Комбинационный принцип. Спектр атома водорода. Спектральные закономерности

Линейчатый спектр атома представляет собой совокупность большого числа линий, разбросанных по всему спектру без всякого видимого порядка. Однако внимательное изучение спектров показало, что расположение линий следует определенным закономерностям. Яснее всего, конечно, эти закономерности выступают на сравнительно простых спектрах, характерных для простых атомов. Впервые такая закономерность была установлена для спектра водорода, изображенного на рис. 326.

Рис. 326. Линейчатый спектр водорода (серия Бальмера, длины волн в нанометрах). и - обозначения первых четырех линий серии, лежащих в видимой области спектра

В 1885 г. швейцарский физик и математик Иоганн Якоб Бальмер (1825-1898) установил, что частоты отдельных линий водорода выражаются простой формулой:

,

где означает частоту света, т. е. число волн, испускаемых в единицу времени, - называемая постоянной Ридберга величина, равная и - целое число. Если задавать для значения 3, 4, 5 и т. д., то получаются значения, очень хорошо совпадающие с частотами последовательных линий спектра водорода. Совокупность этих линий составляет серию Бальмера.

В дальнейшем было обнаружено, что в спектре водорода еще имеются многочисленные спектральные линии, которые также составляют серии, подобные серии Бальмера.

Частоты этих линий могут быть представлены формулами

, где (серия Лаймана),

, где (серия Пашена),

причем имеет то же самое числовое значение, что и в формуле Бальмера. Таким образом, все водородные серии можно объединить одной формулой:

где и - целые числа, .

Спектры других атомов значительно сложнее, и распределение их линий в серии не так просто. Оказалось, однако, что спектральные линии всех атомов могут быть распределены в серии. Крайне важно, что сериальные закономерности для всех атомов могут быть представлены в форме, подобной формуле Бальмера, причем постоянная имеет почти одно и то же значение для всех атомов.

Существование спектральных закономерностей, общих для всех атомов, указывало несомненно на глубокую связь этих закономерностей с основными чертами атомной структуры. Действительно, датский физик, создатель квантовой теории атома Нильс Бор (1885-1962) в 1913 г. нашел ключ к пониманию этих закономерностей, установив в то же время основы современной теории атома (см. гл. XXII).

Излучение невзаимодействующих друг с другом атомов состоит из отдельных спектральных линий. В соответствии с этим спектр испускания атомов называется линейчатым.

На рис. 12.1 показан спектр испускания паров ртути. Такой же характер имеют и спектры других атомов.

Изучение атомных спектров послужило ключом к позианию строения атомов. Прежде всего было замечено, что линии в спектрах атомов расположены не беспорядочно, а объединяются в группы или, как их называют, серии линий. Отчетливее всего это обнаруживается в спектре простейшего атома - водорода. На рис. 12.2 представлена часть спектра атомарного водорода в видимой и близкой ультрафиолетовой области. Символами обозначены видимые линии, указывает границу серии (см. ниже). Очевидно, что линии располагаются в определенном порядке. Расстояние между линиями закономерно убывает по мере перехода от более длинных волн к более коротким.

Швейцарский физик Бальмер (1885) обнаружил, что длины волн этой серии линий водорода могут быть точно представлены формулой

где - константа, - целое число, принимающее значения 3, 4, 5 и т. д.

Если перейти в (12,1) от длины волны к частоте, получится формула

где - константа, называемая в честь шведского спектроскописта постоянной Ридберга. Она равна

Формула (12.2) называется формулой Бальмера, а соответствующая серия спектральных линий водородного атома - серией Бальмера. Дальнейшие исследования показали, что в спектре водорода имеется еще несколько серий. В ультрафиолетовой части спектра находится серия Лаймана. Остальные серии лежат в инфракрасной области. Линии этих серий могут быть представлены в виде формул, аналогичных (12.2):

Частоты всех линий спектра водородного атома можно представить одной формулой:

где имеет значение 1 для серии Лаймана, 2- для серии Бальмера и т. д. При заданном число принимает все целочисленные значения, начиная с Выражение (12.4) называют обобщенной формулой Бальмера.

