Основы интегрального исчисления. История интегрального исчисления

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ - раздел математики, в котором изучаются интегралы различного вида, такие, как определенный интеграл, неопределенный интеграл, криволинейный интеграл, поверхностный интеграл, двойной интеграл, тройной интеграл и т.д., их свойства, способы вычисления, а также приложения этих интегралов к различным задачам естествознания.

Центральной формулой И. и. является формула Ньютона-Лейбница (см. Ньютона-Лейбница формула), связывающая определенный и неопределенный интегралы (см. Определенный интеграл , Неопределенный интеграл) функции - величины, определяемые в совершенно непохожих друг на друга терминах.

Именно эта формула утверждает, что

при следующих условиях и обозначениях:

Отрезок числовой оси, - непрерывная на функция, - разбиение отрезка точками , - отрезок , - точка отрезка , , т. е. максимальная из длин отрезков , - первообразная функция для , т. е. такая, что . Предел в левой части существует в случае непрерывной функции , любого способа измельчения разбиения , при котором , и любого выбора точек .

Пределы вида возникают при вычислении многих величин, связанных с физическими, геометрическими и т. п. понятиями. В то же время вычисление первообразной для простых функций достаточно эффективно выполняется по правилам И. и. В основе этих правил лежат свойства дифференцируемых функций, изучаемых в дифференциальном исчислении, так что И. и. и дифференциальное исчисление составляют неразрывное целее.

При переходе от функций одного переменного к функциям нескольких переменных содержание И. и. становится значительно богаче. Возникают понятия двойного, тройного (и вообще-n-кратного), поверхностного и криволинейного интегралов. И. и. устанавливает правила вычисления этих интегралов путем сведения их к несколько раз повторяемым вычислениям определенных интегралов.

Отдельным разделом И. и. функций нескольких переменных является теория поля (см. Поля теория), существенную часть которой составляют теоремы, устанавливающие связь между интегралами по области и интегралами по границе области (см. Остроградского формула , Грина формулы , Стокса формула).

В дальнейшем своем развитии И. и. привело к изучению интегралов Стилтьеса, Лебега, Данжуа, основанных на более общих идеях, чем рассмотренные выше интегралы.

Возникновение И. и. связано с задачами вычисления площадей и объемов различных тел. Некоторые достижения в этом направлении имели место еще в Древней Греции (Евдокс Киндский, Архимед и др.). Возрождение интереса к задачам подобного рода имело место в Европе в XVI-XVII вв. К этому времени европейские математики имели возможность ознакомиться с трудами Архимеда, переведенными на латинский язык. Но основной причиной такого внимания к И. и. явилось промышленное развитие ряда стран Европы, поставившее перед математикой новые задачи. В это время большой вклад в И. и. внесли И. Кеплер, Б. Кавальери, Э. Торричелли, Дж. Валлис, Б. Паскаль, П. Ферма, X. Гюйгенс.

Качественным сдвигом в И. и. явились труды И. Ньютона и Г. Лейбница, создавших ряд общих методов нахождения пределов интегральных сумм. Важное значение имела удобная символика И. и. (применяемая до сих пор), введенная Г. Лейбницем. После трудов И. Ньютона и Г. Лейбница многие задачи И. и., ранее требовавшие значительного искусства для своего решения, были сведены до уровня чисто технического. При этом особенно большое значение имели формулы дифференцирования сложной функции, правило замены переменной в определенном и неопределенном интегралах и (более всего) формула Ньютона-Лейбница, упомянутая выше.

Дальнейшее историческое развитие И. и. связано с именами И. Бернулли, Л. Эйлера, О. Коши и русских математиков М. В. Остроградского, В. Я. Буняковского, П. Л. Чебышева.

И. и. вместе с дифференциальным исчислением до настоящего времени является одним из основных математических инструментов многих физических и технических наук.

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ

Раздел математики, в к-ром изучаются понятия интеграла, его свойства и методы вычислений. И. и. непрерывно связано с дифференциальным исчислением и составляет вместе с ним основу математич. анализа. Истоки И. и. относятся к античному периоду развития математики и связаны с исчерпывания методом, разработанным математиками Древней Греции. Этот метод возник при решении задач на вычисление площадей плоских фигур и поверхностей, объемов тел, нек-рых задач статики и гидродинамики. Он основан на аппроксимации рассматриваемых объектов ступенчатыми фигурами или телами, составленными из простейших фигур или пространственных тел (прямоугольников, параллелепипедов, цилиндров и т. п.). В этом смысле метод исчерпывания можно рассматривать как античный интегральный метод. Наибольшее развитие метод исчерпывания в древнюю эпоху получил в работах Евдокса (4 в. до н. э.) и особенно Архимеда (3 в. до н. э.). Дальнейшее его применение и совершенствование связано с именами многих ученых 15 - 17 вв.

Основные понятия и интегрального и дифференциального исчислений, прежде всего связь операций дифференцирования и интегрирования, а также их применения к решению прикладных задач, были разработаны в трудах И. Ньютона (I. Newton) н Г. Лейбница (G. Leibniz) в конце 17 в. Их исследования явились началом интенсивного развития математич. анализа. Существенную роль в его создании в 18 в. сыграли работы Л. Эйлера (L. Euler), Я. и И. Бернулли (Jacob, Johann Bernoulli), Ж. Лагранжа (J. Lagrange). В 19 в. в связи с появлением понятия предела И. и, приобрело логически завершенную форму [работы О. Коши (А. Саuchy), Б. Римана (В. Riemann) и др. Разработка теории и методов И. и. происходила в конце 19 в. и в 20 в. одновременно с исследованиями по теории меры, играющей существенную роль в И. и.

