Защита электродвигателей. Схема защиты асинхронных электродвигателей. Электрическая защита асинхронных электродвигателей Защита электродвигателей от токов перегрузки и короткого замыкания

Электродвигатели как переменного, так и постоянного тока нуждаются в защите от короткого замыкания, теплового перегрева и перегрузок, вызванных аварийными ситуациями или неисправностями в технологическом процессе, силовыми установками которых они являются. Для предупреждения подобных ситуаций промышленностью выпускаются несколько видов устройств, которые как отдельно, так и в комплексе с другими средствами, образуют блок защиты электродвигателя.

Способы защиты электродвигателей от перегрузок

Кроме того, в современные схемы обязательно включают элементы, которые предназначены для комплексной защиты электрооборудования в случае исчезновения напряжения одной или нескольких фаз питания. В подобных системах для исключения аварийных ситуации и минимизации ущерба при их возникновении выполняют мероприятия, предусмотренные «Правилами устройства электроустановок» (ПУЭ).

Отключение двигателя по току тепловым реле

Для исключения выхода из строя асинхронных электродвигателей, которые применяются в механизмах, машинах и прочем оборудовании, где возможно увеличение нагрузок на механическую часть двигателя в случае нарушения технологического процесса, применяют устройства защиты от тепловых перегрузок. Схема защиты от тепловых перегрузок, которая изображена на рисунке выше, включает в себя тепловое реле для электродвигателя, являющееся основным прибором, реализующим мгновенное или заданное по времени прерывание цепи питания.

Реле электродвигателя конструктивно состоит из регулируемого или заданного точно механизма задания времени, контакторов и электромагнитной катушки и теплового элемента, являющегося датчиком возникновения критических параметров. Устройства, кроме времени срабатывания, могут регулироваться по величине перегрузки, что расширяет возможности применения, особенно для тех механизмов, в которых согласно технологическому процессу возможно кратковременное увеличение нагрузки на механическую часть электродвигателя.
К недостаткам работы тепловых реле относится функция по возврату к готовности, которая реализована автоматическим самовозвратом или ручном управлении, и не дающая уверенности оператору в несанкционированном пуске электроустановки после срабатывания.

Схема пуска двигателя выполняется при помощи кнопок пуск, стоп и электромагнитного пускателя, питанием катушки которого они управляют, изображена на рисунке. Запуск реализуется контактами пускателя, которые замыкаются при подаче напряжения на катушку магнитного пускателя.

В данной схеме реализована токовая защита электродвигателя, эту функцию осуществляет тепловое реле, отключающее один из выводов обмотки от земли при превышении номинального тока, протекающего по всем, двум или какой то одной фазе питания. Защитное реле отключит нагрузку и при возникновении короткого замыкания в силовых цепях на электрический двигатель. Работает тепловой защитный аппарат по принципу механического размыкания контрольных клемм вследствие нагрева соответствующих элементов.

Есть и другие устройства, предназначенные для отключения электродвигателя, в случае возникновения в силовых линиях и цепях управления токов короткого замыкания. Они бывают нескольких типов, каждый из которых производит практически мгновенное действие по разрыву без временной паузы. К такой аппаратуре относятся предохранители, электрические , а также электромагнитные реле.

Использование специальных электронных устройств

Существуют сложные средства защиты электродвигателей, которые применяются опытными инженерами при проектировании электрических систем и предназначенные для одновременного противодействия аварийным ситуациям, таким как несанкционированный , работа на двух фазах, работа при пониженном или повышенном напряжении, короткое замыкание однофазное электрической цепи на землю в системах с изолированной нейтралью.

К ним относятся:

  • частотные инверторы,
  • устройства плавного пуска,
  • бесконтактные устройства.

Использование частотных преобразователей

Схема защиты электродвигателя, реализованная в составе преобразователя частоты изображенная на рисунке ниже, предусматривает аппаратными возможностями устройства противодействовать выходу из строя электродвигателя за счет автоматического снижения величины тока при пуске, остановке, коротких замыканиях. Кроме того, защита электродвигателя частотником возможна программированием отдельных функций, таких как время срабатывания тепловой защиты, которая активизируется от контроллера температуры двигателя.

Частотный преобразователь в составе своих функций также имеет контроль защиты радиатора и корректировку по высокому и низкому напряжению, которое может быть вызвано в сетях сторонними причинами.

