Возникновение резонанса лежит в основе метода. Электронный парамагнитный и ядерный магнитный резонанс. Исследование структуры радикалов и молекулярных движений

Явление электронного парамагнитного резонанса

Если парамагнитный атом поместить в магнитное поле, то каждый его энергоуровень будет расщепляться на количество подуровней равных $2J+1$(количество возможных $m_J)$. Интервал между соседними уровнями при этом равен:

В том случае, если атом в данном состоянии поместить еще в электромагнитную волну , имеющую частоту $\omega $, которая удовлетворит условию:

то под воздействием магнитной компоненты волны в соответствии с правилом отбора будут возникать переходы атома между соседними подуровнями, внутри одного уровня. Такое явление называют электронным парамагнитным резонансом (ЭПР). Первым его отметил Е.К. Завойский в 1944 г. Так как ЭПР связано с резонансом, то переходы появляются только при определенной частоте падающей волны. Такую частоту легко оценить, если использовать выражение (2):

При $g\approx 1$ и типичной индукции магнитного поля, которое используют в условиях лаборатории, $B\approx 1\ Тл$ получают $\nu ={10}^{10}Гц$. Что означает, что частоты локализованы в радиодиапазоне (СВЧ).

При явлении резонанса энергия передается от поля к атому. Кроме того, при переходе атома с высоких подуровней Зеемана на более низкие подуровни, энергия передается от атома к полю. Надо отметить, что в случае теплового равновесия количество атомов имеющих меньшую энергию больше, чем число атомов обладающих большей энергией. Значит, переходы, которые увеличивают энергию атомов, превалируют над переходами в сторону с меньшей энергией. Получается, что парамагнетик поглощает энергию поля в радиодиапазоне и при этом увеличивает свою температуру.

Опыты с явлением электронного парамагнитного резонанса дали возможность, применяя выражение (2), находить один из параметров: $g,B\ или\ {\omega }_{rez}$ по остальным величинам. Так, измеряя с высокой точностью $B$ и ${\omega }_{rez}$ в состоянии резонанса, находят величину фактора Ланде и магнитный момент атома в состоянии с J.

В жидкостях и твердых телах атомы нельзя считать изолированными. Пренебрегать их взаимодействием нельзя. Оно ведет к тому, что интервалы между соседними подуровнями при расщеплении Зеемана являются разными, линии ЭПР имеют конечную ширину.

ЭПР

Итак, явление электронного парамагнитного резонанса состоит в поглощении парамагнетиком микроволнового радиоизлучения за счет переходов между подуровнями расщепления Зеемана. При этом расщепление энергоуровней вызвано воздействием постоянного магнитного поля на магнитные моменты атомов вещества. Магнитные моменты атомов в таком поле ориентируются по полю. Одновременно с эти идет расщепление энергоуровней Зеемана и перераспределение по данным уровням атомов. Заполняемость атомами подуровней оказывается разной.

В состоянии термодинамического равновесия среднее количество атомов ($\left\langle N\right\rangle $), заселяющих данный подуровень можно вычислить, используя формулу Больцмана:

где $\triangle E_{mag}\sim mH$. Подуровни с меньшим магнитным квантовым числом ($m$) имеют больше атомов, как состояния с меньшей потенциальной энергией. Значит, существует преимущественная ориентация магнитных моментов атомов по магнитному полю, которая соответствует намагниченному состоянию парамагнетика. В случае накладывания на парамагнетик переменного магнитного поля с частотой равной (кратной) частоте перехода между подуровнями расщепления Зеемана происходит резонансное поглощение электромагнитных волн. Оно вызвано превышением количества переходов, которые связаны с увеличением магнитного квантового числа на один:

над количеством переходов типа:

Так, из-за резонансного поглощения энергии переменного магнитного поля атомы будут совершать переходы с нижних более заполненных уровней, на верхние уровни. Поглощение пропорционально количеству поглощающих атомов в единице объема.

Если вещество составлено из атомов с одним валентным электроном в состоянии s, имеющих полный магнитный момент равный спиновому магнитному моменту s - электрона, то ЭПР наиболее эффективен.

Особенным парамагнитным резонансом считают резонансное поглощение электромагнитных волн электронами проводимости в металлах. Оно связано со спином электронов и спиновым парамагнетизмом электронного газа в таком веществе. В ферромагнетиках выделяют ферромагнитный резонанс, который связывают с переориентацией электронных моментов в доменах или между ними.