С помощью И. и. стало возможным решать единым методом многие теоретич. и прикладные задачи, как новые, к-рые ранее не поддавались решению, так и старые, требовавшие прежде специальных искусственных приемов. Основными понятиями И. и. являются два тесно связанных понятия интеграла: неопределенного и определенного.

Неопределенный от данной действительной функции на нек-ром промежутке определяется как совокупность всех ее первообразных на этом промежутке, т. е. функций, производные к-рых совпадают с заданной функцией. Неопределенный интеграл от функции f(x)обозначается через Если F(x)- какая-либо функцияf(x), то любая другая ее первообразная имеет F(x)+C, где С- произвольная постоянная, поэтому пишут

Операция нахождения неопределенного интеграла наз. интегрированием. Интегрирование является операцией, обратной к операций дифференцирования:

Операция интегрирования линейна: если на нек-ром промежутке существуют неопределенные интегралы

то для любых действительных чисел l 1 и l 2 на том же промежутке существует интеграл

Для неопределенных интегралов справедлива интегрирования по частям :если функции и(х)и v(x). дифференцируемы на нек-ром промежутке и интеграл существует, то существует и интеграл причем имеет место равенство

Справедлива формула замены переменного: если для функций f(x)и x=j(t), определенных на нек-рых промежутках, имеет смысл f, j(t)дифференцируема и существует интеграл то существует и интеграл

(см. Интегрирование подстановкой ).

Всякая непрерывная на нек-ром промежутке функция имеет на нем первообразную и, следовательно, для нее существует . Задача фактического нахождения неопределенного интеграла от конкретно заданной функции осложняется тем, что неопределенный интеграл от элементарной функции не является, вообще говоря, элементарной функцией. Известны многие классы функций, для к-рых оказывается возможным выразить их неопределенные интегралы через . Простейшими примерами этого являются интегралы, к-рые получаются из таблицы производных основных элементарных функций (см. Дифференциальное исчисление ):

Если подинтегральной функции обращается в в нек-рой точке, то написанные формулы справедливы лишь для тех промежутков, в к-рых не происходит обращения в нуль указанного знаменателя (см. формулы 1, 2, 6, 7, 11, 13, 15).

Неопределенный интеграл от рациональной функции на всяком промежутке, на к-ром знаменатель не обращается в нуль, является суперпозицией рациональных функций, арктангенсов и натуральных логарифмов. Нахождение алгебраич. части неопределенного интеграла от рациональной функции может быть осуществлено Остроградского методом. К интегрированию рациональных функций с помощью подстановок сводятся, напр., интегралы вида

где r 1 , r 2 ,..., r m - рациональные числа, интегралы вида

(см. Эйлера подстановки ), нек-рые случаи интегралов от дифференциальных биномов, интегралы вида

(здесь везде R(y 1 , y 2 , ..., у п )- рациональные функции), интегралы

и мн. др. Вместе с тем, напр., интегралы

не выражаются через элементарные функции. Определенным интегралом

от функции f(x), заданной на отрезке [ а, b], наз. предел интегральных сумм определенного вида (см. Коши интеграл, Римана интеграл, Лебега интеграл, Колмогорова интеграл, Стилтъеса интеграл и т. д.). Если этот предел существует, функцию f(x)наз. интегрируемой соответственно по Коши, по Риману, по Лебегу и т. д.

Геометрич. смысл интеграла связан 4 с понятием площади: если функция непрерывна на отрезке [а, b], то значение интеграла

равно площади криволинейной трапеции, образованной графиком функции f(x), т. е. множеством, к-рого состоит из графика функции f(x), . отрезка [ а, b ]и двух отрезков прямых х=а и x=b, к-рые могут вырождаться в точки. К задаче вычисления предела интегральных сумм, т. е. нахождению определенного интеграла, сводится вычисление многих встречающихся на практике величин: площадей фигур и поверхностей, объемов тел, работы силы, координат центра тяжести, значений моментов инерции различных тел и т.. п.

Определенный интеграл обладает свойством линейности: если функции f 1 (х)и f 2 (х)интегрируемы на отрезке [ а, b ], то для произвольных действительных чисел l 1 и l 2 функция также интегрируема на отрезке и

Интегрируемость функции на отрезке обладает свойством монотонности: если функция f(х)интегрируема на отрезке [ а, b ]и то функция f(х)интегрируема и на отрезке [ с, d ]. Справедливо свойство аддитивности интеграла относительно отрезков, по к-рым происходит интегрирование: если а<с и функция f(x)интегрируема на отрезках [ а, с ]и [ с, b ], то она интегрируема и на отрезке [ а, b ], причем

Если функции f(x)и g(x)интегрируемы, то их также интегрируемо. Если на [ а, b ], то

Если функция f(x)интегрируема на [ а, b ], то ее |f(x)|также интегрируема на [ а, b