К особенностям контролирования процесса эксплуатации электродвигателей в системе с частотными преобразователями относятся возможности дистанционного управления с персонального компьютера, который подключается по стандартному протоколу, и передача сигналов на вспомогательные контроллеры, обрабатывающие общие сигналы технологического процесса. Узнать больше о функциях частотных преобразователей можно из статьи про .

Устройства плавного пуска и СиЭЗ

С удешевлением устройств, в которых применены новейшие полупроводниковые элементы, становится целесообразно использовать для защиты асинхронных электродвигателей приборы плавного пуска и системы бесконтактной защиты.

Одним из самых распространенных способов защиты трехфазных электродвигателей как короткозамкнутых, так и с фазным ротором, являются системы электронной бесконтактной защиты (СиЭЗ). Функциональная схема, на которой показан пример реализации устройства защиты двигателей СиЭЗ, приведена ниже.

СиЭЗ осуществляет защиту электродвигателей при обрыве любого фазного провода, увеличении тока сверх номинального, механическом заклинивании якоря (ротора) и недопустимой асимметрии по напряжению между фазами. Реализация функций возможна при использовании в схеме шунтов и трансформаторов тока L1, L2 и L3.

Кроме того, системы могут включать дополнительные опции, такие как предпусковой контроль сопротивления изоляции, дистанционные датчики температуры и защиту от понижения тока ниже номинального.

Преимущества СиЭЗ пред частотными преобразователями является непосредственное снятие данных через индукционные датчики, что исключает запаздывание срабатывания, а также сравнительно низкая стоимость при условии, что приборы имеют защитное предназначение.


Привод исполнительных механизмов различных технологических процессов, как правило, осуществляется от электродвигателей.

Двигатель относится к основным компонентам электропривода, в наибольшей степени подвергающимся в процессе эксплуатации воздействию неблагоприятных факторов различного характера.

Причины вероятных отклонений от нормального режима работы электродвигателя можно разделить на три основные группы:

  • проблемы в исполнительных механизмах, вызывающие торможение и перегрузку приводного электродвигателя;
  • нарушение качества электроэнергии, питающей электродвигатель;
  • дефекты, возникающие внутри самого двигателя.

Для обеспечения надёжной эксплуатации, электродвигатель должен быть оборудован автоматическими защитами в необходимом объёме, реагирующими на опасные отклонения рабочих параметров и перегрузки по любой причине из перечисленных групп и действующими на отключение выключателя.

Минимальный объём автоматических устройств защиты электродвигателей определяется правилами устройства электроустановок (ПУЭ). Электрические двигатели различаются по номинальной мощности, напряжению питания, роду потребляемого тока, а также конструктивными особенностями.

В соответствии с этими различиями, а также исходя из условий работы, для каждой модели электрической машины производится выбор автоматической защиты электродвигателя. Различные виды автоматических устройств действуют как на отключение выключателя, так и на включение предупредительной сигнализации.

По роду потребляемого тока электродвигатели делятся на:

  • машины переменного ;

В быту и производстве распространены двигатели переменного тока, которые бывают асинхронными и синхронными.

По уровню номинального напряжения электрические машины переменного тока делятся на две основные группы – низковольтные, питающиеся напряжением до 1000 В и высоковольтные, рассчитанные на работу в сетях выше 1000 В. Наиболее массовое распространение имеют асинхронные машины с номинальным напряжением 0,4 кВ.

Защищаются они посредством автоматического выключателя , имеющего электромагнитный и тепловой расцепители от короткого замыкания и перегрузки.

ОСНОВНЫЕ ТИПЫ ЗАЩИТ АСИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ ДО 1000 В

Токовая отсечка.

Из всех аварийных режимов наиболее опасным является междуфазное короткое замыкание. Данный вид повреждения требует немедленного отключения асинхронного двигателя выключателем от питающей сети.

В соответствии с действующими правилами, асинхронные двигатели до 1000 В должны защищаться от коротких замыканий плавкими предохранителями или электромагнитными и тепловыми расцепителями автоматических выключателей.

Как обычно, правила отстают от фактических реалий. На вновь вводимых объектах асинхронные электрические машины комплектуются выносными многофункциональными блоками автоматической релейной защиты электродвигателя на базе микроконтроллеров, воздействующими на отключение выключателя.

