Что называется сдвигом фаз. Сдвиг по фазе

Начальные фазы электромагнитных синусоидальных колебаний первичного и вторичного напряжения, с частотой одинаковой величины, могут существенно различаться на некоторый угол сдвига фаз (угол φ). Переменные величины могут неоднократно в течение определенного периода некоторого времени изменяются с определенной частотой. Если электрические процессы имеют неизменный характер, а сдвиг фаз равен нулю, это свидетельствует о синхронизме источников величин переменного напряжения, например, трансформаторов. Сдвиг фазы служит определяющим фактором коэффициента мощности в электрических сетях переменного тока.

Угол сдвига фаз находится при необходимости, тогда, если один из сигналов является опорным, а второй сигнал с фазой в самом начале совпадает с углом сдвига фаз.

Измерение угла сдвига фаз производится прибором, в котором присутствует нормированная погрешность.

Фазометр может производить измерение угла сдвига в границах от 0 о до 360 о в некоторых случаях от -180 о С до +180 о С, а диапазон измеряемых частот сигналов может колебаться от 20Гц до 20 ГГц. Измерение гарантируется в том случае если напряжение входного сигнала равно от 1 мВ до 100 В, если же напряжение входного сигнала превышает эти границы точность измерения не гарантируется.

Методы измерения угла сдвига фаз

Существует несколько способов измерения угла сдвига фаз, это:

  1. Использование двухлучевого или двухканального осциллографа.
  2. Компенсационный метод основан на сравнении измеряемого фазового сдвига, с фазовым сдвигом, который предоставляется образцовым фазовращателем.
  3. Суммарно-разностный метод, он заключается в использовании гармонических или сформированных прямоугольных сигналов.
  4. Преобразование сдвига фаз во временном интервале.

Как измеряется угол сдвига фаз осциллографом

Осциллографический способ можно отнести к самому простейшему с погрешностью в районе 5 о. Определение сдвига осуществляется при помощи осциллограмм. Существует четыре осциллографических метода:

  1. Применение линейной развертки.
  2. Метод эллипса.
  3. Метод круговой развертки.
  4. Использование яркостных меток.

Определение угла сдвига фаз зависит от характера нагрузки. При определении фазного сдвига в первичной и вторичной цепях трансформатора, углы могут считаться равными и практически не отличаются друг от друга.

Угол сдвига фаз напряжений, измеряемый по эталонному источнику частоты и при использовании измерительного органа лает возможность обеспечить точность всех последующих измерений. Фазные напряжения и угол сдвига фаз зависят от нагрузки, так симметричная нагрузка обуславливает равенство фазного напряжения, токов нагрузки и угол фазного сдвига, также будет равна нагрузка по потребляемой мощности на всех фазах электроустановки.

Угол сдвига фаз между током и напряжением в несимметричных трехфазных цепях не равны друг другу. Для того чтобы вычислить угол сдвига фаз (угол φ) в цепь включают последовательно присоединенные сопротивления (резисторы), индуктивности и конденсаторы (емкости).

Из результатов опыта можно определить, что сдвиг фаз между напряжением и током служит при определении нагрузки и не может зависеть от переменных величины тока и напряжения в электрической сети.

Как вывод, можно сказать, что:

  1. Составляющие элементы комплексного сопротивления, такие как резистор и емкость, а также проводимость не будут взаимообратными величинами.
  2. Отсутствие одного из элементов делает резистивные и реактивные значения, которые входят в состав комплексного сопротивления и проводимости и делают их величинами взаимообратными.
  3. Реактивные величины в комплексном сопротивлении и проводимости используются с противоположным знаком.

Угол сдвига фаз между напряжением и током всегда выражается, как главный аргументированный фактор комплексного сопротивления φ.

Из серии "Физические основы звука" , посвященной объяснению основ физических процессов, с которыми приходится сталкиваться музыкантам и просто любителям музыки. Материал дается языком, доступным для людей далеких от техники и сегодня мы рассмотрим фазу сигнала и фазовый сдвиг.

Мы вплотную подошли к тому, чтобы рассказать, что же такое фаза.

Посмотрим на формулу, описывающую синусоидальное колебание:

S(t)=Amp*sin(Ф) ,

где S(t) - это значение сигнала (уровень звукового давления, величина семпла,

уровень напряжения на входе колонок) в момент времени t;

Amp - амплитуда сигнала (максимально возможное значение для этого колебания);

sin - синусоидальная функция.