По определению полагают

Для определенных интегралов справедливы теоремы о среднем. Напр., если f(x)и g(x)интегрируемы на отрезке [ а, b ], и функция g(x)не меняет знака на отрезке [ а, b], т. е. либо неотрицательна, либо неположительна на этом отрезке, то существует такое что

При дополнительном предположении непрерывности на отрезке [ а, b ]функции f(x)на интервале ( а, b )существует такая точка x, что

В частности, если g(x)=A, то

Интегралы с переменным верхним пределом. Если функция f(x)интегрируема по Риману на отрезке [ а, b ], то функция

непрерывна на этом отрезке. Если, кроме того, функция f(x)непрерывна в точке х 0 , то функция F(x)дифференцируема в этой точке и F" (x 0 ) = f (x 0 ). Иначе говоря, в точках непрерывности функции справедлива формула

Следовательно, для всякой интегрируемой по Риману на отрезке [ а, b ]функции эта формула справедлива во всех точках, кроме, быть может, множества точек, имеющих меру Лебега, равную нулю, ибо если функция интегрируема по Риману на некотором отрезке, то ее точек разрыва имеет меру нуль. Таким образом, если функция f(x)непрерывна на отрезке [ а, b ], то функция является ее первообразной на этом отрезке. Эта показывает, что операция дифференцирования является обратной к взятию определенного интеграла с переменным верхним пределом, тем самым устанавливая связь между определенным и неопределенным интегралами:

Геометрия, смысл этой связи состоит в том, что задача о нахождении касательной к кривой и вычисление площадей плоских фигур являются в указанном смысле взаимно обратными.

Для любой первообразной F(x)непрерывной функции f(x)на отрезке [ а, b ]имеет место формула Ньютона - Лейбница:

Она показывает, что по некоторому отрезку от непрерывной функции равен разности значений на концах этого отрезка любой из ее первообразных. Эту формулу иногда принимают за определение определенного интеграла. В этом случае доказывается, что введенный таким образом интеграл является пределом соответствующих сумм.

Для определенных интегралов справедливо правило замены переменного и формула интегрирования по частям. Пусть, напр., функция f(х) непрерывна на интервале (а, b)и функция j(t)непрерывна вместе со своей производной j" (t)на интервале (a, b), причем (a, b) отображается с помощью функции j(t) в интервал (a, b ): a< j(t) при a, b) имеет смысл суперпозиция f. Тогда, если то имеет место формула замены переменного

Формула интегрирования по частям:

где функции и(х)и v(x)имеют на отрезке [ а, b ]интегрируемые производные.

Формула Ньютона - Лейбница сводит вычисление определенного интеграла к отысканию значений его первообразной. Поскольку задача отыскания первообразной является сама по себе сложной, то большое значение имеют другие методы нахождения определенных интегралов, среди к-рых прежде всего следует отметить, метод вычетов и метод дифференцирования и интегрирования по параметру зависящих от параметров интегралов. Разрабатываются также численные методы приближенного вычисления интегралов.

Обобщение понятия интеграла на случай неограниченных функций и случай неограниченного промежутка приводит к понятию несобственного интеграла, к-рый определяется при помощи еще одного дополнительного предельного перехода.

Понятия неопределенного и определенного интегралов переносятся на комплекснозначные функции. Представление любой регулярной функции комплексного переменного в виде Коши интеграла по контуру сыграло важную роль в развитии теории аналитич. функций.

Обобщение понятия определенного, интеграла от функции одного переменного на случай функций многих переменных приводит к понятию кратного интеграла.

Для неограниченных множеств и неограниченных функций многих переменных, также как и в одномерном случае, вводится понятие несобственного интеграла.

Расширение практич. использования И. и. обусловило введение понятий криволинейного интеграла - интеграла по кривой, поверхностного интеграла - интеграла по поверхности и вообще - интеграла по многообразиям, сводимых в нек-ром смысле к определенному интегралу ( - к интегралу по отрезку, поверхностный - к интегралу по области (плоской), интеграл по n-мерному многообразию - к интегралу по n-мерной области). Интегралы по многообразиям, в частности криволинейные и поверхностные, играют важную роль в И. и. функций многих переменных; с их помощью можно установить связь между интегрированием по области и ее границе или, в общем случае, по многообразию и его краю. Эта связь устанавливается Стокса формулой (см. также Остроградского формула, Грина формулы ), являющейся обобщением на многомерный случай формулы Ньютона - Лейбница.

Кратные, криволинейные и поверхностные интегралы находят непосредственное применение в математич. физике, в частности в теории поля. Кратные интегралы и связанные с ними понятия широко используются при решении конкретных прикладных задач. Для численного вычисления кратных интегралов разработана теория кубатурных формул.

Теория и методы И. и. числовых функций конечного числа переменных переносятся и на более общие объекты. Напр., теория интегрирования функций, значения к-рых принадлежат линейным нормированным пространствам, функций, заданных на топологич. группах, обобщенных функций и функций бесконечного числа переменных (). Наконец, новое И. и. связано также с появлением и развитием конструктивной математики.

И. и. применяется во многих разделах математики (в теории дифференциальных и интегральных уравнений, в теории вероятностей и математич. статистике, в теории оптимальных процессов и др.), и в ее приложениях.