Для изучения электронного парамагнитного резонанса используют радиоспектроскопы. В таких приборах частота ($\omega $) остается неизменной. Изменяют индукцию магнитного поля (B), которое создает электромагнит (рис.1).

Рисунок 1. Электронный парамагнитный резонанс (ЭПР). Автор24 - интернет-биржа студенческих работ

Маленький образец А располагают в объемном резонаторе R, который настроен на длину волны около 3 см. Радиоволны такой длины создаются генератором G. Эти волны через волновод V подводят к резонатору. Часть волн поглощается образцом А, часть из них через волновод попадают в детектор D. При проведении опыта проводят плавное изменение индукции магнитного поля (B), которое создается электромагнитом. Когда величина индукции удовлетворяет условию возникновения резонанса (2) образец начинает интенсивно поглощать волну.

Замечание 1

ЭПР один из самых простых методов радиоспектроскопии.

Примеры

Пример 1

Задание : Каков магнитный момент атома $Ni$ в состоянии ${{}^3F}_4$, если резонансное поглощение энергии возникает при воздействии постоянного поля с магнитной индукцией $B_0$ и переменного магнитного поля с индукцией $B_0$, перпендикулярного к постоянному полю. Частота переменного поля равна $\nu $.

Решение :

Как известно в состоянии резонанса выполняется равенство:

\[\hbar \omega =h\nu =\delta E={\mu }_bgB\left(1.1\right).\]

Из формулы (1.1) найдем фактор Ланде:

Для заданного состояния (${{}^3F}_4$) имеем: $L=3$, $S=1$, $J=4$. Магнитный момент задан при помощи выражения:

\[\mu ={\mu }_bg\sqrt{J(J+1)}=\frac{h\nu }{B_0,\ }\sqrt{20}.\]

Ответ : $\mu =\frac{h\nu }{B_0,\ }\sqrt{20}.$

Пример 2

Задание : Какую полезную информацию можно получить при изучении электронного парамагнитного резонанса?

Решение :

Эмпирически получив резонанс из условий резонанса можно найти одну из величин: фактор Ланде ($g$), индукцию магнитного поля в условиях резонансного поглощения энергии атомом (B), резонансную частоту (${\omega }_{rez}$). При этом B и ${\omega }_{rez}$ можно измерить с высокой точностью. Следовательно, ЭПР дает возможность получить значение $g\ $с высокой точностью и, следовательно, магнитный момент атома для состояния с квантовым числом $J$. Величина квантового числа S определяется по мультиплетности спектров. Если известны $g,\ J,\ S$ легко вычислить $L$. Получается, что становятся известными все квантовые числа атома и спиновый орбитальный и полный магнитный моменты атома.

В основе магнитного резонанса лежит резонансное (избирательное) поглощение радиочастотного излучения атомными частицами, помещенными в постоянное магнитное поле. Большинство элементарных частиц, подобно волчкам, вращаются вокруг собственной оси. Если частица обладает электрическим зарядом, то при ее вращении возникает магнитное поле, т.е. она ведет себя подобно крошечному магниту. При взаимодействии этого магнитика с внешним магнитным полем происходят явления, позволяющие получить информацию о ядрах, атомах или молекулах, в состав которых входит данная элементарная частица. Метод магнитного резонанса представляет собой универсальный инструмент исследований, применяемый в столь различных областях науки, как биология, химия, геология и физика. Различают магнитные резонансы двух основных видов: электронный парамагнитный резонанс и ядерный магнитный резонанс.

Электронный парамагнитный резонанс (ЭПР) был открыт Евгением Константиновичем Завойским в Казанском Университете в 1944 году. Он заметил, что монокристалл , помещенный в постоянное магнитное поле (4 мТл) поглощает микроволновое излучение определенной частоты (около 133 МГц).

Суть данного эффекта заключается в следующем. Электроны в веществах ведут себя как микроскопические магниты. Если поместить вещество в постоянное внешнее магнитное поле и воздействовать на него радиочастотным полем, то в разных веществах они будут переориентироваться по-разному и поглощение энергии будет избирательным. Возврат электронов к исходной ориентации сопровождается радиочастотным сигналом, который несет информацию о свойствах электронов и их окружении.

Расщепление Зеемана соответствует радиочастотному диапазону. Ширина линий спектра расщеплённого состояния определяется взаимодействием спинов электронов с их орбитальными моментами. Это определяет время релаксационных колебаний атомов как результат их взаимодействия с окружающими атомами. Поэтому ЭПР может служить средством исследования структуры внутреннего строения кристаллов и молекул, механизма кинетики химических реакций и других задач.

