Как решать разложение на множители. Разложение многочлена на множители

Приводится 8 примеров разложения многочленов на множители. Они включают в себя примеры с решением квадратных и биквадратных уравнений, примеры с возвратными многочленами и примеры с нахождением целых корней у многочленов третьей и четвертой степени.

1. Примеры с решением квадратного уравнения

Пример 1.1


x 4 + x 3 - 6 x 2 .

Решение

Выносим x 2 за скобки:
.
2 + x - 6 = 0 :
.
Корни уравнения:
, .


.

Ответ

Пример 1.2

Разложить на множители многочлен третьей степени:
x 3 + 6 x 2 + 9 x .

Решение

Выносим x за скобки:
.
Решаем квадратное уравнение x 2 + 6 x + 9 = 0 :
Его дискриминант: .
Поскольку дискриминант равен нулю, то корни уравнения кратные: ;
.

Отсюда получаем разложение многочлена на множители:
.

Ответ

Пример 1.3

Разложить на множители многочлен пятой степени:
x 5 - 2 x 4 + 10 x 3 .

Решение

Выносим x 3 за скобки:
.
Решаем квадратное уравнение x 2 - 2 x + 10 = 0 .
Его дискриминант: .
Поскольку дискриминант меньше нуля, то корни уравнения комплексные: ;
, .

Разложение многочлена на множители имеет вид:
.

Если нас интересует разложение на множители с действительными коэффициентами, то:
.

Ответ

Примеры разложения многочленов на множители с помощью формул

Примеры с биквадратными многочленами

Пример 2.1

Разложить биквадратный многочлен на множители:
x 4 + x 2 - 20 .

Решение

Применим формулы:
a 2 + 2 ab + b 2 = (a + b) 2 ;
a 2 - b 2 = (a - b)(a + b) .

;
.

Ответ

Пример 2.2

Разложить на множители многочлен, сводящийся к биквадратному:
x 8 + x 4 + 1 .

Решение

Применим формулы:
a 2 + 2 ab + b 2 = (a + b) 2 ;
a 2 - b 2 = (a - b)(a + b) :

;

;
.

Ответ

Пример 2.3 с возвратным многочленом

Разложить на множители возвратный многочлен:
.

Решение

Возвратный многочлен имеет нечетную степень. Поэтому он имеет корень x = -1 . Делим многочлен на x - (-1) = x + 1 . В результате получаем:
.
Делаем подстановку:
, ;
;


;
.

Ответ

Примеры разложения многочленов на множители с целыми корнями

Пример 3.1

Разложить многочлен на множители:
.

Решение

Предположим, что уравнение

6
-6, -3, -2, -1, 1, 2, 3, 6 .
(-6) 3 - 6·(-6) 2 + 11·(-6) - 6 = -504 ;
(-3) 3 - 6·(-3) 2 + 11·(-3) - 6 = -120 ;
(-2) 3 - 6·(-2) 2 + 11·(-2) - 6 = -60 ;
(-1) 3 - 6·(-1) 2 + 11·(-1) - 6 = -24 ;
1 3 - 6·1 2 + 11·1 - 6 = 0 ;
2 3 - 6·2 2 + 11·2 - 6 = 0 ;
3 3 - 6·3 2 + 11·3 - 6 = 0 ;
6 3 - 6·6 2 + 11·6 - 6 = 60 .

Итак, мы нашли три корня:
x 1 = 1 , x 2 = 2 , x 3 = 3 .
Поскольку исходный многочлен - третьей степени, то он имеет не более трех корней. Поскольку мы нашли три корня, то они простые. Тогда
.

Ответ

Пример 3.2

Разложить многочлен на множители:
.

Решение

Предположим, что уравнение

имеет хотя бы один целый корень. Тогда он является делителем числа 2 (члена без x ). То есть целый корень может быть одним из чисел:
-2, -1, 1, 2 .
Подставляем поочередно эти значения:
(-2) 4 + 2·(-2) 3 + 3·(-2) 3 + 4·(-2) + 2 = 6 ;
(-1) 4 + 2·(-1) 3 + 3·(-1) 3 + 4·(-1) + 2 = 0 ;
1 4 + 2·1 3 + 3·1 3 + 4·1 + 2 = 12 ;
2 4 + 2·2 3 + 3·2 3 + 4·2 + 2 = 54 .
Если предположить, что это уравнение имеет целый корень, то он является делителем числа 2 (члена без x ). То есть целый корень может быть одним из чисел:
1, 2, -1, -2 .
Подставим x = -1 :
.