Лит. :см. - при статье Дифференциальное исчисление, а также к разделу "Работы основоположников и классиков...": Архимед, Сочинения, М., 1962; Кеплер И., Новая стереометрия винных бочек, [пер. с латин.], М.- Л., 1934; Кавальери Б., Геометрия..., [пер. с латин.], М.- Л., 1940; Эйлер Л., Интегральное , пер. с латин., т. 1 - 3, М., 1956-58.

Л. Д. Кудрявцев.


Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .

Смотреть что такое "ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ" в других словарях:

    Интегральное исчисление - Интегральное исчисление. Построение интегральных сумм для вычисления определенного интеграла непрерывной функции f(x), график которой кривая MN. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ, раздел математики, в котором изучаются свойства и способы вычисления… … Иллюстрированный энциклопедический словарь

    Раздел математики, в котором изучаются свойства и способы вычисления интегралов и их приложения к решению различных математических, физических и других задач. В систематической форме интегральное исчисление было предложено в 17 в. И. Ньютоном и Г … Большой Энциклопедический словарь

    Отдел высшей математики, учение о действиях, противоположных дифференциальному вычислению, а именно об определении зависимости между несколькими переменными величинами по данному дифференциальному уравнению из них. Таким образом, находится… … Словарь иностранных слов русского языка

План

Первообразная функции и неопределенный интеграл. Основные свойства неопределенного интеграла. Таблица основных неопределенных интегралов. Основные методы интегрирования: непосредственное интегрирование, метод подстановки, интегрирование по частям.

Рациональные дроби. Интегрирование простейших рациональных дробей. Интегрирование рациональных дробей.

Интегрирование тригонометрических функций. Интегрирование некоторых иррациональных функций. Интегралы, не выражающиеся через элементарные функции.

Определенный интеграл. Основные свойства определенного интеграла. Интеграл с переменным верхним пределом. Формула Ньютона-Лейбница. Основные методы вычисления определенного интеграла (замена переменной, интегрирование по частям).

Геометрические приложения определенного интеграла. Некоторые приложения определенного интеграла в экономике.

Несобственные интегралы (интегралы с бесконечными пределами интегрирования, интегралы от неограниченных функций).

Первообразная функции и неопределенный интеграл

В интегральном исчислении основной задачей является нахождение функции y = f (x ) по ее известной производной .

Определение 1. Функция F (x ) называется первообразной функции f (x ) на интервале (a, b ), если для любого выполняется равенство: или .

Теорема 1. Любая непрерывная на отрезке [a , b ] функция f (x ) имеет на этом отрезке первообразную F (x ).

В дальнейшем будем рассматривать непрерывные на отрезке функции.

Теорема 2. Если функция F (x ) является первообразной функции f (x ) на интервале (a, b ), то множество всех первообразных задается формулой F (x )+С , где С – постоянное число.

Доказательство .

Функция F (x )+С является первообразной функции f (x ), так как .



Пусть Ф (x ) – другая, отличная от F (x ) первообразной функции f (x ), т. е. . Тогда имеем

а это означает, что

,

где С – постоянное число. Следовательно,

Определение 2. Множество всех первообразных функций F (x )+С для функции f (x ) называется неопределенным интегралом от функции f (x ) и обозначается символом .

Таким образом, по определению

(1)

В формуле (1) f (x ) называется подынтегральной функцией , f (x )dx подынтегральным выражением , x – переменной интегрирования, знаком неопределенного интеграла .

Операция нахождения неопределенного интеграла от функции называется интегрированием этой функции.

Геометрически неопределенный интеграл представляет собой семейство кривых (каждому числовому значению С соответствует определенная кривая семейства). График каждой первообразной (кривой) называется интегральной кривой . Они не пересекаются между собой и не касаются друг друга. Через каждую точку плоскости проходит только одна интегральная кривая. Все интегральные кривые получаются одна из другой параллельным переносом вдоль оси Оy .

Основные свойства неопределенного интеграла

Рассмотрим свойства неопределенного интеграла, вытекающие из его определения.

1. Производная от неопределенного интеграла равна подынтегральной функции, дифференциал от неопределенного интеграла равен подынтегральному выражению :

Доказательство .

Пусть Тогда

2. Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной:

Доказательство .

Действительно, .

3. Постоянный множитель a () можно выносить за знак неопределенного интеграла:

4. Неопределенный интеграл от алгебраической суммы конечного числа функций равен алгебраической сумме интегралов от этих функций :

5. Если F (x ) – первообразной функции f (x ), то

Доказательство .

Действительно,

6 (инвариантность формул интегрирования ). Любая формула интегрирования сохраняет свой вид, если переменную интегрирования заменить любой дифференцируемой функцией этой переменной :

где u дифференцируемая функция .

Таблица основных неопределенных интегралов

Так как интегрирование есть действие, обратное дифференцированию, то большинство из приводимых формул может быть получено обращением соответствующих формул дифференцирования. Другими словами, таблица основных формул интегрирования получается из таблицы производных элементарных функций при обратном ее чтении (справа налево).

Приведем таблицу основных неопределенных интегралов. (Отметим, что здесь, как и в дифференциальном исчислении, буква u может означать как независимую переменную (u =x ), так и функцию от независимой переменной (u =u (x )).)








Интегралы 1–12 называются табличными .

Некоторые из приведенных выше формул таблицы интегралов, не имеющие аналога в таблице производных, проверяются дифференцированием их правых частей.