Рис. 5.5 Прецессия магнитного момента (М) парамагнетика в постоянном магнитном поле .

Рис. 5.5 иллюстрирует явление прецессии электрона в магнитном поле. Под действием вращательного момента, создаваемого полем , магнитный момент совершает круговые вращения по образующей конуса с ларморовской частотой . При наложении переменного магнитного поля, вектор напряженности совершает круговое движение с ларморовской частотой в плоскости, перпендикулярной вектору . При этом происходит изменение угла прецессии, приводящее к опрокидыванию магнитного момента (М). Увеличение угла прецессии сопровождается поглощением энергии электромагнитного поля, уменьшение угла - излучением с частотой .

Практически удобнее использовать момент наступления резкого поглощения энергии внешнего поля при постоянной частоте и изменяемой индукции магнитного поля. Чем сильнее взаимодействие между атомами, молекулами тем шире спектр ЭПР. Это позволяет судить о подвижности молекул, вязкости среды (>).

Рис. 5.6 Зависимость поглощающей способности энергии внешнего поля веществом от величины его вязкости.

, , (5.4)

Гиромагнитное отношение.

Например, при частота электромагнитного воздействия должна находиться в пределах .

Данный метод, представляющий собой один из видов спектроскопии, применяется при исследовании кристаллической структуры элементов, химии живых клеток, химических связей в веществах и т.д.

На рис. 5.6 представлена структурная схема ЭПР-спектрометра. Принцип его работы основан на измерении степени резонансного поглощения веществом проходящего через него электромагнитного излучения при изменяющейся напряженности внешнего магнитного поля.

Рис. 5.7 Схема спектрометра ЭПР (а) и распределение силовых линий магнитного и электрического полей в резонаторе. 1 – генератор микроволнового излучения, 2 – волновод, 3- резонатор, 4 – магнит, 5 – детектор микроволнового излучения, 6 – усилитель сигнала ЭПР, 7 – регистрирующие устройства (ЭВМ или осциллограф).

Открытие ЭПР послужило основой для разработки ряда других методов изучения строения веществ, таких как акустический парамагнитный резонанс, ферро- и антиферромагнитный резонанс, ядерный магнитный резонанс. При явлении акустического парамагнитного резонанса переходы между подуровнями инициируются наложением высокочастотных звуковых колебаний; в результате возникает резонансное поглощение звука.

Применение метода ЭПР дало ценные данные о строении стекол, кристаллов, растворов; в химии этот метод позволил установить строение большого числа соединений, изучить цепные реакции и выяснить роль свободных радикалов (молекул, обладающих свободной валентностью) в появлении и протекании химических реакций. Тщательное изучение радикалов привело к решению ряда вопросов молекулярной и клеточной биологии.

Метод ЭПР – очень мощный исследовательский инструмент, он практически незаменим при изучении изменений в структурах, в том числе и в биологических. Чувствительность метода ЭПР очень высока и составляет парамагнитных молекул. На применении ЭПР основан поиск новых веществ для квантовых генераторов; явление ЭПР используется для генерации сверхмощных субмиллиметровых волн.

По спектрам ЭПР можно определить валентность парамагнитного иона, симметрию его окружения, что в сочетании с данными рентгеновского структурного анализа дает возможность определить положение парамагнитного иона в кристаллической решетке. Значение энергетических уровней парамагнитного иона позволяет сравнивать результаты ЭПР с данными оптических спектров и вычислять магнитные восприимчивости парамагнетиков.

Метод ЭПР позволяет определять природу и локализацию дефектов решетки, например центров окраски. В металлах и полупроводниках возможен также ЭПР, связанный с изменением ориентации спинов электронов проводимости. Метод ЭПР широко применяется в химии и биологии, где в процессе химических реакций или под действием ионизирующего излучения могут образовываться молекулы с незаполненной химической связью- свободные радикалы. Их g-фактор обычно близок к , а ширина линии ЭПР
мала. Из-за этих качеств один из наиболее устойчивых свободных радикалов (), у которогоg=2,0036, используется как стандарт при измерениях ЭПР. В биологии ЭПР изучаются ферменты, свободные радикалы в биологических системах и металлоорганических соединениях.