Основной сути это не меняет. Автоматические защитные устройства от междуфазных коротких замыканий реагируют на сверхтоки и не имеют выдержки времени отключения выключателя. Такие устройства по-прежнему называют токовыми отсечками, защитные реле срабатывают при КЗ в обмотке статора либо на выводах асинхронного двигателя.

Контроль протекающего электротока осуществляется посредством традиционных токовых преобразователей – трансформаторов тока (ТТ) или более современных датчиков электротока.

Зоной действия защищающего устройства является участок электросети, расположенный после ТТ или датчика. Обычно кроме самого асинхронного двигателя в защищаемой зоне находится и питающий кабель.

Параметры срабатывания токовой отсечки должны быть надёжно отстроены от пусковых токов. С другой стороны, автоматическое защитное устройство должно обладать достаточной чувствительностью при межвитковых замыканиях в любой части обмотки статора асинхронной машины.

Перегрузка.

Данный вид ненормального режима возникает при неисправностях или перегрузке исполнительного механизма. Перегрузка двигателя также может происходить по причине его недостаточной мощности. Режим перегрузки характеризуется повышенным уровнем токового потребления с относительно небольшой кратностью по сравнению с номинальным значением.

Токовая уставка автоматической защиты электродвигателя от перегрузки меньше значения пусковых токовых параметров, поэтому должна быть осуществлена отстройка от режима запуска путём искусственной задержки времени срабатывания и отключения автоматического выключателя.

Защищённость электромашины от перегрузки может быть реализована с применением следующих устройств:

  • теплового расцепителя автоматического выключателя защиты электродвигателя;
  • выносного защитного комплекта с токовым реле и реле времени, воздействующего на отключение выключателя при перегрузке;
  • блока комплексной защитной автоматики двигателя на микроконтроллере, при срабатывании воздействующего на расцепитель выключателя.

В случае применения автоматического выключателя требуется просто подобрать подходящий по номинальному току и характеристике автомат. Тепловой расцепитель выключателя защиты электродвигателя обеспечивает интегральную зависимость времени отключения выключателя от величины токовой перегрузки.

Защитный автоматический релейный комплект с выносными электромагнитными реле настраивается на фиксированные ток и время срабатывания защиты.

В этом варианте, в отличие от теплового расцепителя, токовые и временные параметры между собой не связаны. Выходные реле выносных комплектов релейной защиты должны воздействовать на независимый (не тепловой) расцепитель автоматического выключателя.

ЗАЩИТА ОТ НЕПОЛНОФАЗНОГО РЕЖИМА

Этот вид автоматического защитного устройства не предписан ПУЭ как обязательный, хотя является весьма желательным. При работе трёхфазного электродвигателя на двух фазах происходит постепенный перегрев обмоток, приводящий к разрушению изоляции обмоточного провода.

Возникнуть такой режим может, например, при потере контакта в одной из фаз выключателя.

Самое плохое в этой ситуации то, что потребляемый ток при этом может быть сравним с номинальной величиной, то есть токовые защиты электродвигателя, в том числе расцепители теплового типа, защищающие от перегрузки на этот режим могут не среагировать.

Некоторые модели электрических машин содержат встроенные (температурные) датчики обмотки. Такие модификации электрических машин можно оснастить специальным устройством защиты электродвигателя, осуществляющие контроль теплового состояния электромашины.

Тепловые защитные устройства способны помочь и в случае перегрева при работе на двух фазах.

ЗАЩИТНЫЕ УСТРОЙСТВА ДВИГАТЕЛЕЙ ВЫШЕ 1000 ВОЛЬТ

Защищённость высоковольтных электрических машин обеспечивается только выносными релейными устройствами. Тепловой и электромагнитный расцепители являются прерогативой низковольтных устройств.

Принцип действия и расчёт уставок токовой отсечки и защиты от перегрузки такой же, как для низковольтных машин. Но кроме этого существуют специфические защитные устройства, не применяемые на низких напряжениях.

Защита от однофазных замыканий на землю.

Особенностью сетей высокого напряжения (6 – 10 кВ) является работа в режиме изолированной нейтрали. В таких сетях величина Iз замыкания на землю может составлять всего единицы ампер, что находится вне зоны чувствительности максимальных токовых защит от перегрузки.

Однофазные замыкания на землю характеризуются наличием токов нулевой последовательности, протекающих в одном направлении во всех трёх фазах.

Реле земляной защиты электродвигателя (это её название на жаргоне релейщиков) подключается к специальному трансформатору нулевой последовательности, представляющему собой тор (бублик), через который проходит кабель питания.

