Это оказа­лось возможным благодаря разработанному в 50-х годах прошлого века методу спектрального анализа.

Через несколько лет после открытия аргона и гелия (в 1898 г.) были выделены из воздуха еще три инертных газа: неон («новый»), криптон («скрытый») и ксенон («чуждый»). Насколько трудно было их обнаружить, видно из того, что 1 м 3 воздуха, наряду с 9,3 л аргона, содержит лишь 18 мл неона, 5 мл гелия, 1 мл криптона и 0,09 мл ксе­нона.

Последний инертный газ - радон был открыт в 1900 г. при изуче­нии некоторых минералов. Содержание его в атмосфере составляет лишь 6-10 -18 % по объему (что соответствует 1-2 атомам в кубиче­ском сантиметре). Было подсчитано, что вся земная атмосфера содер­жит лишь 374 литра радона.

Физические свойства:

Все инертные газы бесцветны и состоят из одноатомных мо­лекул. Разделение инертных га­зов основано на различии их физических свойств.

Инертные газы бесцветны и не имеют запаха. В небольшом количестве они присутствуют в воздухе.Инертные газы не ядовиты. Однако атмосфера с увеличенной концентрацией инертных газов и соответствующим снижением концентрации кислорода может оказывать удушающее действие на человека, вплоть до потери сознания и смерти. Известны случаи гибели людей при утечках аргона.

Температура плавле­ния, °С

Температура кипения,°С

Количество тепла, необходи­мое для перевода вещества из твер­дого состояния в жидкое, носит на­звание теплоты плавления, а для пе­ревода из жидкого состояния в паро­образное - теплоты испарения. Обе величины относят обычно к переходам, происходящим под нормальным давлением. Для инертных газов они имеют следующие значе­ния (ккал/г-атом):

Теплота плавления

Теплота испарения

Ниже сопоставлены критические температуры инертных газов и те давления, которые необходимы и достаточны для ихперевода при этих температурах из газообразного состояния в жидкое, - критические давления:

Критическая температура, °С

Критическое давление, атм

Это интересно :

Вопрос об атомности молекулы аргона был разрешен при помощи кинетиче­ской теории. Согласно ей, количество тепла, которое нужно затратить для нагревания грамм-молекулы газа на одни градус, зависит от числа атомов в его моле­куле. При постоянном объеме грамм-молекула одноатомного газа требует 3 кал, двухатомного - 5 кал. Для аргона опыт давал 3 кал, что и указывало на одноатомность его молекулы.То же относится и к другим инертным газам.

Гелий был последним из газов переведен в жидкое и твердое состояние. По отношению к нему имели место особые трудности, обусловленные тем, что в резуль­тате расширения при обычных температурах гелий не охлаждается, а нагревается. Лишь ниже -250 °С он начинает вести себя «нормально». Отсюда следует, что обыч­ный процесс ожижения мог быть применим к гелию лишь после его предварительного очень сильного охлаждения. С другой стороны, и критическая температура гелия ле­жит крайне низко. В силу этих обстоятельств благоприятные результаты при работе с гелием были получены лишь после овладения методикой оперирования с жидким водородом, пользуясь испарением которого только и можно было охладить гелий до нужных температур. Получить жидкий гелий удалось впервые в 1908 г., твердый гелий 1926 г.

Химические свойства:

Для инертных газов характерно полное (Не, Ne, Аr) или почти пол­ное (Кг, Хe, Rn) отсутствие химической активности. В периодической системе они образуют особую группу (VIII). Вскоре после открытая инертных газов образованная ими в периодической системе новая группа была названа нулевой, чтобы подчеркнуть этим нулевую ва­лентность данных элементов, т. е. отсутствие у них химической активности. Такое на­звание часто применяется и в настоя­щее время, однако по существу пе­риодического закона правильнее счи­тать группу инертных газов восьмой, так как этими элементами соответ­ствующие периоды не начинаются, а заканчиваются.

Отсутствие у тяжелых инертных газов полной химической инертно­сти было обнаружено лишь в 1962 г. оказалось, что они способны соединяться с наиболее активным металлоидом - фтором (и только с ним). Ксенон (и радон) реагируют довольно легко, криптон - гораздо труднее. Получены XeF 2 , XeF 4 , XeF 6 и малоустойчивый KrF 2 . Все они представляют собой бесцветные летучие кристаллические вещества.