    1. Эпр в сильных магнитных полях

Подавляющее число экспериментальных исследований парамагнитного резонанса выполнено в магнитных полях, напряженность которых меньше 20 кэ. Между тем применение более сильных статических полей и переменных полей более высоких частот значительно расширило бы возможности метода ЭПР, увеличило бы даваемую им информацию. В ближайшем будущем станут доступными постоянные магнитные поля до 250 кэ и импульсные поля, измеряемые десятками миллионов эрстед. Это означает что зеемановские расщепления в постоянных полях будут достигать примерно 25
, а а в импульсных полях – величины еще на два порядка большей. Лоу при помощи спектрометра со сверхпроводящим магнитом проводил измерения ЭПР в поляхH 065 кэ. Прохоров с сотрудниками наблюдал сигналы ЭПР на длине волны =1,21мм .

Большую пользу сильные магнитные поля должны принести для излучения редкоземельных ионов в кристаллах, интервалы между штарковскими подуровнями которых имеют порядок 10-100
. Эффект ЭПР в обычных полях нередко отсутствует из-за того, что основной штарковский уровень оказывается синглетом, или потому, что переходы между зеемановскими подуровнями основного крамерсова дублеты запрещены. Эффект же благодаря переходам между различными штарковскими подровнями, вообще говоря, возможен. Далее, кристаллическое поле в редкоземельных кристаллах характеризуется большим числом параметров, для определения которых знанияg - тензора основного крамерсова дублета недостаточно.

Сильные магнитные поля могут быть использованы и для изучения ионов группы железа, в особенности, таких как

у которых имеются расщепления порядка 10100
.

В применении к обменно-связанным парам сильные магнитные поля позволят путем наблюдения эффекта, обусловленного переходами между уровнями с различными значениями результирующего спина S пары со спектроскопической точностью измерить параметр обменного взаимодействия J .

Парамагнитный резонанс в сильных магнитных полях будет обладать рядом особенностей. Эффекты насыщения намагниченности будут происходить при относительно высоких температурах. При не очень низких температурах поляризация ионных магнитных моментов будет настолько велика, что помимо внешнего магнитного поля в резонансные условия необходимо будет ввести поле внутреннее. Появится зависимость резонансных условий от формы образца.

Метод электронного парамагнитного резонанса является основным методом для изучения парамагнитных частиц. К парамагнитным частицам, имеющим важное биологическое значение, относятся два основных типа - это свободные радикалы и комплексы металлов переменной валентности (таких, как Fe, Cu, Co, Ni, Mn).

Метод электронного парамагнитного резонанса был открыт в 1944 г. Е. К. Завойским при исследовании взаимодействия электромагнитного излучения микроволнового диапазона с солями металлов.

В основе метода ЭПР лежит поглощение электромагнитного излучения радиодиапазона неспаренными электронами, находящимися в магнитном поле.

Метод ЭПР позволяет нам изучать свойства парамагнитных центров посредством регистрации спектров поглощения электромагнитного излучения этими частицами. Зная характеристики спектров, можно судить о свойствах парамагнитных частиц.

К основным характеристикам спектров относятся амплитуда, ширина линии, g-фактор и сверхтонкая структура спектров.

Применение спиновых меток

Спиновые метки - химически стабильные парамагнитные молекулы, которые используются в качестве молекулярных зондов для изучения структуры и молекулярной подвижности различных физико-химических и биологических систем. Суть метода спиновых меток заключается в следующем. В исследуемую систему вводят в качестве спиновых зондов парамагнитные молекулы, которые дают характерные сигналы электронного парамагнитного резонанса (ЭПР). Сигналы ЭПР спиновых меток зависят от их молекулярной подвижности и физико-химических свойств ближайшего окружения. Поэтому, наблюдая за сигналами ЭПР молекулярных зондов, можно изучать структурные характеристики исследуемой системы и динамику происходящих в ней молекулярных процессов. Термин "спиновые метки" происходит от английского слова "spin" (веретено, волчок), которым называют собственный механический момент электрона. Электрон, как известно из квантовой механики, обладает механическим моментом, равным величине " /2, и собственным магнитным моментом, где " - постоянная Планка, e и m - заряд и масса электрона, с - скорость света. Парамагнитные свойства молекулярных зондов определяются наличием в них неспаренного электрона, обладающего спином и являющегося источником сигнала ЭПР. В качестве спиновых меток обычно используют стабильные нитроксильные радикалы. Все молекулы спиновых меток, несмотря на разнообразие их химического строения, как правило, содержат одинаковый парамагнитный фрагмент - химически стабильный нитроксильный радикал (>N-OJ). На этом радикале локализован неспаренный электрон, служащий источником сигнала ЭПР. Конкретный выбор спиновых меток определяется задачей исследования. Так, например, для того чтобы с помощью спиновых меток следить за конформационными перестройками белков, молекулы метки обычно "пришивают" к определенным участкам белка. В этом случае спиновая метка должна содержать специальную реакционную группу, которая может образовать ковалентную химическую связь с аминокислотными остатками молекулы белка. Для изучения свойств искусственных и биологических мембран обычно используют жирорастворимые спиновые метки, способные встраиваться в липидный слой мембраны.