При этом через тор не должен проходить вывод экранирующей оболочки высоковольтного кабеля, в противном случае имеют место ложные срабатывания устройства с отключением выключателя.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

В промышленности и различных бытовых приборах используется большое количество электродвигателей. Для того чтобы избежать сбоев в работе устройства и его дорогостоящего ремонта, необходимо оснастить его прибором защиты от перегрузки.

Принцип работы двигателя

Производителеями рассчитано, что при номинальном токе двигатель никогда не перегреется

Наиболее распространены электродвигатели переменного тока.

Принцип их действия основан на использовании законов Фарадея и Ампера:

  • В соответствии с первым в проводнике, который находится в изменяющемся магнитном поле, индуцируется ЭДС. В двигателе такое поле генерируется переменным током, протекающим по обмоткам статора, а ЭДС появляется в проводниках ротора.
  • По второму закону на ротор, по которому протекает ток, будет воздействовать сила, перемещающая его перпендикулярно электромагнитному полю. В результате этого взаимодействия начинается вращение ротора.

Существуют асинхронные и синхронные электродвигатели такого типа. Чаще всего используются асинхронные двигатели, у которых в качестве ротора используется короткозамкнутая конструкция из стержней и колец.

Для чего нужна защита

В процессе работы двигателя могут возникнуть различные ситуации, связанные с его перегрузкой, что может привести к аварии, это:

  • пониженное напряжение питания;
  • обрыв фазы;
  • перегрузка приводимых в действие механизмов;
  • слишком долгий процесс запуска или самозапуска.

По сути, защита электродвигателя от перегрузок заключается в том, чтобы своевременно обесточить двигатель

При возникновении таких нештатных ситуаций возрастает ток в обмотках. Например, при обрыве фазы питания ток статора может увеличиться от 1,6 до 2,5 раз относительно номинального тока. Это приводит к перегреву двигателя, нарушению изоляции обмоток, короткому замыканию (КЗ) и в некоторых случаях к пожару.

Как выбрать защиту электродвигателя от перегрузки

Защита электродвигателя от перегрузки может осуществляться с помощью различных устройств. К ним относятся:

  • плавкие предохранители с выключателем;
  • реле защиты;
  • тепловые реле;
  • цифровые реле.

Наиболее простой метод - применение плавких предохранителей, которые срабатывают при возникновении КЗ в схеме питания двигателя. Их недостатком является чувствительность к большим пусковым токам двигателя и необходимость установки новых предохранителей после срабатывания.

Плавкий предохранительный выключатель - это аварийный выключатель и плавкий предохранитель, объединённые в едином корпусе

Токовое реле защиты может выдерживать временные токовые перегрузки, возникающие при пуске двигателя, и срабатывает при опасном длительном увеличении тока потребления двигателя. После устранения перегрузки реле может вручную или автоматически подключать цепь питания.

Тепловые реле используются в основном внутри двигателя. Такое реле может представлять собой биметаллический датчик или терморезистор и устанавливаться на корпусе двигателя или непосредственно на статоре. При слишком высокой температуре двигателя реле срабатывает и обесточивает цепь питания.

Наиболее продвинутым является использование новейших систем защиты с применением цифровых методов обработки информации. Такие системы наряду с защитой двигателя от перегрузки выполняют дополнительные функции - ограничивают число переключений двигателя, с помощью датчиков оценивают температуру статора и подшипников ротора, определяют сопротивление изоляции устройства. Они могут быть использованы также для диагностики неисправностей системы.

Выбор того или иного метода защиты двигателя зависит от условий и режимов его работы, а также от ценности системы, в которой используется устройство.

ельных тепловых перегрузках. Защита от перегрузки должна применяться только для электродвигателей тех рабочих механизмов, у которых возможны ненормальные увеличения нагрузки при нарушениях рабочего процесса.

Аппараты защиты от перегрузки (тепловые и температурные реле, электромагнитные реле, автоматические выключатели с тепловым расцепителем или с часовым механизмом) при возникновении перегрузки отключают двигатель с определенной выдержкой времени, тем большей, чем меньше перегрузка, а в ряде случаев, при значительных перегрузках, - и мгновенно.