Итак, мы нашли еще один корень x 2 = -1 . Можно было бы, как и в предыдущем случае, разделить многочлен на , но мы сгруппируем члены:
.

Поскольку уравнение x 2 + 2 = 0 не имеет действительных корней, то разложение многочлена на множители имеет вид.

Частично использовать разложение на множители разность степеней мы уже умеем - при изучении темы «Разность квадратов» и «Разность кубов» мы научились представлять как произведение разность выражений, которые можно представить как квадраты или как кубы некоторых выражений или чисел.

Формулы сокращенного умножения

По формулам сокращенного умножения:

разность квадратов можно представить как произведение разности двух чисел или выражений на их сумму

Разность кубов можно представить как произведение разности двух чисел на неполный квадрат суммы

Переход к разности выражений в 4 степени

Опираясь на формулу разности квадратов, попробуем разложить на множители выражение $a^4-b^4$

Вспомним, как возводится степень в степень - для этого основание остается прежним, а показатели перемножаются, т. е ${(a^n)}^m=a^{n*m}$

Тогда можно представить:

$a^4={{(a}^2)}^2$

$b^4={{(b}^2)}^2$

Значит, наше выражение можно представить, как $a^4-b^4={{(a}^2)}^2$-${{(b}^2)}^2$

Теперь в первой скобке мы вновь получили разность чисел, значит вновь можно разложить на множители как произведение разности двух чисел или выражений на их сумму: $a^2-b^2=\left(a-b\right)(a+b)$.

Теперь вычислим произведение второй и третьей скобок используя правило произведения многочленов, - умножим каждый член первого многочлена на каждый член второго многочлена и сложим результат. Для этого сначала первый член первого многочлена - $a$ - умножим на первый и второй член второго (на $a^2$ и $b^2$),т.е. получим $a\cdot a^2+a\cdot b^2$, затем второй член первого многочлена -$b$- умножим на первый и второй члены второго многочлена (на $a^2$ и $b^2$),т.е. получим $b\cdot a^2 + b\cdot b^2$ и составим сумму получившихся выражений

$\left(a+b\right)\left(a^2+b^2\right)=a\cdot a^2+a\cdot b^2+ b \cdot a^2 + b\cdot b^2 = a^3+ab^2+a^2b+b^3$

Запишем разность одночленов 4 степени с учетом вычисленного произведения:

$a^4-b^4={{(a}^2)}^2$-${{(b}^2)}^2={(a}^2-b^2)(a^2+b^2)$=$\ \left(a-b\right)(a+b)(a^2+b^2)\ $=

Переход к разности выражений в 6 степени

Опираясь на формулу разности квадратов попробуем разложить на множители выражение $a^6-b^6$

Вспомним, как возводится степень в степень - для этого основание остается прежним, а показатели перемножаются, т. е ${(a^n)}^m=a^{n\cdot m}$

Тогда можно представить:

$a^6={{(a}^3)}^2$

$b^6={{(b}^3)}^2$

Значит, наше выражение можно представить, как $a^6-b^6={{(a}^3)}^2-{{(b}^3)}^2$

В первой скобке мы получили разность кубов одночленов, во второй сумму кубов одночленов, теперь вновь можно разложить на множители разность кубов одночленов как произведение разности двух чисел на неполный квадрат суммы $a^3-b^3=\left(a-b\right)(a^2+ab+b^2)$

Исходное выражение принимает вид

$a^6-b^6={(a}^3-b^3)\left(a^3+b^3\right)=\left(a-b\right)(a^2+ab+b^2)(a^3+b^3)$

Вычислим произведение второй и третье скобок используя правило произведения многочленов, - умножим каждый член первого многочлена на каждый член второго многочлена и сложим результат.