Явление электронного парамагнитного резонанса (ЭПР) заключается в резонансном поглощении электромагнитного излучения в диапазоне радиочастот веществами, помещенными в постоянное магнитное поле, и обусловленное квантовыми переходами между энергетическими подуровнями, связанными с наличием магнитного момента у электронных систем. Также ЭПР называют электронный спиновый резонанс (ЭСР), магнитный спиновый резонанс (МСР) и, среди специалистов, работающих с магнитно-упорядоченными системами, ферромагнитный резонанс (ФМР).

Явление ЭПР можно наблюдать на:

  • * атомах и молекулах, которые на своих орбиталях имеют нечетное количество электронов -- H, N, NO2 и др.;
  • * химических элементах в различных зарядовых состояниях, у которых не все электроны на внешних орбиталях участвуют в образовании химической связи - прежде всего, это d- и f-элементы;
  • * свободных радикалах - метильный радикал, нитроксильные радикалы и др.;
  • * электронных и дырочных дефектах, стабилизирующихся в матрице веществ, - O-, O2-, CO2-, CO23-, CO3-, CO33- и многих других;
  • * молекулах с четным числом электронов, парамагнетизм которых обусловлен квантовыми явлениями распределения электронов по молекулярным орбиталям - О2;
  • * наночастицах-суперпарамагнетиках, образующихся при растворении или в сплавах, обладающих коллективным магнитным моментом, которые ведут себя подобно электронному газу.

Структура и свойства спектров ЭПР

Поведение магнитных моментов в магнитном поле зависит от различных взаимодействий неспаренных электронов, как между собой, так и с ближайшим окружением. Важнейшими из них считаются спин-спиновые и спин-орбитальные взаимодействия, взаимодействия между неспаренными электронами и ядрами, на которых они локализуются (сверхтонкие взаимодействия), взаимодействия с электростатическим потенциалом, создаваемым ионами ближайшего окружения в месте локализации неспаренных электронов и другие. Большинство перечисленных взаимодействий приводит к закономерному расщеплению линий. В общем случае спектр ЭПР парамагнитного центра является многокомпонентным. Представление об иерархии основных расщеплений можно получить из следующей схемы (определения используемых обозначений даны ниже):

Основными характеристиками ЭПР-спектра парамагнитного центра (ПЦ) являются:

  • * количество линий в спектре ЭПР конкретного ПЦ и их относительные интенсивности.
  • * Тонкая структура (ТС). Число линий ТС определяется величиной спина S ПЦ и локальной симметрией электростатического поля ближайшего окружения, а относительные интегральные интенсивности определяются квантовым числом mS (величина проекции спина на направление магнитного поля). В кристаллах расстояние между линиями ТС зависит от величины потенциала кристаллического поля и его симметрии.
  • * Сверхтонкая структура (СТС). Линии СТС от конкретного изотопа имеют приблизительно одинаковую интегральную интенсивность и практически эквидистантны. Если ядро ПЦ имеет несколько изотопов, то каждый изотоп дает свой набор линий СТС. Их количество определяется спином I ядра изотопа, около которого локализован неспаренный электрон. Относительные интенсивности линий СТС от различных изотопов ПЦ пропорциональны естественной распространенности этих изотопов в образце, а расстояние между линиями СТС зависит от величины магнитного момента ядра конкретного изотопа, константы сверхтонкого взаимодействия и степени делокализации неспаренных электронов на этом ядре.
  • * Суперсверхтонкая структура (ССТС). Число линий ССТС зависит от числа nл эквивалентных лигандов, с которыми взаимодействует неспаренная спиновая плотность и величины ядерного спина Iл их изотопов. Характерным признаком таких линий также является распределение их интегральных интенсивностей, которое в случае Iл = 1/2 подчиняется закону биномиального распределения с показателем степени nл. Расстояние между линиями ССТС зависит от величины магнитного момента ядер, константы сверхтонкого взаимодействия и степени локализации неспаренных электронов на этих ядрах.
  • * спектроскопические характеристики линии.