Код для блога:

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ, раздел математики, в котором изучаются свойства и способы вычисления интегралов и их приложения к решению различных математических, физических и других задач. В систематической форме интегральное исчисление было предложено в 17 в. И. Ньютоном и Г. Лейбницем. Интегральное исчисление тесно связано с дифференциальным исчислением; интегрирование (нахождение интеграла) есть действие, обратное дифференцированию: по данной непрерывной функции f(x) ищется функция F(x) (первообразная), для которой f(x) является производной.

Вместе с F(x) первообразной функцией для f(x) является и F(x) + C, где С - любая постоянная. Общее выражение F(x) + C первообразных непрерывной функции f(x) называется неопределенным интегралом; он обозначается.Определенным интегралом непрерывной функции f(x) на отрезке , разделенном точками (рис.), называется предел интегральных сумм, где, при условии, что наибольшая разность стремится к нулю и число точек деления неограниченно увеличивается; его обозначают (самый знак возник из первой буквы S латинского слова Summa).

Через определенные интегралы выражаются площади плоских фигур, длины кривых, объемы и поверхности тел, координаты центров тяжести, моменты инерции, работа, производимая данной силой, и т. д. О связи между определенным интегралом и первообразной см. Ньютона - Лейбница формула. Понятие интеграла распространяется на функции многих переменных (см. Кратный интеграл, Криволинейный интеграл, Поверхностный интеграл)

Как это будет выглядеть:

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ, раздел математики, в котором изучаются свойства и способы вычисления интегралов и их приложения к решению различных математических, физических и других задач. В систематической форме интегральное исчисление было предложено в 17 в. И. Ньютоном и Г. Лейбницем. Интегральное исчисление тесно связано с дифференциальным исчислением; интегрирование (нахождение интеграла) есть действие, обратное дифференцированию: по данной непрерывной функции f(x) ищется функция F(x) (первообразная), для которой f(x) является производной.

Вместе с F(x) первообразной функцией для f(x) является и F(x) + C, где С - любая постоянная. Общее выражение F(x) + C первообразных непрерывной функции f(x) называется неопределенным интегралом; он обозначается.Определенным интегралом непрерывной функции f(x) на отрезке , разделенном точками (рис.), называется предел интегральных сумм, где, при условии, что наибольшая разность стремится к нулю и число точек деления неограниченно увеличивается; его обозначают (самый знак возник из первой буквы S латинского слова Summa).

Через определенные интегралы выражаются площади плоских фигур, длины кривых, объемы и поверхности тел, координаты центров тяжести, моменты инерции, работа, производимая данной силой, и т. д. О связи между определенным интегралом и первообразной см. Ньютона - Лейбница формула. Понятие интеграла распространяется на функции многих переменных (см. Кратный интеграл, Криволинейный интеграл, Поверхностный интеграл)

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Первообразная фу нкция и неопределенный интеграл

Интегральное исчисление является второй частью курса математического анализа, непосредственно следующей за дифференциальным исчислением. Само понятие интеграла наряду с понятием производной и дифференциала является фундаментальным понятием математического анализа. Это понятие возникло, с одной стороны из потребности решать задачи на вычисление площади, длины окружности, объёма, работы переменной силы, центра тяжести и т.д., с другой - из необходимости находить функции по их производным.

В соответствии с этим возникли понятия определённого и неопределённого интегралов.

Как известно, основная задача дифференциального исчисления заключается в отыскании производной или дифференциала заданной функции.

Можно поставить обратную задачу: по данной функции f(x) найти такую функцию F(x) , которая удовлетворяла условию F?(x)=f(x) или dF(x)=f(x)dx. Отыскание функции по заданной её производной или дифференциалу и является одной из основных задач интегрального исчисления.

К задаче восстановления функции по ее производной или дифференциалу приводят самые разнообразные вопросы математического анализа с его многочисленными приложениями в области геометрии, механики, физики, техники.

Приведём пример, с такого рода задачей мы встречаемся, когда по заданной скорости движения материальной точки v=f(t) требуется найти закон движения этой точки, то есть зависимость пройденного точкой пути s от времени t . В дифференциальном исчислении мы имели дело с обратной задачей. Там по заданному закону движения s=s(t) путем дифференцирования функции s(t) мы находили скорость v этого движения, то есть v(t)=s?(t). Следовательно, в поставленной выше задаче мы должны по данной функции v=f(t) восстановить функцию s=s(t), для которой f(t) является производной.

Определение. Функция F(х) называется первообразной функцией для функции f(x) на промежутке X, если в каждой точке х этого промежутка F"(x)=f(x).

Таким образом, функция s(t)- переменный путь - есть первообразная для скорости v=f(t).

Функция sin x является первообразной для функции cos x на всей оси Ох, так как при любом значении х мы будем иметь: (sin x)?=cos x.

является первообразной для функции, так как.

По геометрическому смыслу производной F"(x) есть угловой коэффициент касательной к кривой у=F(х) в точке с абсциссой х. Геометрически найти первообразную для f(х) -- значит найти такую кривую у=F(х), что угловой коэффициент касательной к ней в произвольной точке х равен значению f(х) заданной функции в этой точке (см. рис. 1.1).

Для заданной функции f(х) ее первообразная определена неоднозначно. Дифференцируя, нетрудно убедиться, что функции, и вообще, где С --некоторое число, являются первообразными для функции f(х)=х2. Аналогично в общем случае, если F(х) -- некоторая первообразная для f(х), то, поскольку (Fх)+ С)"= F"(x)=f(x), функции вида F(х)+ С, где С -- произвольное число, также являются первообразными для f(х).