Ксенондифторид (XeF 2)-медленно образуется под действием дневного света на смесь Xe и F 2 при н.у. Обладает характерным тошнотворным запахом. Для образования молекулы требуется возбуждение атома ксенона от 5s 2 5p 6 до ближайшего двухвалентного состояния 5s 2 5p 5 s 1 - 803кдж/моль, до 5s 2 5p 5 6p 1 -924 кдж/моль, 25s 2 5p 1 6d 1 - 953 кдж/моль.

Xe+F 2 →XeF 2

В воде растворяется 0,15 моль/л. Раствор является очень сильным окислителем. Раствор разлагается по схеме:

XeF 2 +H 2 O→HF+Xe+O 2 (процесс происходит быстрее в щелочной среде, медленнее в кислой).

Ксенонтетрафторид- образуется из простых веществ, реакция сильно экзотермична, является наиболее устойчивым из всех фторидов.

XeF 4 +2Hg=2HgF 2 +Xe

XeF 4 +Pt=PtF 4 +Xe

Качественная реакция на тетрафторид ксенона:

XeF 4 +4KI=4KF+2I 2 ↓+Xe

Тетрафторид ксенона разлагается по схемам:

3Xe 4+ →Xe 6+ +2Xe 0 (в кислой среде).

Xe 4+ →Xe 0 +Xe 8+ (в щелочной среде).

Ксенонгексафторид- бесцветный, известен в 3 кристаллических модификациях. При 49 ℃, переходя в жёлтую жидкость, при затвердевании вновь обесцвечивается. Пары имеют бледно-жёлтую окраску. Разлагается с взрывом. Под действием влажного воздуха гидролизуются:

XeF 6 +H 2 O→2HF+OXeF 4

OXeF 4 бесцветная жидкость, менее реакционно способен,чем XeF 6 .Образует кристаллогидраты с фторидами щелочных металлов, например: KF∙OXeF 4

Дальнейшим гидролизом можно получить триоксид ксенона:

XeF 6 +3H 2 O→XeO 3 +6HF

XeO 3 бесцветное взрывчатое вещество, расплывающееся на воздухе. Распадается со взрывом, но при аккуратном нагревании при 40 градусов по Цельсию, происходит реакция:

2XeO 3 →2Xe+3O 2

Есть кислота, формально отвечающая данному оксиду- H 2 XeO 4 .Есть соли, соответствующие данной кислоте: MHXeO 4 или MH 5 XeO 6 , кислота(M- от натрия до цезия), отвечающая последней соли была получена:

3XeF 4 +6Ca(OH) 2 →6CaF 2 ↓+Xe+2H 2 XeO 6

В сильнощелочной среде Xe 6+ дисмутирует:

4Xe 6+ →Xe 0 +3Xe 8+

Дифторид криптона - летучие бесцветные кристаллы, химически активное вещество. При повышенных температурах разлагается на фтори криптон. Был впервые получен дейсвтием электрического разряда на смесь веществ, при -188 ℃:

F 2 +Kr→KrF 2

Водой разлагается по схеме:

2KrF 2 +2H 2 O→O 2 +4HF+2Kr

Применение инертных газов:

Инертные газы находят довольно разнообразное практическое при­менение. В частности, исключительно важна роль гелия при получении низких температур, так как жидкий гелий является самой холодной из всех жидкостей.Искусственный воздух, в составе которого азот заме­нен гелием, был впервые применен для обеспечения дыхания водолазов. Растворимость газов с возрастанием давления сильно увеличивается, поэтому у опускающегося в воду и снабжаемого обычным воздухом водолаза кровь растворяет азота больше, чем в нормальных условиях. При подъеме, когда давление падает, растворенный азот начинает выде­ляться и его пузырьки частично закупоривают мелкие крове­носные сосуды, нарушая тем самым нормальное кровообра­щение и вызывая приступы «кессонной болезни». Благо­даря замене азота гелием болезненные явления резко ослабляются вследствие гораздо меньшей растворимости гелия в крови, что особенно сказывается именно при повы­шенных давлениях. Работа в атмосфере «гелийного» воздуха позволяет водолазам опускаться на большие глубины (свыше 100 м) и значительно удлинять сроки пребы­вания под водой.