Ф - фаза сигнала равна:

Ф=2*PI*f+ф/360*2*PI

PI - число «пи»;

f - частота (высота тона) сигнала в Герцах;

ф - сдвиг фазы сигнала в градусах.

Фаза в течении периода колебания меняется от 0 до 360 градусов . Потом опять - от 0 до 360, и так далее. Поскольку фаза однозначно связана с уровнем колебания в точке периода, соответствующего фазе, то:

Фазу, с некоторым допущением, можно рассматривать, как мгновенный уровень сигнала в определенной точке времени внутри периода.

При значении фазы 0 градусов - уровень сигнала (синусоиды) равен 0.

При значении фазы 90 градусов - 1 Па.

При значении фазы 180 градусов - снова 1 Па.

При значении фазы 360 градусов (все равно, что 0 градусов следующего периода) - снова 0 Па.

С течением времени уровень сигнала изменяется по определенному закону, поэтому грубо можно сказать и так:

ФАЗА СИГНАЛА - это уровень сигнала в текущий момент времени.

ФАЗА СИГНАЛА - это уровень звукового давления в текущий момент времени в нашей точке пространства.

Теперь о том, как такое виртуальное понятие, как ФАЗА СИГНАЛА влияет на реальную жизнь.

Допустим две колонки порождают в точке нахождения слушателя переменные звуковые давления, которые складываются друг с другом. Эти давления то нарастают, то убывают. А если мы предположим, что давления от обоих колонок изменяются одинаково, но всегда в противоположную сторону. То есть,

давление от первой колонки 0,5 Па (паскалей), а от второй минус 0,5 Па,

от первой минус 1 Па, от второй 1 Па.

Такое явление называется противофазой . Суммарная громкость звука в точке слушателя - всегда равна нулю.

Что же такое противофаза по формуле синусоидального колебания?

S(t)=Amp*sin(2*PI*f+ф/360*2*PI)

Это когда в одной колонке сигнал изменяется по формуле

S(t)=Amp*sin(2*PI*f+0) , фазовый сдвиг ф=0 градусов.

А в другой колонке сигнал изменяется по формуле (сигналы по форме одинаковые, но с задержкой по времени)

S(t)=Amp*sin(2*PI*f+180/360*2*PI) , фазовый сдвиг ф=180 градусов.

360 градусов - длина периода сигнала, 180 градусов - половина периода сигнала.

Иными словами колебание во второй колонке задержано на половину периода (на 180 градусов).

Если задержка равна нулю , то уровень сигнала наоборот увеличивается, т.к. давление от первой колонки - 1 Па, от второй 1 Па, в сумме 1+1=2 Па. В этом случае говорят, что сигналы в фазе (фазовый сдвиг равен 0 градусов).

При значениях фазового сдвига от 0 до 180 градусов - суммарный уровень громкости становится меньше , пока не станет равным нулю при значении фазового сдвига 180 градусов .

Если фазовый сдвиг становится больше 180 градусов , то суммарный уровень громкости опять возрастает .

ПРОДОЛЖЕНИЕ СЛЕДУЕТ...

Проделаем следующий опыт. Возьмем описанный в § 153 осциллограф с двумя петлями и включим его в цепь так (рис. 305,а), чтобы петля 1 была включена в цепь последовательно с конденсатором, а петля 2 параллельно этому конденсатору. Очевидно, что кривая, получаемая от петли 1, изображает форму тока, проходящего через конденсатор, а от петли 2 дает форму напряжения между обкладками конденсатора (точками и ), потому что в этой петле осциллографа ток в каждый момент времени пропорционален напряжению. Опыт показывает, что в этом случае кривые тока и напряжения смещены по фазе, причем ток опережает по фазе напряжение на четверть периода (на ). Если бы мы заменили конденсатор катушкой с большой индуктивностью (рис. 305,б), то оказалось бы, что ток отстает по фазе от напряжения на четверть периода (на ). Наконец, таким же образом можно было бы показать, что в случае активного сопротивления напряжение и ток совпадают по фазе (рис. 305,в).

Рис. 305. Опыт по обнаружению сдвига фаз между током и напряжением: слева – схема опыта, справа – результаты

В общем случае, когда участок цепи содержит не только активное, но и реактивное (емкостное, индуктивное или и то и другое) сопротивление, напряжение между концами этого участка сдвинуто по фазе относительно тока, причем сдвиг фаз лежит в пределах от до и определяется соотношением между активным и реактивным сопротивлениями данного участка цепи.

В чем заключается физическая причина наблюдаемого сдвига фаз между током и напряжением?