Геометрически это означает, что если найдена одна кривая у=F(х), удовлетворяющая условию F"(x)=tg б=f(х), то, сдвигая ее вдоль оси ординат, мы вновь получаем кривые, удовлетворяющие указанному условию (поскольку такой сдвиг не меняет углового коэффициента касательной в точке с абсциссой х) (см. рис. 1.1).

Остается вопрос, описывает ли выражение вида F(х)+С все первообразные для функции f(х). Ответ на него дает следующая теорема.

Теорема. Если F1 (х) и F2 (х) -- первообразные для функции f(х) на некотором промежутке X, то найдется такое число С, что будет справедливо равенство

F2 (х)= F1 (x)+ С.

Поскольку (F2(x)-F1(x))"=F"2 (x)-F" 1 (х)=f(х)-f(х)=0, то, по следствию из теоремы Лагранжа (см. § 8.1), найдется такое число С, что F2 (х)- F1 (х)= С или F2 (х)=F1 (х)+ С

Из данной теоремы следует, что, если F(х) -- первообразная для функции f(х), то выражение вида F(х)+С, где С -- произвольное число, задает все возможные первообразные для f(х).

Определение. Совокупность всех первообразных для функции f(х) на промежутке X называется неопределенным интегралом от функции f(х) и обозначается f(x) dx, где -знак интеграла, f(х) -- подынтегральная функция, f(x)dx -- подынтегральное выражение, а переменная х - переменной интегрирования.

Итак по определению,

f(x) dx=F(x)+C (1.1)

где F(х) -- некоторая первообразная для f(х), С -- произвольная постоянная.

Таким образом, неопределённый интеграл от какой-нибудь функции представляет собой общий вид всех первообразных для этой функции.

Формула (1.1) показывает, что если известна какая-нибудь первообразная функция для f(x), то тем самым известен ее неопределенный интеграл, и, следовательно, задача отыскания какой-нибудь определенной первообразной для f(x) равносильна задаче отыскания ее неопределенного интеграла.

В этой связи естественно возникает вопрос: для всякой ли функции f(x) , заданной на некотором промежутке, существует первообразная F(x) (а значит и неопределённый интеграл)? Оказывается, что не для всякой. Однако если f(x) непрерывна на каком-нибудь промежутке, то она имеет на нём первообразную (а следовательно, и неопределенный интеграл). В случае разрывной функции речь будет идти лишь об интегрировании ее в одном из промежутков непрерывности.

Например, функция имеет разрыв только при х=0. Поэтому промежутками непрерывности для неё будут (0, +?) и (-?, 0). В первом из них одной из первообразных для является ln(x). Следовательно,

Однако для х из промежутка (-?, 0) эта формула уже лишена смысла (так как ln(x) при х<0 не определён) . В этом случае одной из первообразных для будет уже не ln(x), а ln(-x), ибо

И, стало, быть,

Объединяя оба случая, мы приходим к формуле:

Восстановление функции по ее производной, или, что то же, отыскание неопределенного интеграла по данной подынтегральной функции, называют интегрированием.

Поскольку интегрирование - обратное действие по отношению к дифференцированию, то благодаря этому проверка правильности результата интегрирования осуществляется дифференцированием последовательного: дифференцирование должно дать подынтегральную функцию.

Проверить, что

Действительно, Следовательно, интеграл взят верно.

Вернёмся теперь к поставленной в начале механической задаче: к определению пройденного пути s по заданной скорости движения v=f(t). Так как скорость движущейся точки есть производная от пути по времени, то задача сводится к отысканию первообразной для функции v=f(t) . Следовательно,

Пусть для определенности нам дано, что скорость движения точки пропорционально времени t , то есть и v=at, где а - коэффициент пропорциональности. Тогда согласно формуле мы имеем:

Где С - произвольная постоянная. Мы получили бесчисленное множество решений, отличающихся друг от друга на постоянное слагаемое. Эта неопределенность объясняется тем, что мы не фиксировали того момента времени t , от которого отсчитывается пройденный путь s . Чтобы получить вполне определенное решение задачи, достаточно знать величину s= в какой-нибудь начальный момент времени t= - это так называемые начальные значения. Пусть, например, нам известно, что в начальный момент времени t=0 путь s=0. Тогда, полагая в равенстве t=0, s=0, находим 0=0+С, откуда С=0. Следовательно, искомый закон движения точки выражается формулой.

Интеграл и задача об определении площади. Гораздо важнее истолкование первообразной функции как площади криволинейной фигуры. Так как исторически понятие первообразной функции было теснейшим образом связано с задачей об определении площади, то мы остановимся на этой задаче уже здесь.

Пусть дана в промежутке [а, b] непрерывная функция у=f(х), принимающая лишь положительные (неотрицательные) значения. Рассмотрим фигуру ABCD ,

ограниченную кривой у = f(x), двумя ординатами х = а и х = b и отрезком оси х; подобную фигуру будем называть криволинейной трапецией. Желая определить величину площади Р этой фигуры, мы изучим поведение площади переменной фигуры AMND, заключенной между начальной ординатой х = а и ординатой, отвечающей произвольно выбранному в промежутке значению х. При изменении х эта последняя площадь будет соответственно изменяться, причем каждому x отвечает вполне определенное ее значение, так что площадь криволинейной трапеций AMND является некоторой функцией от х; обозначим ее через Р(х).