При возрастании частота линии в каждой серии стремится к предельному значению которое называется границей серии (на рис. 12.2 символом отмечена граница серии Бальмера).

В нормальных условиях атомы не излучают (как и в стационарном состоянии). Чтобы вызвать излучение атомов, надо увеличить их внутренню энергию. Спектры изолированных атомов носят ограниченный характер.

Причем линии в спектре атома, в том числе и атоме водорода, расположены не хаотично, а объединяются в группы, которые называются спектральными сериями. Фор-ла, опред знач-е длины волны в кажд из серии: ν=1/λ=R(1/n 2 – 1/m 2). n=n+1, n+2,.. λ=1,2,3,… (сериальная ф-ла) R=1,092*10м -1 пост-я Ридберга. В общем случае записывают 1/λ=Rz 2 (1/n 2 – 1/m 2).

Энергия фотона преш-го с уровня n на m: hv =E m -E n =(hz 2 me 4 /(4πε 0) 2 2ħ 2)(1/n 2 -1/m 2).

Серия Лаймона – ν=1/λ=R(1/1 – 1/n 2), n=2,3,4…,в УФ области.

Серия Бальмера – ν=1/λ=R(1/2 2 – 1/n 2), n=3,4,5… видимая область и близкая УФ. Серия Пашена – ν=1/λ=R(1/3 2 – 1/n 2), n=4,5,6…, инфракрасная область. Излучается в видимой и близкой УФ волнах. Все остльные серии лежат в ИК области света.

Постулаты Бора. Модель атома Бора.

Первую попытку сформулировать законы, которым подчиняется движение электронов в атоме предпринял Бор на основе представлений о том, что атом является устойчивой системой и что энергия, которую может излучать или поглощать атом, квантовая. 1) Для того, чтобы исключить 1-й недостаток модели Резенфорда, он предположил, что из всего многообразия орбит, которые вытекают из уравнения (1), в природе реализуются не все, а лишь некоторые устойчивые орбиты, которые он назвал стационарными, и, находясь на которых атом не излучает и не поглощает энергии. Стационарным орбитам отвечают устойчивые состояния атома, причем энергии, к-му обладает атом в этих состояниях, образуют дискретный ряд значений: E1, E2, E3…,En. Двигаясь по стационарной орбите электрон приобретает момент импульса, кратный приведенной постоянной кванта

h (в); m (индекс е) * v (инд. е) r = n h (в) (1), h (в) = n/2π, n=1,2,3… Т.е. при переходе с орбиты на орбиту меняется порциями, кратными h (в).

(1) – боровское правило контования или правило отбора стационарных орбит.

2) Для устранения 2-го противоречия модели Резенфорда, Бор предположил, что излучение или поглощение энергии атомом происходит при переходе атома из одного стационарного состояния в другое. При каждом таком переходе излучается квант энергии, равный разности энергий тел стационарных состояний, между которыми происходит квантовый скачок электрона, hν=En – Em (2) (n>m, излучение, n

2 постулата: 1) Атом обладает устойчивыми или стационарными состояниями, причем энергия атомов в этом состоянии образует дискретный ряд значений (постулат стационарных значений) E1, E2, E3…En. 2) Всякому излучению или поглощению энергии должен соответствовать переход атома из одного стационарного состояния в другое. При каждом таком переходе испускается монохроматическое излучение, частота которого определяется ν=(En – Em)/h(в) (правило частот Бора).

Модель атома Бора.