Так как плотность такого воздуха примерно в три раза меньше плотности обыч­ного, дышать им гораздо легче. Этим обусловлено большое медицинское значение гелийного воздуха при лечении астмы, удуший и т. п., когда даже кратковременное облегчение дыхания больного может спасти ему жизнь. Подобный гелийному, «ксено­новый» воздух (80% ксенона, 20% кислорода) оказывает при вдыхании сильное нар­котическое действие, что может найти медицинское использование.

Неон и аргон широко используются электротехнической промышленностью. При прохождении электрического тока сквозь заполненные этими газами стеклянные трубки газ начинает светиться, что применяется для оформления световых надписей.

Мощные неоновые трубки этого типа особенно пригодны для маяков и других сигнальных устройств, так как их красный свет мало задерживается туманом. Цвет свечения гелия по мере уменьшения его давления в трубке меняется от розового через желтый к зеленому. Для Аr, Кr и Хе характерны различные оттенки голубого цвета.

Аргон (обычно в смеси с 14% азота) служит также для заполнения электроламп. Вследствие значительно меньшей теплопроводности еще лучше подходят для этой цели криптон и ксенон: заполненные ими электролампы дают больше света при том же расходе анергии, лучше выдерживают перегрузку и долговечнее обычных.

Редактор: Харламова Галина Николаевна

- (a. inert gasses; н. Inertgase, Tragergase; ф. gaz inertes; и. gases inertes) благородные, редкие газы одноатомные газы без цвета и запаха: гелий (Не), неон (Ne) … Геологическая энциклопедия

- (благородные газы, редкие газы) элементы гл. подгруппы VIII группы периодич. системы элементов. К И. г. относится гелий (Не), неон (Ne), аргон (Аr), криптон (Кr), ксенон (Хе) и радиоакт. радон (Rn). В природе И. г. присутствуют в атмосфере, Не… … Физическая энциклопедия

Большой Энциклопедический словарь

Инертные газы - то же, что благородные газы … Российская энциклопедия по охране труда

Инертные газы - ИНЕРТНЫЕ ГАЗЫ, то же, что благородные газы. … Иллюстрированный энциклопедический словарь

ИНЕРТНЫЙ [нэ], ая, ое; тен, тна. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

инертные газы - Элементы VIII группы Периодич. системы: Не, Ne, Ar, Kr, Хе, Rn. И. г. отличаются хим. инертностью, что объясняется устойчивой внешн. эл нной оболочкой, на к рой у Не находится 2 эл на, у остальных по 8 эл нов. И. г. отличаются высоким потенциалом … Справочник технического переводчика

инертные газы - элементы VIII группы Периодической системы: Не, Ne, Ar, Kr, Хе, Rn. Инертные газы отличаются химической инертностью, что объясняется устойчивой внешней электронной оболочкой, на которой у Не находится 2 электрона, у остальных по 8… … Энциклопедический словарь по металлургии

Благородные газы, редкие газы, химические элементы, образующие главную подгруппу 8 й группы периодической системы Менделеева: Гелий Не (атомный номер 2), Неон Ne (10), Аргон Ar (18), Криптон Kr (36), Ксенон Xe (54) и Радон Rn (86). Из… … Большая советская энциклопедия

ГРУППА 0. БЛАГОРОДНЫЕ (ИНЕРТНЫЕ) ГАЗЫ ГЕЛИЙ, НЕОН, АРГОН, КРИПТОН, КСЕНОН, РАДОН Атомы элементов нулевой группы имеют полностью завершенную внешнюю электронную оболочку, что соответствует наиболее стабильной электронной конфигурации, и в течение… … Энциклопедия Кольера

Книги

  • Комплект таблиц. Химия. Неметаллы (18 таблиц) , . Учебный альбом из 18 листов. Арт. 5-8688-018 Галогены. Химия галогенов. Сера. Аллотропия. Химия серы. Серная кислота. Химия азота. Оксиды азота. Азотная кислота – окислитель. Фосфор.…
  • Инертные газы , Фастовский В.Г.. В книге рассмотрены основные физические и физико-химические свойства инертных газов гелия, неона, аргона, криптона и ксенона, а также области их применения в химической, металлургической,…