Поставим себе сначала задачей найти производную этой функции. С этой целью придадим х некоторое (скажем, положительное) приращение Дх; тогда площадь Р(х) получит приращение ДР.

Обозначим через m и М, соответственно, наименьшее и наибольшее значения функции f(x) в промежутке [х,х + Дх] и сравним площадь ДР с площадями прямоугольников, построенных на основании Дх и имеющих высоты т и М. Очевидно, Дх<ДР<М Дх, откуда

Если Дх>0, то, вследствие непрерывности, т и М будут стремиться к f(x), а тогда и

Таким образом, мы приходим к теореме (обычно называемой теоремой Ньютона и Лейбниц а): производная от переменной площади P(x) по конечной абсциссе х равна конечной ординате у = f(x). Иными словами, переменная площадь Р(х) представляет собой первообразную функцию для данной функции у = f(x). В ряду других первообразных эта первообразная выделяется по тому признаку, что она обращается в 0 при х = а. Поэтому, если известна какая-либо первообразная F(x) для функции f(x),

P(x) = F(x) + C,

то постоянную С легко определить, положив здесь х = а

так что C=-F(a).

Окончательно

В частности, для получения площади Р всей криволинейной трапеции ABCD нужно взять х =b:

Р = F(b) - F(a).

В виде примера, найдем площадь Р(х) фигуры, ограниченной параболой у = ах2, ординатой, отвечающей данной абсциссе х, и отрезком оси х;

так как парабола пересекает ось х в начале координат, то начальное значение х здесь 0. Для функции f(x) = ax2 легко найти первообразную: F(x) = Эта функция как раз и обращается в 0 при х=0, так что

Ввиду той связи, которая существует между вычислением интегралов и нахождением площадей плоских фигур, т. е. квадратурой их, стало обычным и самое вычисление интегралов называть квадратурой.

Для распространения всего сказанного выше на случай функции, принимающей и отрицательные значения, достаточно условиться считать отрицательными площади частей фигуры, расположенных под осью х.

Таким образом, какова бы ни была непрерывная в промежутке [а, b] функция f(x), всегда можно представить себе первообразную для нее функцию в виде переменной площади фигуры, ограниченной графиком данной функции. Однако считать эту геометрическую иллюстрацию доказательством существования первообразной, разумеется, нельзя, поскольку самое понятие площади еще не обосновано.

2. Свойства неопределенного интегра ла

1.Производная неопределенного интеграла равна подынтегральной функции, т.е.

Дифференцируя левую и правую часть равенства (2.1) , получаем:

интеграл первообразная функция производная

2. Дифференциал от неопределенного интеграла равен подынтегральному выражению: т.е. (2.2)

По определению дифференциала и свойству 1 имеем

3.Неопределенного интеграл от дифференциала некоторой функции равен этой функции плюс произвольная постоянная:

где С - произвольное число

Рассматривая функцию F(х) как первообразную для некоторой функции f(х), можно записать

и на основании (2.2) дифференциал неопределенного интеграла f(x)dx=dF(x), откуда

Сравнивая между собой свойства 2 и 3, можно сказать, что операции нах ождения неопределённого интеграла и дифференциала взаимнообратны (знаки d и взаимно уничтожают друг друга, в случае свойства 3, с точностью до постоянного слагаемого).

4. Постоянный множитель можно выносить за знак интеграла, т.е. если б=const?0 , то

где б-- некоторое число.

Найдем производную функции:

(см. свойство 1). По следствию из теоремы Лагранжа найдется такое число С, что g(x)=С и значит. Так как сам неопределенный интеграл находится с точностью до постоянного слагаемого, то в окончательной записи свойства 4 постоянную С можно опустить.

5.Интеграл от алгебраической суммы двух функций равен такой же сумме интегралов от этих функций, т.е.

Действительно, пусть F(x) и G(x) - первообразные для функции f(x) и g(x):

Тогда функции F(x)±G(x) являются первообразными для функции f(x)±g(x). Следовательно,

Свойство 5 справедливо для любого конечного числа слагаемых функций.

3. Таблица основных интегралов

Приведём таблицу основных интегралов. Таблица интегралов вытекает непосредственно из определения неопределённого интеграла и таблицы производных.

А<х<а, а>0

Интегралы, содержащиеся в этой таблице, принято называть табличными.

Так как неопределенный интеграл не зависит от выбора переменной интегрирования, то все табличные интегралы имеют место для любой переменной.

Процесс нахождения первообразной сводится к преобразованию подынтегральной функции к табличному виду.

Простейшие интегралы могут быть найдены путем разложения подынтегральной функции на слагаемые. В состав каждого интеграла входит постоянная интегрирования, но все они могут быть объединены в одну, поэтому обычно при интегрировании алгебраической суммы функций пишут только одну постоянную интегрирования.

4 . Примеры нахождения интегралов

Существуют целые классы интегралов, которые в зависимости от постоянных сомножителей или показателей степеней могут быть найдены по обобщенным формулам интегрирования. Приведем некоторые из них.

где P(х) -- целый относительно х многочлен.

где n -- любое вещественное число п?- 1; т = 1,2,3,...