Рис.6 Обмоточный цех

Защита асинхронных электродвигателей от понижения или исчезновения напряжения

Защита от понижения или исчезновения напряжения (нулевая защита) выполняется с помощью одного или нескольких электромагнитных аппаратов, действует на отключение двигателя при перерыве питания или снижении напряжения сети ниже установленного значения и предохраняет двигатель от самопроизвольного включения после ликвидации перерыва питания или восстановления нормального напряжения сети.

Специальная защита от работы на двух фазах предохраняет двигатель от перегрева, а также от «опрокидывания», т. е. остановки под током вследствие снижения момента, развиваемого двигателем, при обрыве в одной из фаз главной цепи. Защита действует на отключение двигателя. В качестве аппаратов защиты применяются как тепловые, так и электромагнитные реле. В последнем случае защита может не иметь выдержки времени.

Рис.7 Замена, демонтаж и ТО системы вентиляции «Климат-47»

Другие виды электрической защиты асинхронных электродвигателей

Существуют и некоторые другие, реже встречающиеся виды защиты (от повышения напряжения, однофазных замыканий на землю в сетях с изолированной нейтралью, увеличения скорости вращения привода и т. п.).

Электрические аппараты, применяемые для защиты электродвигателей

Аппараты электрической защиты могут осуществлять один или сразу несколько видов защит. Так, некоторые автоматические выключатели обеспечивают защиту от коротких замыканий и от перегрузки. Одни из аппаратов защиты, например плавкие предохранители, являются аппаратами однократного действия и требуют замены или перезарядки после каждого срабатывания, другие, такие как электромагнитные и тепловые реле, - аппараты многократного действия. Последние различаются по способу возврата в состояние готовности на аппараты с самовозвратом и с ручным возвратом.

Выбор вида электрической защиты электродвигателей

Выбор того или иного вида защиты или нескольких одновременно производится в каждом конкретном случае с учетом степени ответственности привода, его мощности, условий работы и порядка обслуживания (наличия или отсутствия постоянного обслуживающего персонала).Большую пользу может принести анализ данных по аварийности электрооборудования в цехе, на строительной площадке, в мастерской и т. п., выявление наиболее часто повторяющихся нарушений нормальной работы двигателей и технологического оборудования. Всегда следует стремиться к тому, чтобы защита была по возможности простой и надежной в эксплуатации.

Для каждого двигателя независимо от его мощности и напряжения должна быть предусмотрена защита от коротких замыканий. Здесь нужно иметь в виду следующие обстоятельства. С одной стороны, защиту нужно отстроить от пусковых и тормозных токов двигателя, которые могут в 5-10 раз превышать его номинальный ток. С другой стороны, в ряде случаев коротких замыканий, например при витковых замыканиях, замыканиях между фазами вблизи от нулевой точки статорной обмотки, замыканиях на корпус внутри двигателя и т. п., защита должна срабатывать при токах, меньших пускового тока. В таких случаях рекомендуется использовать устройство плавного пуска (софтстартер).Одновременное выполнение этих противоречивых требований с помощью простых и дешевых средств защиты представляет большие трудности. Поэтому система защиты низковольтных асинхронных двигателей строится при сознательном допущении, что при некоторых отмеченных выше повреждениях в двигателе последний отключается защитой не сразу, а лишь в процессе развития этих повреждений, после того как значительно возрастет ток, потребляемый двигателем из сети.

Одно из важнейших требований к устройствам защиты двигателей - четкое действие ее при аварийных и ненормальных режимах работы двигателей и вместе с тем недопустимость ложных срабатываний. Поэтому аппараты защиты должны быть правильно выбраны и тщательно отрегулированы.

ГУП ППЗ «Благоварский»

ГУП "Племптицезавод Благоварский" является правопреемником птицефабрики Благоварская, которая была введена в строй в 1977 году как товарное хозяйство по производству утиного мяса. В 1995 году птицефабрика получила статус государственного племенного птицеводческого завода с возложением функций селекционно-генетического центра по утководству. Племптицезавод Благоварский расположен вблизи села Языково, Благоварского района республики Башкортостан.

Общая земельная площадь составляет 2108 га, из них пашни занимают1908 га, а сенокосы и пастбища 58 га. Среднее поголовье уток 111,6 тысяч голов, в том числе 25,6 тысяч голов утки-несушки.

В коллективе трудится 416 человек, из них в аппарате управления 76.

В структуре завода функционируют:

Цех родительского стада уток: имеет 30корпусов с количеством птицемест на 110 тысяч голов.

Цех выращивания ремонтного молодняка: имеет 6 корпусов с количеством птицемест на 54 тысячи голов.