Особенностью спектров ЭПР является форма их записи. По многим причинам спектр ЭПР записывается не в виде линий поглощения, а как производная от этих линий. Поэтому, в ЭПР-спектроскопии принята несколько иная, отличная от общепринятой, терминология для обозначения параметров линий.

Линия ЭПР поглощения и ее первая производная: 1- гауссова форма; 2- лоренцева форма.

  • * Истинная линия - д-функция, но с учетом релаксационных процессов имеет форму Лоренца;
  • * Линия - отражает вероятность процесса резонансного поглощения электромагнитного излучения ПЦ и определяется процессами, в которых участвуют спины;
  • * Форма линии - отражает закон распределения вероятности резонансных переходов. Поскольку, в первом приближении, отклонения от резонансных условий носят случайный характер, форма линий в магниторазбавленных матрицах имеет гауссову форму. Наличие дополнительно обменных спин-спиновых взаимодействий приводит к лоренцевой форме линии. В общем случае форма линии описывается смешанным законом;
  • * Ширина линии - ДВmax - cоответствует расстоянию по полю между экстремумами на кривой линии;
  • * Амплитуда линии - Imax - соответствует по шкале амплитуды сигнала расстоянию между экстремумами на кривой линии;
  • * Интенсивность - I0 - значение вероятности в точке МАХ на кривой поглощения, вычисляется при интегрировании по контуру линии записи;
  • * Интегральная интенсивность - площадь под кривой поглощения, пропорциональна количеству парамагнитных центров в образце и вычисляется путем двойного интегрирования линии записи, сначала по контуру, затем по полю;
  • * Положение линии - В0 - соответствует пересечению контура производной dI/dB с нулевой линией (линией тренда);
  • * положение линий ЭПР в спектре.

Согласно выражению hн = gвB, определяющему условия резонансного поглощения для ПЦ со спином S = 1/2, положение линии электронного парамагнитного резонанса можно охарактеризовать значением g-фактора (аналог фактора спектроскопического расщепления Ланде). Величина g-фактора определяется как отношение частоты н, на которой проводилось измерение спектра к величине магнитной индукции В0, при которой наблюдался максимум эффекта. Следует отметить, что для парамагнитных центров g-фактор характеризует ПЦ как целое, т.е. не отдельную линию в спектре ЭПР, а всю совокупность линий, обусловленных исследуемым ПЦ.

В ЭПР экспериментах фиксируется энергия электромагнитного кванта, то есть частота н, а магнитное поле В может изменяться в широких пределах. Выделяются некоторые, довольно узкие, диапазоны СВЧ-частот, в которых работают спектрометры.