9. Если обозначить

(n = 1,2, 3,...), то

12. (n=1,2,…);

13. (п=1,2,…);

1.1. Найти интегралы:

а) Представим интеграл как сумму интегралов и воспользуемся табличными интегралами

Проверка:

т. е. производная равна подынтегральной функции.

б) Внесем первый множитель в скобки и представим интеграл в виде разности двух интегралов

в) Сделаем следующие преобразования

г) Вычтем и прибавим в числителе единицу

д) Заменим корни отрицательными степенями и представим интеграл в виде разности двух интегралов

е) Считаем, что в числителе множителем стоит тригонометрическая единица

1 = sin2 х + cos2 х, тогда

1.2. Найти интегралы:

а) Представим 9 как 32 и воспользуемся табличным интегралом (14), где а =3

б) Приведем подынтегральную функцию к виду и воспользуемся табличным интегралом (8)

в) Воспользуемся табличным интегралом (10)

г) Объединим множители в подынтегральной функции и воспользуемся табличным интегралом (4)

д) Преобразуем следующим образом

Метод интегрирования, основанный на применении свойств 4 и 5, называется методом разложения. 1.3. Используя метод разложения, найти интегралы:

Решение. Нахождение каждого из интегралов начинается с преобразования подынтегральной функции. В задачах а) и б) воспользуемся соответствующими формулами сокращенного умножения и последующим почленным делением числителя на знаменатель:

(см. табличные интегралы (2) и (3)). Обращаем внимание на то, что в конце решения записываем одну общую постоянную С, не выписывая постоянных от интегрирования отдельных слагаемых. В дальнейшем мы будем опускать при записи постоянные от интегрирования отдельных слагаемых до тех пор, пока выражение содержит хотя бы один неопределенный интеграл. В окончательном ответе тогда будет одна постоянная.

в) Преобразуя подынтегральную функцию, получим

(см. табличный интеграл (6)).

г) Выделяя из дроби целую часть, получим

(см. табличный интеграл (9)).

Литература

1. Черненко В. Д. Высшая математика в примерах и задачах: В 3 т.: Т. 1..-- СПб.: Политехника, 2003.-- 703 е.: ил.

2. Кремер Н.Ш. Высшая математика для экономистов-М.: ЮНИТИ, 2004-471с.

3. Шипачев В.С. Высшая математика. Учеб. для вузов.-4-е изд. Стер.-М.: Высшая школа. 1998.-479с.: ил.

4. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: В 3т.: Т. 2..-810с.

Размещено на Allbest.ru

Подобные документы

    Первообразная функции и неопределенный интеграл. Геометрический смысл производной. Совокупность всех первообразных для функции f(x) на промежутке Х. Понятие подынтегрального выражения. Проверка правильности результата интегрирования, примеры задач.

    презентация , добавлен 18.09.2013

    Определение неопределенного интеграла, первообразной от непрерывной функции, дифференциала от неопределенного интеграла. Вывод формулы замены переменного в неопределенный интеграл и интегрирования по частям. Определение дробнорациональной функции.

    шпаргалка , добавлен 21.08.2009

    Первообразная и неопределенный интеграл. Таблица интегралов. Некоторые свойства неопределенного интеграла. Интегрирование методом замены переменой или способом подстановки. Интегрирование по частям. Рациональные дроби. Простейшие рациональные дроби.

    реферат , добавлен 16.01.2006

    Понятие первообразной функции, теорема о первообразных. Неопределенный интеграл, его свойства и таблица. Понятие определенного интеграла, его геометрический смысл и основные свойства. Производная определенного интеграла и формула Ньютона-Лейбница.

    курсовая работа , добавлен 21.10.2011

    Дифференциальное исчисление функции одной переменной: определение предела, асимптот функций и глобальных экстремумов функций. Нахождение промежутков выпуклости и точек перегиба функции. Примеры вычисления неопределенного интеграла, площади плоской фигуры.

    задача , добавлен 02.10.2009

    Методы интегрирования в древности. Понятие первообразной функции. Основная теорема интегрального исчисления. Свойства неопределенных и определенных интегралов и методы их вычисления, произвольные постоянные. Таблица интегралов элементарных функций.

    презентация , добавлен 11.09.2011

    Условия существования определенного интеграла. Приложение интегрального исчисления. Интегральное исчисление в геометрии. Механические приложение определенного интеграла. Интегральное исчисление в биологии. Интегральное исчисление в экономике.

    курсовая работа , добавлен 21.01.2008

    Разложение функции в ряд Фурье, поиск коэффициентов. Изменение порядка интегрирования, его предел. Расчет площади фигуры, ограниченной графиками функций, с помощью двойного интеграла, объема тела, ограниченного поверхностями, с помощью тройного интеграла.

    контрольная работа , добавлен 28.03.2014

    Способы вычисления интегралов. Формулы и проверка неопределенного интеграла. Площадь криволинейной трапеции. Неопределенный, определенный и сложный интеграл. Основные применения интегралов. Геометрический смысл определенного и неопределенного интегралов.

    презентация , добавлен 15.01.2014

    Особенности неопределенного интеграла. Методы интегрирования (Замена переменной. Интегрирование по частям). Интегрирование рациональных выражений. Интегрирование рациональных дробей. Метод Остроградского. Интегрирование тригонометрических функций.