Инкубатории: 3 цеха с общей мощностью 695520 шт. яиц на одну закладку.

Цех убоя с производительностью 6-7 тысяч голов за смену.

Цех кормоприготовления с производительностью 50 тонн за смену с емкостью 450 тонн.

Автотранспортный цех: автомобили - 53, трактора - 30, сельхозмашины 27.

В 1998 году на базе племптицезавода создана научно-производственная система по утководству, объединяющая работу птицехозяйств, занимающихся разведением уток в 24 регионах российской федерации. Через научно-производственную систему реализуется более 20 млн. штук племенных яиц и 15 млн. голов молодняка уток. Племматериал так же поставляется в такие страны ближнего зарубежья как Казахстан и Украина.

Утки созданные селекционерами ГУП Племптицезавода Благоварский получили повсеместное распространение в Российской Федерации, их успешно разводят как в Краснодарском, так и в Приморском краях. Использование уток селекции племзавода в структуре общегопоголовья уток России составляет около 80%.

ДневникДатаРабочее местоВид работыТехнология выполнения работыПодпись руков.Примечание26.06.12-27Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Разборка и сборка 3-х фазных асинхронных двигателей. 28.06.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Замена автоматических выключателей. 29.06.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Прокладка кабеля. 30.06.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Прокладка кабеля. 01.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Сборка зернодробилки, монтаж водонагревателя. 04.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Замена, демонтаж и ТО системы вентиляции «Климат-47» 05.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Замена, демонтаж и ТО системы вентиляции «Климат-47» 06.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Монтаж системы освещений. 07.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Монтаж, ТО системы вентиляции «Климат-47» 08.07.12-09.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Плановая работа. Очистка и уборка от зеленых насаждений вокруг охраняемой зоны ЛЭП. 10.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Установка дизельной электростанции.

ДневникДатаРабочее местоВид работыТехнология выполнения работыПодпись руков.Примечание 11.07.12-15.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Монтаж, ТО системы вентиляции «Климат-47» 16.07.12-17.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Замена автоматических выключателей. 18.07.12-22.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Замена, демонтаж и ТО системы вентиляции «Климат-47» 23.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Плановая работа. Очистка и уборка от зеленых насаждений вокруг охраняемой зоны ЛЭП. 24.07.12-29.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Монтаж и запуск АВМ. 30.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Разборка и сборка 3-х фазных асинхронных двигателей. 31.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Монтаж системы освещений. 1.08.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Техническое обслуживание трансформаторов. 2.08.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Замена, демонтаж и ТО системы вентиляции «Климат-47» 3.08.12-4.08.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Замена автоматических выключателей.

Начало практики 26.06.12 Конец практики 04.08.12

ЗАКЛЮЧЕНИЕ

В результате прохождения производственной эксплуатационной практики в ГУП ППЗ «Благоварский» мною были изучены структура предприятия, схема сети электроснабжения предприятии, а так же собран материал по тем