- (инертный газ), группа газов без цвета и запаха, составляющих группу 0 в периодической таблице Менделеева. К ним причисляют (в порядке возрастания атомного номера) ГЕЛИЙ, НЕОН, АРГОН, КРИПТОН, КСЕНОН и РАДОН. Низкая химическая активность… … Научно-технический энциклопедический словарь

БЛАГОРОДНЫЕ ГАЗЫ - БЛАГОРОДНЫЕ ГАЗЫ, хим. элементы: гелий, неон, аргон, криптон, ксенон и эманация. Получили свое название за неспособность вступать в реакции с другими элементами. В 1894 г. англ. ученые Рэлей и Рам зай установили, что N, полученный из воздуха,… … Большая медицинская энциклопедия

- (инертные газы), химические элементы VIII группы периодической системы: гелий He, неон Ne, аргон Ar, криптон Kr, ксенон Xe, радон Rn. Химически инертны; все элементы, кроме He, образуют соединения включения, например Ar?5,75H2O, Xe оксиды,… … Современная энциклопедия

Благородные газы - (инертные газы), химические элементы VIII группы периодической системы: гелий He, неон Ne, аргон Ar, криптон Kr, ксенон Xe, радон Rn. Химически инертны; все элементы, кроме He, образуют соединения включения, например Ar´5,75H2O, Xe оксиды,… … Иллюстрированный энциклопедический словарь

- (инертные газы) химические элементы: гелий Не, неон Ne, аргон Ar, криптон Kr, ксенон Хе, радон Rn; относятся к VIII группе периодической системы. Одноатомные газы без цвета и запаха. В небольших количествах присутствуют в воздухе, содержатся в… … Большой Энциклопедический словарь

Благородные газы - (инертные газы) элементы VIII группы периодической системы Д. И. Менделеева: гелий He, неон Ne, аргон Ar, криптон Kr, ксенон Xe, радон Rn. В небольших количествах присутствуют в атмосфере, содержатся в некоторых минералах, природных газах, в… … Российская энциклопедия по охране труда

БЛАГОРОДНЫЕ ГАЗЫ - (см.) простые вещества, образованные атомами элементов главной подгруппы VIII группы (см.): гелий, неон, аргон, криптон, ксенон и радон. В природе они образуются при различных ядерных процессах. В большинстве случаев их получают фракционной… … Большая политехническая энциклопедия

- (инертные газы), химические элементы: гелий Не, неон Ne, аргон Ar, криптон Kr, ксенон Хе, радон Rn; относятся к VIII группе периодической системы. Одноатомные газы без цвета и запаха. В небольших количествах присутствуют в воздухе, содержатся в… … Энциклопедический словарь

- (инертные газы, редкие газы), хим. элементы VIII гр. периодич. системы: гелий (Не), неон(Ne), аргон (Аr), криптон (Кr), ксенон (Хе), радон(Rn). В природе образуются в результате разл. ядерных процессов. Воздух содержит 5,24*10 4% по объему Не,… … Химическая энциклопедия

- (инертные газы), хим. элементы: гелий Не, неон Nе, аргон Аr, криптон Кг, ксенон Хе, радон Rn; относятся к VIII группе периодич. системы. Одноатомные газы без цвета и запаха. В небольших кол вах присутствуют в воздухе, содержатся в нек рых… … Естествознание. Энциклопедический словарь

Книги

  • , Д. Н. Путинцев, Н. М. Путинцев. В книге рассмотрены структурные, термодинамические и диэлектрические свойства благородных газов, их взаимосвязь друг с другом и с межмолекулярным взаимодействием. Часть текста пособия служит…
  • Строение и свойства простых веществ. Благородные газы. Учебное пособие. Гриф МО РФ , Путинцев Д.Н.. В книге рассмотрены структурные, термодинамические и диэлектрические свойства благородных газов, их взаимосвязь друг с другом и с межмолекулярным взаимодействием. Часть текста пособия служит…