$(a^2+ab+b^2)(a^3+b^3)=a^5+a^4b+a^3b^2+a^2b^3+ab^4+b^5$

Запишем разность одночленов 6 степени с учетом вычисленного произведения:

$a^6-b^6={(a}^3-b^3)\left(a^3+b^3\right)=\left(a-b\right)(a^2+ab+b^2)(a^3+b^3)=(a-b)(a^5+a^4b+a^3b^2+a^2b^3+ab^4+b^5)$

Разложение на множители разности степеней

Проанализируем формулы разности кубов, разности $4$ степеней, разности $6$ степеней

Мы видим, что в каждом из данных разложений присутствует некоторая аналогия, обобщая которую получим:

Пример 1

Разложить на множители ${32x}^{10}-{243y}^{15}$

Решение: Сначала представим каждый одночлен как некоторый одночлен в 5 степени:

\[{32x}^{10}={(2x^2)}^5\]\[{243y}^{15}={(3y^3)}^5\]

Используем формулу разности степеней

Рисунок 1.

Разложение многочлена на множители. Часть 1

Разложение на множители - это универсальный прием, помогающий решить сложные уравнения и неравенства. Первая мысль, которая должна прийти в голову при решении уравнений и неравенств, в которых в правой части стоит ноль - попробовать разложить левую часть на множители.

Перечислим основные способы разложения многочлена на множители :

  • вынесение общего множителя за скобку
  • использование формул сокращенного умножения
  • по формуле разложения на множители квадратного трехчлена
  • способ группировки
  • деление многочлена на двучлен
  • метод неопределенных коэффициентов

В этой статье мы остановимся подробно на первых трех способах, остальные рассмотрим в следующих статьях.

1. Вынесение общего множителя за скобку.

Чтобы вынести за скобку общий множитель надо сначала его найти. Коэффициент общего множителя равен наибольшему общему делителю всех коэффициентов.

Буквенная часть общего множителя равна произведению выражений, входящих в состав каждого слагаемого с наименьшим показателем степени.

Схема вынесения общего множителя выглядит так:

Внимание!
Количество членов в скобках равно количеству слагаемых в исходном выражении. Если одно из слагаемых совпадает с общим множителем, то при его делении на общий множитель, получаем единицу.

Пример 1.

Разложить на множители многочлен:

Вынесем за скобки общий множитель. Для этого сначала его найдем.

1.Находим наибольший общий делитель всех коэффициентов многочлена, т.е. чисел 20, 35 и 15. Он равен 5.

2. Устанавливаем, что переменная содержится во всех слагаемых, причем наименьший из её показателей степени равен 2. Переменная содержится во всех слагаемых, и наименьший из её показателей степени равен 3.

Переменная содержится только во втором слагаемом, поэтому она не входит в состав общего множителя.

Итак, общий множитель равен

3. Выносим за скобки множитель пользуясь схемой, приведенной выше:

Пример 2. Решить уравнение:

Решение. Разложим левую часть уравнения на множители. Вынесем за скобки множитель :

Итак, получили уравнение

Приравняем каждый множитель к нулю:

Получаем - корень первого уравнения.

Корни :

Ответ: -1, 2, 4

2. Разложение на множители с помощью формул сокращенного умножения.

Если количество слагаемых в многочлене, который мы собираемся разложить на множители меньше или равно трех, то мы пытаемся применить формулы сокращенного умножения.

1. Если многочлен представляет собой разность двух слагаемых , то пытаемся применить формулу разности квадратов :

или формулу разности кубов :

Здесь буквы и обозначают число или алгебраическое выражение.

2. Если многочлен представляет собой сумму двух слагаемых, то, возможно, его можно разложить на множители с помощью формулы суммы кубов :

3. Если многочлен состоит из трех слагаемых, то пытаемся применить формулу квадрата суммы :

или формулу квадрата разности :

Или пытаемся разложить на множители по формуле разложения на множители квадратного трехчлена :

Здесь и - корни квадратного уравнения

Пример 3. Разложить на множители выражение:

Решение. Перед нами сумма двух слагаемых. Попытаемся применить формулу суммы кубов. Для этого нужно сначала каждое слагаемое представить в виде куба какого-то выражения, а затем применить формулу для суммы кубов:

Пример 4. Разложить на множители выражение:

Рещение. Перед нами разность квадратов двух выражений. Первое выражение: , второе выражение:

Применим формулу для разности квадратов:

Раскроем скобки и приведем подобные члены, получим:

В общем случае эта задача предполагает творческий подход, так как не существует универсального метода ее решения. Но все же попробуем дать несколько наводок.