ФPAГMEHT КНИГИ (...) ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ФАКТОРЫ, ВЛИЯЮЩИЕ НА ВЫБОР СРЕДСТВ ЗАЩИТЫ
Анализ режимов работы асинхронного двигателя показывает, что в производственных условиях могут быть разнообразные аварийные ситуации, влекущие за собой разные последствия для двигателя. Средства защиты не обладают достаточной универсальностью для того, чтобы во всех случаях, независимо от причины и характера аварийного режима, отключить двигатель при возникновении любой опасной для него ситуации. Каждый аварийный режим имеет свои особенности. Применяемые в настоящее время защитные аппараты имеют недостатки и достоинства, проявляющиеся в определенных условиях. Следует также принимать во внимание и экономическую сторону вопроса. Выбор средств защиты должен опираться на технико-экономический расчет, в котором необходимо учитывать стоимость самого защитного аппарата, затраты на его эксплуатацию, величину ущерба, который наносит авария двигателя. При этом следует иметь в виду, что надежность действия защиты зависит также от характеристик рабочей машины и режима ее работы. Наибольшей универсальностью обладает температурная защита. Но она стоит дороже, чем другие средства защиты, и сложнее по устройству. Поэтому ее применение оправдано в тех случаях, когда другие виды защиты либо не могут обеспечить надежную работу, либо защищаемая установка предъявляет повышенные требования к надежности действия защиты, например из-за большого ущерба при аварии двигателя.
Тип защитного аппарата следует выбирать при проектировании технологической установки с учетом всех особенностей ее работы. Эксплуатационный персонал должен получать укомплектованное всем необходимым оборудование. Однако в некоторых случаях при переоборудовании или перестройке технологической линии
эксплуатационному персоналу нео ходимо самому решать вопрос, какой тип защиты целесообразно применить в конкретном случае. Для этого необходимо проанализировать возможные аварийные режимы установки и выбрать требуемый защитный аппарат. В настоящей брошюре мы не будем подробно рассматривать методику выбора защиты двигателей от перегрузки. Ограничимся лишь некоторыми рекомендациями общего характера, которые могут быть полезны для эксплуатационного персонала сельских электроустановок.
Прежде всего необходимо установить характерные для данной установки аварийные режимы. Одни из них возможны во всех установках, а другие только в некоторых. Перегрузки при потере фазы независимы от рабочей машины, они могут возникать во всех установках. Тепловые реле и встроенная температурная защита вполне удовлетворительно выполняют защитные функции при этом виде аварийного режима. Применение специальной защиты от потери фазы дополнительно к защите от перегрузки должно быть обосновано. В большинстве случаев она не требуется. Достаточны тепловые реле и температурная защита. Необходимо систематически проверять их состояние и регулировать. Лишь в тех случаях, когда авария двигателя может привести к большому ущербу, можно использовать специальную защиту от перегрузки при потере фазы.
Тепловые реле недостаточно эффективны как средство защиты от перегрузок при переменном (с большими колебаниями нагрузок), при повторно-кратковременном и кратковременном режимах работы. В этих случаях более эффективна встроенная температурная защита. В случае машин с тяжелым пуском также следует отдать предпочтение встроенной температурной защите.
Из имеющегося разнообразия средств защиты асинхронного двигателя широкое применение нашли только два устройства: тепловые реле и встроенная температурная защита. Эти два устройства являются конкурирующими при проектировании электроприводов сельскохозяйственных машин. Для выбора типа защиты проводят технико-экономический расчет по методу приведенных затрат. Не останавливаясь на точном расчете по этому методу, рассмотрим применение его основных положений для выбора наивыгоднейшего варианта защиты.
Предпочтение следует отдавать варианту, при котором будут наименьшие затраты на приобретение, монтаж и эксплуатацию рассматриваемых устройств. При этом должен быть учтен ущерб, который несет производство от недостаточной надежности действия защиты. Затраты, приведенные к одному году использования, определяют по формуле
где К - стоимость двигателя и защитного устройства, включая затраты на их транспортировку и монтаж;
кэ - коэффициент, учитывающий отчисления на амортизацию, обновление оборудования, ремонт;
Э - эксплуатационные расходы (стоимость обслуживания средств защиты, потребляемой электроэнергии и др.);
У - ущерб, который несет производство из-за отказа или неправильного действия защиты.
Величина ущерба складывается из двух слагаемых
где Ут - технологический ущерб, вызванный аварией двигателя (стоимость недоотпущенной или испорченной продукции);
Кд - стоимость замены вышедшего из строя двигателя и защитного устройства, включая затраты на демонтаж старого и монтаж нового оборудования;
р0 - вероятность отказа (неправильного действия) защиты, приведшего к аварии двигателя.
Эксплуатационные расходы значительно меньше остальных составляющих приведенных затрат, поэтому ими можно пренебречь в дальнейших расчетах. Стоимость двигателя со встроенной защитой и аппаратуры встроенной защиты больше стоимости обычного двигателя и теплового реле. Но первая из рассматриваемых защит более совершенна. Она действует эффективно практически при всех аварийных ситуациях, поэтому ущерб от ее неправильного действия будет меньше. Затраты на более дорогую защиту будут оправданы лишь в том случае, если ущерб снизится на величину большую, чем дополнительные затраты на более совершенную защиту.