  • 2.3. Изучение кинетики полимеризации
  • 2.4. Определение и изучение межмолекулярных и внутримолекулярных водородных связей
  • 2.5. Определение степени кристалличности полимеров
  • 2.7. Заключение
  • Глава 3. Метод ядерного магнитного резонанса
  • 3.1. Основы метода
  • 3.2. Области применения ЯМР-спектроскопии в макромолекулярной химии
  • 3.3. Примеры применения метода ЯМР
  • Определение структуры вещества
  • Определение молекулярной массы полимера
  • Изучение процессов комплексообразования
  • О возможности определения стереорегулярности полимеров
  • Определение состава сополимера
  • Корреляция химических сдвигов винильных соединений с их параметрами и индексами реакционной способности
  • 3.4. Заключение
  • Глава 4. Рентгеновская спектроскопия
  • 4.1. Общие положения
  • 4.2. Примеры применения рентгеноструктурного анализа
  • 4.3. Определение степени кристалличности полимеров
  • 4.4. Заключение
  • Глава 5. Полярографический метод в химии полимеров
  • 5.1. Общие положения
  • 5.2. Области применения полярографии в химии полимеров
  • 5.3. Качественная идентификация полимеров
  • 5.4. Контроль синтеза макромолекул
  • 5.7. Заключение
  • Глава 6. Спектроскопия электронного парамагнитного резонанса
  • 6.1. Краткие основы метода
  • 6.3. Исследование структуры радикалов и молекулярных движений
  • 6.4. Исследование химических процессов в полимерах
  • 3.5. Заключение
  • Глава 7. Флуоресценция полимеров
  • 7.1. Суть метода
  • 7.2. Области применения флуоресценции
  • 7.3. Флуоресценция полимеров
  • 7.4. Различение полимеров и добавок
  • 7.5. Определение молекулярной массы
  • 7.6. Заключение
  • Глава 8. Масс-спектрометрия полимеров
  • 8.1. Общие положения
  • 8.3. Масс-спектры карбазолов
  • 8.4. Заключение
  • Глава 9. Диэлектрические методы исследования строения полимеров
  • 9.1. Термины и их определение
  • 9.2. Зависимость диэлектрических свойств от строения полимерных материалов
  • 9.3. Диэлектрические свойства поливинилкарбазолов
  • 9.4. Электрофотографический метод
  • 9.5. Фоточувствительные свойства поливинилкарбазола
  • 9.6. Заключение
  • Глава 10. Хроматографические методы в химии полимеров
  • 10.1. Общие положения
  • 10.2. Гель-проникающая хроматография.
  • 10.3. Тонкослойная хроматография полимеров
  • 10.4. Пиролитическая газовая хроматография
  • 10.5. Заключение
  • Глава 11. Определение некоторых параметров полимеризации
  • 11.1. Методы определения скорости полимеризации
  • 11.2. Расчет состава сополимеров
  • 11.3. Заключение
  • Глава 12. Методы термического анализа полимерных материалов
  • 12.1. Термогравиметрический метод
  • 12.3. Заключение
  • Глава 13. Методы определения физических состояний полимеров
  • 13.1. Термомеханический метод
  • 13.2. Частотно-температурный метод определения физических состояний аморфных линейных полимеров
  • 13.4. Заключение
  • Глава 14. Методы измерения внутреннего трения
  • 14.1. Способы измерения внутреннего трения
  • 14.2. Терморелаксационные кривые полимеров
  • 14.3. Заключение
  • Глава 15. Методы измерения акустических характеристик полимеров
  • 15.1. Методы измерения акустических характеристик
  • 15.2. Области применения
  • 15.3. Заключение
  • Глава 16. Методы определения вязкости расплавов и растворов полимеров
  • 16.1. Капиллярная вискозиметрия
  • 16.2. Ротационная вискозиметрия
  • 16.3. Измерения вязкости разбавленных растворов полимеров
  • 16.4. Заключение
  • Глава 17. Методы определения молекулярной массы и молекулярно-массового распределения полимеров
  • 17.1. Методы определения молекулярных масс полимеров
  • 17.2. Определение молекулярной массы по концевым группам
  • 17.3. Методы определения молекулярно-массового распределения полимеров
  • 17.4.Области применения ММР в исследовательской практике
  • 17.5. Влияние конверсии мономера на ММР
  • 17.6. Температура полимеризации и ее связь с молекулярной массой.
  • 17.7. Вязкость расплавов полимеров
  • 17.8. Заключение
  • Глава 18. Механические свойства полимерных материалов и методы их определения
  • 18.1. Области применения механических свойств
  • 18.2. Методы определения важнейших механических показателей полимерных материалов
  • 18.3. Заключение
  • Список литературы
  • Глава 6. Спектроскопия электронного парамагнитного резонанса

    6.1. Краткие основы метода

    Спектроскопия электронного парамагнитного резонанса(ЭПР) – это явление резонансного поглощения энергии электромагнитных волн парамагнитными частицами, помещенными в постоянное магнитное поле. Это поглощение возникает вследствие того, что неспаренные

    электроны парамагнитных частиц ориентируются в постоянном магнитном поле так, что их собственный момент количества движения (спин) направлен либо по полю, либо против поля. Поглощение представляет собой функцию неспаренных электронов, содержащихся в

    исследуемом

    Вследствие

    поглощения

    высокочастотного поля образцом появляется сигнал ЭПР. Спектр ЭПР

    представляет собой зависимость поглощения микроволновой энергии от

    внешнего

    магнитного

    Поглощениепля

    сверхвысокочастотного магнитного поля регистрируется либо на экране

    осциллографа, либо на самописце радиоспектрометра.

    рис. 6.1 приведена

    ЭПР-спектре

    гипотетического соединения.

    радикала. Для этих целей составлены атласы спектров ЭПР различных соединений. Для интерпретации спектров ЭПР важны следующие параметры линий: форма, интенсивность, положение и расщепление.