В подавляющем числе случаев, разложение многочлена на множители основано на следствии из теоремы Безу, то есть находится или подбирается корень и понижается степень многочлена на единицу делением на . У полученного многочлена ищется корень и процесс повторяется до полного разложения.

Если же корень найти не удается, то используются специфические способы разложения: от группировки, до ввода дополнительных взаимоисключающих слагаемых.

Дальнейшее изложение базируется на навыках решения уравнений высших степеней с целыми коэффициентами.

Вынесение за скобки общего множителя.

Начнем с простейшего случая, когда свободный член равен нулю, то есть многочлен имеет вид .

Очевидно, что корнем такого многочлена является , то есть многочлен представим в виде .

Этот способ есть ни что иное как вынесение общего множителя за скобки .

Пример.

Разложить многочлен третьей степени на множители.

Решение.

Очевидно, что является корнем многочлена, то есть х можно вынести за скобки:

Найдем корни квадратного трехчлена

Таким образом,

К началу страницы

Разложение на множители многочлена с рациональными корнями.

Сначала рассмотрим способ разложения многочлена с целыми коэффициентами вида , коэффициент при старшей степени равен единице.

В этом случае, если многочлен имеет целые корни, то они являются делителями свободного члена.

Пример.

Решение.

Проверим, имеются ли целые корни. Для этого выписываем делители числа -18 : . То есть, если многочлен имеет целые корни, то они находятся среди выписанных чисел. Последовательно проверим эти числа по схеме Горнера. Ее удобство еще и в том, что в итоге получим и коэффициенты разложения многочлена:

То есть, х=2 и х=-3 являются корнями исходного многочлена и он представим в виде произведения:

Осталось разложить квадратный трехчлен .

Дискриминант этого трехчлена отрицательный, следовательно, он не имеет действительных корней.

Ответ:

Замечание:

вместо схемы Горнера можно было воспользоваться подбором корня и последующим делением многочлена на многочлен.

Теперь рассмотрим разложение многочлена с целыми коэффициентами вида , причем коэффициент при старшей степени не равен единице.

В этом случае многочлен может иметь дробно рациональные корни.

Пример.

Разложить на множители выражение .

Решение.

Выполнив замену переменной y=2x , перейдем к многочлену с коэффициентом равным единице при старшей степени. Для этого сначала домножим выражение на 4 .

Если полученная функция имеет целые корни, то они находятся среди делителей свободного члена. Запишем их:

Вычислим последовательно значения функции g(y) в этих точках до получения нуля.

Калькулятор онлайн.
Выделение квадрата двучлена и разложение на множители квадратного трехчлена.

Эта математическая программа выделяет квадрат двучлена из квадратного трехчлена , т.е. делает преобразование вида:
\(ax^2+bx+c \rightarrow a(x+p)^2+q \) и раскладывает на множители квадратный трехчлен : \(ax^2+bx+c \rightarrow a(x+n)(x+m) \)

Т.е. задачи сводятся к нахождению чисел \(p, q \) и \(n, m \)

Программа не только даёт ответ задачи, но и отображает процесс решения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода квадратного трехчлена, рекомендуем с ними ознакомиться.