Величина технологического ущерба зависит от характера технологического процесса и времени простоя оборудования. В отдельных случаях ее можно не учитывать. Это относится прежде всего к отдельно работающим установкам, простои которых на время устранения аварии не оказывают заметного влияния на все производство. По мере насыщения производства средствами механизации и -электрификации повышается уровень требований к надежности работы оборудования. Простои из-за неисправности электрооборудования приводят к большим ущербам, а в некоторых случаях становятся недопустимыми. Пользуясь некоторыми усредненными данными, можно определить сферу экономически оправданного применения более сложных устройств защиты.
Величина вероятности отказа защиты р0 зависит от конструкции и качества изготовления аппаратуры, а также от характера аварийного режима, в котором может оказаться двигатель. Как было показано выше, при некоторых аварийных режимах тепловые реле не обеспечивают надежное отключение двигателя. В этом случае лучше встроенная температурная защита. Опыт использования этой защиты показывает, что величину вероятности отказа этой защиты рвз можно принять равной 0,02. Это означает, что существует вероятность того, что из 100 таких устройств две могут не сработать, вследствие чего произойдет авария двигателя.
Пользуясь формулами (40) и (41), определим, при каком значении вероятности отказов тепловых реле ртр приведенные затраты будут одинаковыми. Это даст возможность оценить сферу применения того или иного устройства. Если пренебречь эксплуатационными затратами, можно написать
где индексы вз и тр соответственно означают встроенную защиту и тепловое реле. Отсюда получим
Для того чтобы представить порядок требуемого уровня надежности действия теплового реле, рассмотрим пример.
Определим предельно допустимое значение ртр теплового реле ТРН-10 с биметаллическими элементами в комплекте с двигателем А02-42-4СХ путем сравнения с вариантом применения двигателя А02-42-4СХТЗ с встроенной температурной защитой УВТЗ, для которого принимаем рвз=0,02. Технологический ущерб принимаем равным нулю. Стоимость двигателя с тепловым реле, включая затраты на транспортировку и монтаж, составляет 116 руб., а для варианта с защитой УВТЗ - 151 руб. Стоимость замены вышедшёго из строя двигателя А02-42-4СХ и теплового реле ТРН-10 с учетом затрат на демонтаж старого оборудования и монтаж нового составляет 131 руб., а для варианта с защитой УВТЗ - 170 руб. В соответствии с существующими нормативами принимаем кэ=0,32. После подстановки этих данных в уравнение (43) получим
Полученные величины характеризуют допустимые вероятности откэзое, выше которых применение тепловых реле экономически невыгодно. Аналогичные цифры получают для других двигателей небольшой мощности. Чтобы определить целесообразность применения рассматриваемых средств защиты, нужно сопоставить допустимые вероятности отказов с фактическими.
Отсутствие достаточных данных о фактических значениях не позволяют точно определить область эффективного применения рассмотренных защитных устройств путем прямого использования изложенного метода технико-экономического расчета. Однако, пользуясь результатами анализа режимов работы асинхронного двигателя и защитных устройств, а также некоторыми данными, косвенно характеризующими показатели требуемой надежности, можно наметить области предпочтительного использования того или иного вида защитного устройства.
Фактический уровень надежности действия защиты зависит не только от принципа ее действия и качества изготовления аппаратуры, но также и от уровня эксплуатации электрооборудования. Там, где налажено техническое обслуживание электрооборудования, несмотря на некоторые недостатки тепловых реле, уровень аварийности электродвигателей невысокий. Практика передовых хозяйств показывает, что при хорошо налаженном техническом обслуживании электроустановок ежегодный процент выхода из строя электродвигателей, защищенных тепловыми реле, можно снизить до 5% и ниже.
Однако следует заметить, что такой вывод справедлив только при рассмотрении общей картины. При рассмотрении некоторых конкретных условий предпочтение должно быть отдано другим устройствам защиты. Исходя из анализа режимов работы электропривода, можно указать ряд установок, для которых вероятность отказов тепловых реле будет высокой по причине недостатков принципа их действия.
1. Электроприводы машин, имеющих резкопеременную нагрузку (измельчители кормов, дробилки, пневмотранспортеры для загрузки силосной массы и т. п.). При больших колебаниях нагрузки тепловые реле не могут «моделировать» тепловое состояние двигателя, поэтому уровень фактических отказов тепловых реле в таких установках будет высоким.
2. Электродвигатели, работающие по схеме «треугольник». Их особенность заключается в том, что при обрыве одной из фаз питающей линии ток в оставшихся линейных проводах и фазах возрастает неодинаково. В наиболее нагруженной фазе ток растет быстрее, чем в линейных проводах.
3. Электродвигатели установок, работающих при повышенной частоте аварийных ситуаций, приводящих к остановке двигателя (например, транспортеры для уборки навоза).
4. Электродвигатели установок, простои которых наносят большой технологический ущерб.