1913 году. Бор принял новые постулаты квантовой механики, согласно которым на субатомном уровне энергия испускается исключительно порциями, которые получили название «кванты». Бор развил квантовую теорию еще на шаг и применил ее к состоянию электронов на атомных орбитах. Говоря научным языком, он предположил, что угловой момент электрона квантуется. Далее он показал, что в этом случае электрон не может находиться на произвольном удалении от атомного ядра, а может быть лишь на ряде фиксированных орбит, получивших название «разрешенные орбиты». Электроны, находящиеся на таких орбитах, не могут излучать электромагнитные волны произвольной интенсивности и частоты, иначе им, скорее всего, пришлось бы перейти на более низкую, неразрешенную орбиту. Поэтому они и удерживаются на своей более высокой орбите, подобно самолету в аэропорту отправления, когда аэропорт назначения закрыт по причине нелетной погоды. Однако электроны могут переходить на другую разрешенную орбиту. Как и большинство явлений в мире квантовой механики, этот процесс не так просто представить наглядно. Электрон просто исчезает с одной орбиты и материализуется на другой, не пересекая пространства между ними. Этот эффект назвали «квантовым прыжком», или «квантовым скачком». В картине атома по Бору, таким образом, электроны переходят вниз и вверх по орбитам дискретными скачками - с одной разрешенной орбиты на другую, подобно тому, как мы поднимаемся и спускаемся по ступеням лестницы. Каждый скачок обязательно сопровождается испусканием или поглощением кванта энергии электромагнитного излучения, который мы называем фотоном.

Опыт показывает, что спектры невзаимодействующих атомов, как это имеет место для разреженных газов, состоят из отдельных линий, сгруппированных в серии. На рис. 5.3 показаны линии серии спектра атома водорода, расположенные в видимой области. Длина волны, соответствующая линиям в этой серии, называемой серией Бальмера , выражается формулой

где, n = 3, 4, 5, ...; - постоянная Ридберга.

Линия, соответствующая n = 3, является наиболее яркой и называется головной , а значению n = ∞ соответствует линия, называемая границей серии .

В других областях спектра (ультрафиолетовой, инфракрасной) также были обнаружены серии линий. Все они могут быть представлены обобщенной формулой Бальмера - Ридберга

где m - целое число, постоянное для каждой серии.

При m = 1; n = 2,3,4, ... - серия Лаймана . Наблюдается в ультрафиолетовой области.
При m = 2; n = 3,4,5, ... - серия Бальмера - в видимой области.
При m = 3; n = 4,5,6, ... - серия Пашена - в инфракрасной (ИК) области.
При m = 4; n = 5,6,7, ... - серия Брэкета - тоже в ИК области и т. д.

Дискретность в структуре атомных спектров указывает на наличие дискретности в строении самих атомов. Для энергии квантов излучения атомов водорода можно записать следующую формулу

При записи этого выражения использованы формулы (5.1), (3.21) и (5.8). Формула (5.9) получена на основе анализа экспериментальных данных.

Постулаты Бора

Первая квантовая теория строения атома быда предложена в 1913 г. датским физиком Нильсом Бором. Она была основана на ядерной модели атома, согласно которой атом состоит из положительно заряженного ядра, вокруг которого вращаются отрицательно заряженные электроны.
Теория Бора основана на двух постулатах.

I постулат Бора - постулат стационарных состояний. В атоме существуют стационарные (не изменяющиеся со временем) состояния, в которых он не излучает энергию. Этим стационарным состояниям соответствуют стационарные орбиты, по которым движутся электроны. Движение электронов по стационарным орбитам не сопровождается излучением энергии.

II постулат Бора получил название "правило частот". При переходе электрона с одной стационарной орбиты на другую излучается (или поглощается) квант энергии, равный разности энергий стационарных состояний

где h - постоянная Планка; v - частота излучения (или поглощения) энергии;
hv - энергия кванта излучения (или поглощения);
E n и E m - энергии стационарных состояний атома до и после излучения (поглощения), соотвественно. При E m < E n происходит излучение кванта энергии, а при E m > E n - поглощение.