Правила ввода квадратного многочлена

В качестве переменной может выступать любая латинсая буква.
Например: \(x, y, z, a, b, c, o, p, q \) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x - 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 - 5&6/5x +1/7x^2
Результат: \(3\frac{1}{3} - 5\frac{6}{5} x + \frac{1}{7}x^2 \)

При вводе выражения можно использовать скобки . В этом случае при решении введённое выражение сначала упрощается.
Например: 1/2(x-1)(x+1)-(5x-10&1/2)

Пример подробного решения

Выделение квадрата двучлена. $$ ax^2+bx+c \rightarrow a(x+p)^2+q $$ $$2x^2+2x-4 = $$ $$2x^2 +2 \cdot 2 \cdot\left(\frac{1}{2} \right)\cdot x+2 \cdot \left(\frac{1}{2} \right)^2-\frac{9}{2} = $$ $$2\left(x^2 + 2 \cdot\left(\frac{1}{2} \right)\cdot x + \left(\frac{1}{2} \right)^2 \right)-\frac{9}{2} = $$ $$2\left(x+\frac{1}{2} \right)^2-\frac{9}{2} $$ Ответ: $$2x^2+2x-4 = 2\left(x+\frac{1}{2} \right)^2-\frac{9}{2} $$ Разложение на множители. $$ ax^2+bx+c \rightarrow a(x+n)(x+m) $$ $$2x^2+2x-4 = $$
$$ 2\left(x^2+x-2 \right) = $$
$$ 2 \left(x^2+2x-1x-1 \cdot 2 \right) = $$ $$ 2 \left(x \left(x +2 \right) -1 \left(x +2 \right) \right) = $$ $$ 2 \left(x -1 \right) \left(x +2 \right) $$ Ответ: $$2x^2+2x-4 = 2 \left(x -1 \right) \left(x +2 \right) $$

Решить

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Выделение квадрата двучлена из квадратного трехчлена

Если квадратный трехчлен aх 2 +bx+c представлен в виде a(х+p) 2 +q, где p и q - действительные числа, то говорят, что из квадратного трехчлена выделен квадрат двучлена .

Выделим из трехчлена 2x 2 +12x+14 квадрат двучлена.


\(2x^2+12x+14 = 2(x^2+6x+7) \)


Для этого представим 6х в виде произведения 2*3*х, а затем прибавим и вычтем 3 2 . Получим:
$$ 2(x^2+2 \cdot 3 \cdot x + 3^2-3^2+7) = 2((x+3)^2-3^2+7) = $$ $$ = 2((x+3)^2-2) = 2(x+3)^2-4 $$

Т.о. мы выделили квадрат двучлена из квадратного трехчлена , и показоли, что:
$$ 2x^2+12x+14 = 2(x+3)^2-4 $$

Разложение на множители квадратного трехчлена

Если квадратный трехчлен aх 2 +bx+c представлен в виде a(х+n)(x+m), где n и m - действительные числа, то говорят, что выполнена операция разложения на множители квадратного трехчлена .

Покажем на примере как это преобразование делается.

Разложим квадратный трехчлен 2x 2 +4x-6 на множители.

Вынесем за скобки коэффициент a, т.е. 2:
\(2x^2+4x-6 = 2(x^2+2x-3) \)

Преобразуем выражение в скобках.
Для этого представим 2х в виде разности 3x-1x, а -3 в виде -1*3. Получим:
$$ = 2(x^2+3 \cdot x -1 \cdot x -1 \cdot 3) = 2(x(x+3)-1 \cdot (x+3)) = $$
$$ = 2(x-1)(x+3) $$

Т.о. мы разложили на множители квадратный трехчлен , и показоли, что:
$$ 2x^2+4x-6 = 2(x-1)(x+3) $$

Заметим, что разложение на множители квадратного трехчлена возможно только тогда, когда, квадратное уравнение, соответсвующее этому трехчлену имеет корни.
Т.е. в нашем случае разложить на множители трехчлен 2x 2 +4x-6 возможно, если квадратное уравнение 2x 2 +4x-6 =0 имеет корни. В процессе разложения на множители мы установили, что уравнение 2x 2 +4x-6 =0 имеет два корня 1 и -3, т.к. при этих значениях уравнение 2(x-1)(x+3)=0 обращается в верное равенство.

Книги (учебники) Рефераты ЕГЭ и ОГЭ тесты онлайн Игры, головоломки Построение графиков функций Орфографический словарь русского языка Словарь молодежного слэнга Каталог школ России Каталог ССУЗов России Каталог ВУЗов России Список задач