    Следует заметить, что приборы сразу же выдают первую производную кривой поглощения энергии (рис. 6.1).

    Интенсивность линии ЭПР-спектра – это площадь под его кривой. Она пропорциональна числу неспаренных электронов в образце. За положение линии в спектре ЭПР принимается точка, в которой первая

    ~O -CH -O ~

    Рис. 6.2. Схема появления сверхтонкого расщепления в ЭПР-спектре срединного радикала полиформальдегида

    когда система

    содержит ядра с магнитным моментом,

    например протон (Н1 ), вблизи неспаренного электрона, на магнитный

    момент электрона влияет ориентация магнитного момента. ядраВ

    результате такого взаимодействия каждый магнитный энергетический

    электрона

    расщепляется

    ПодуровнейЭто

    взаимодействие электрона и магнитного ядра называется сверхтонким

    взаимодействием (СТВ), а

    расщепление

    энергетических

    уровней–

    сверхтонким расщеплением (рис. 6.2).

    6.2. Области применения ЭПР-спектроскопии в

    макромолекулярной химии

    ЭПР-спектроскопия

    макромолекулярной

    используется для изучения свободных радикалов, образующихся в следующих процессах:

    · полимеризации (фото-, радиационное инициирование и т. д.);

    · деструкции полимеров;

    · окисление полимеров;

    · расщепление макромолекул при механодеструкции.

    6.3. Исследование структуры радикалов и молекулярных движений

    Энергия СТВ неспаренного электрона с ядрами складывается из двух частей – изотропной и анизотропной. Так, изотропная часть определяет энергию дипольного взаимодействия электрона с ядром, и она зависит от угла между осьюр -орбитали неспаренного электрона и направлением постоянного магнитного поля. Анизотропное СТВ проявляется в спектре ЭПР радикалов в твердых телах, где ориентация радикалов жестко фиксированы. В жидкостях анизотропное СТВ отсутствует.

    полиэтилена -CH 2 - CH - CH 2 - CH - (рис. 6.3).

    В поликристаллическом полимере спектр состоит из шести линий

    (рис. 6.3, а ). Это

    обусловлено тем, что

    взаимодействие

    неспаренного

    электрона

    осуществляется

    магнитноэквивалентными

    протонами,

    константы

    примерно одинаковы.

    Рис. 6.3. Спектры ЭПР срединного радикала полиэтилена в поликристалле (а ) и в монокристалле при ориентации оси макромолекулы вдоль поля (б ) и перпендикулярно полю (в )

    Однако спектр полиэтилена ориентированного, в котором зигзаг цепи полимера расположен вдоль направления поля, уже имеет пять линий (рис. 6.3, б ). Этот ЭПР-спектр обусловлен взаимодействием неспаренного электрона только с четырьмя протонами. Взаимодействие с α-водородом в этой ориентации мало и не проявляется в спектре.

    Если теперь повернуть поле и направить его вдольр -орбитали, перпендикулярно зигзагу цепи, то появляются 10 линий (рис. 6.3, в ). Удвоение числа линий связано с расщеплением на α-протоне, которое при этой ориентации достаточно велико.

    Рис. 6.4. Спектры ЭПР срединного ~CH2 - C H - CH2 ~ (а ) и концевого

    ~CH2 - C H2 (б ) макрорадикалов полиэтилена

    В полиэтилене цепи имеют плоскую конформацию, и поэтому в срединном радикале все пять протонов, ближайших к реакционному центру радикала, магнитно эквивалентны. Спектр ЭПР такого радикала (рис. 6.4, а ) состоит из шести линий, распределение интенсивностей которых описывается биномиальным законом. Спектр ЭПР концевого радикала состоит из пяти линий (рис. 6.4, б ).

    6.4. Исследование химических процессов в полимерах

    Метод ЭПР используется для обнаружения, радикалов исследования их превращений и радикальных реакций в полимерах.

    Для исследования химических процессов важно не только идентифицировать радикалы, но и измерить их концентрации. Прямое определение свободных радикалов с помощью ЭПР в ходе свободнорадикальной полимеризации в настоящее время не совсем успешно. Это обусловлено тем, что при обычных экспериментальных скоростях полимеризации концентрация радикалов очень мала.

    Методом ЭПР идентифицированы растущие макрорадикалы в жидкой и твердой фазах, определены их концентрации, найдены константы скорости роста и обрыва цепей.