По теории Бора значение энергии электрона в атоме водорода равно

где m e - масса электрона, e - заряд электрона, ε e - электрическая постоянная
,

h - постоянная Планка,
n - целое число, n = 1,2,3,...

Таким образом, энергия электрона в атоме представляет собой дискретную величину, которая может изменяться только скачком.

Набор возможных дискретных частот квантовых переходов определяет линейчатый спектр атома

Вычисленные по этой формуле частоты спектральных линий для водородного атома оказались в прекрасном согласии с экспериментальными данными. Но теория не обясняла спектры других атомов (даже следующего за водородом гелия). Поэтому теория Бора была только переходным этапом на пути построения теории атомных явлений. Она указывала на неприменимость классической физики к внутриатомным явлениям и главенствующее значение квантовых законов в микромире.

Закономерности в атомных спектрах

Материальные тела являются источниками электромагнитного излучения, имеющего разную природу. Во второй половине XIX в. были проведены многочисленные исследования спектров излучения молекул и атомов. Оказалось, что спектры излучения молекул состоят из широко размытых полос без резких границ. Такие спектры назвали полосатыми. Спектр излучения атомов состоит из отдельных спектральных линий или групп близко расположенных линий. Поэтому спектры атомов назвали линейчатыми. Для каждого элемента существует вполне определенный излучаемый им линейчатый спектр, вид которого не зависит от способа возбуждения атома.

Самым простым и наиболее изученным является спектр атома водорода. Анализ эмпирического материала показал, что отдельные линии в спектре могут быть объединены в группы линий, которые называются сериями. В 1885 г. И.Бальмер установил, что частоты линий в видимой части спектра водорода можно представить в виде простой формулы:

( 3, 4, 5, …), (7.42.1)

где 3,29∙10 15 с -1 – постоянная Ридберга. Спектральные линии, отличающиеся различными значениями , образуют серию Бальмера. В дальнейшем в спектре атома водорода было открыто еще несколько серий:

Серия Лаймана (лежит в ультрафиолетовой части спектра):

( 2, 3, 4, …); (7.42.2)

Серия Пашена (лежит в инфракрсной части спектра):

( 4, 5, 6, …); (7.42.3)

Серия Брекета (лежит в инфракрсной части спектра):

( 5, 6, 7, …); (7.42.4)

Серия Пфунда (лежит в инфракрсной части спектра):

( 6, 7, 8, …); (7.42.5)

Серия Хэмфри (лежит в инфракрсной части спектра):

( 7, 8, 9, …). (7.42.6)

Частоты всех линий в спектре атома водорода можно описать одной формулой – обобщенной формулой Бальмера:

, (7.42.7)

где 1, 2, 3, 4 и т.д. – определяет серию (например, для серии Бальмера 2), а определяет линию в серии, принимая целочисленные значения, начиная с 1.

Из формул (7.42.1) – (7.42.7) видно, что каждая из частот в спектре атома водорода является разностью двух величин вида зависящих от целого числа. Выражения вида где 1, 2, 3, 4 и т.д. называются спектральными термами. Согласно комбинационному принципу Ритца все излучаемые частоты могут быть представлены как комбинации двух спектральных термов:

(7.42.8)

причем всегда >

Исследование спектров более сложных атомов показало, что частоты линий их излучения можно также представить в виде разности двух спектральных термов, но их формулы сложнее, чем для атома водорода.

Установленные экспериментально закономерности излучения атомов находятся в противоречии с классической электродинамикой, согласно которой электромагнитные волны излучает ускоренно движущийся заряд. Следовательно, в атомы входят электрические заряды, движущиеся с ускорением в ограниченном объеме атома. Излучая, заряд теряет энергию в виде электромагнитного излучения. Это означает, что стационарное существование атомов невозможно. Тем не менее, установленные закономерности свидетельствовали, что спектральное излучение атомов является результатом пока неизвестных процессов внутри атома.