Если в цепь не входят конденсаторы и катушки, т. е. емкостным и индуктивным сопротивлениями цепи можно пренебречь по сравнению с активным, то ток следует за напряжением, проходя одновременно с ним через максимумы и нулевые значения, как это показано на рис. 305,в.

Если цепь имеет заметную индуктивность , то при прохождении по ней переменного тока в цепи возникает э. д. с. самоиндукции. Эта э. д. с. по правилу Ленца направлена так, что она стремится препятствовать тем изменениям магнитного поля (а следовательно, и изменениям тока, создающего это поле), которые вызывают э. д. с. индукции. При нарастании тока э. д. с. самоиндукции препятствует этому нарастанию, и потому ток позже достигает максимума, чем в отсутствие самоиндукции. При убывании тока э. д. с. самоиндукции стремится поддерживать ток и нулевые значения тока будут достигнуты в более поздний момент, чем в отсутствие самоиндукции. Таким образом, при наличии индуктивности ток отстает по фазе от тока в отсутствие индуктивности, а следовательно, отстает по фазе от своего напряжения.

Если активным сопротивлением цепи можно пренебречь по сравнению с ее индуктивным сопротивлением , то отставание тока от напряжения по времени равно (сдвиг фаз равен ), т. е. максимум совпадает с , как это показано на рис. 305,б. Действительно, в этом случае напряжение на активном сопротивлении , ибо , и, следовательно, все внешнее напряжение уравновешивается э. д. с. индукции, которая противоположна ему по направлению: . Таким образом, максимум совпадает с максимумом , т. е. наступает в тот момент, когда изменяется быстрее всего, а это бывает, когда . Наоборот, в момент, когда проходит через максимальное значение, изменение тока наименьшее , т. е. в этот момент .

Если активное сопротивление цепи не настолько мало, чтобы им можно было пренебречь, то часть внешнего напряжения падает на сопротивлении , а остальная часть уравновешивается э. д. с. самоиндукции: . В этом случае максимум отстоит от максимума по времени меньше, чем на (сдвиг фаз меньше ), как это изображено на рис. 306. Расчет показывает, что в этом случае отставание по фазе может быть вычислено по формуле

. (162.1)

При имеем и , как это объяснено выше.

Рис. 306. Сдвиг фаз между током и напряжением в цепи, содержащей активное и индуктивное сопротивления

Если цепь состоит из конденсатора емкости , а активным сопротивлением можно пренебречь, то обкладки конденсатора, присоединенные к источнику тока с напряжением , заряжаются и между ними возникает напряжение . Напряжение на конденсаторе следует за напряжением источника тока практически мгновенно, т. е. достигает максимума одновременно с и обращается в нуль, когда .

Зависимость между током и напряжением в этом случае показана на рис. 307,а. На рис. 307,б условно изображен процесс перезарядки конденсатора, связанный с появлением переменного тока в цепи.

Рис. 307. а) Сдвиг фаз между напряжением и током в цепи с емкостным сопротивлением в отсутствие активного сопротивления. б) Процесс перезарядки конденсатора в цепи переменного тока

Когда конденсатор заряжен до максимума (т. е. , а следовательно, и имеют максимальное значение), ток и вся энергия цепи есть электрическая энергия заряженного конденсатора (точка на рис. 307,а). При уменьшении напряжения конденсатор начинает разряжаться и в цепи появляется ток; он направлен от обкладки 1 к обкладке 2, т. е. навстречу напряжению . Поэтому на рис. 307,а он изображен как отрицательный (точки лежат ниже оси времени). К моменту времени конденсатор полностью разряжен ( и ), а ток достигает максимального значения (точка ); электрическая энергия равна нулю, и вся энергия сводится к энергии магнитного поля, создаваемого током. Далее, напряжение меняет знак, и ток начинает ослабевать, сохраняя прежнее направление. Когда (и ) достигнет максимума, вся энергия вновь станет электрической, и ток (точка ). В дальнейшем (и ) начинает убывать, конденсатор разряжается, ток нарастает, имея теперь направление от обкладки 2 к обкладке 1, т. е. положительное; ток доходит до максимума в момент, когда (точка ) и т. д. Из рис. 307,а видно, что ток раньше, чем напряжение, достигает максимума и проходит через нуль, т. е. ток опережает напряжение по фазе., как это объяснено выше.

Рис. 308. Сдвиг фаз между током и напряжением в цепи, содержащей активное и емкостное сопротивления

От величины активного, индуктивного и ёмкостного сопротивления.
tg w = (X-C)/R. Где w - угол сдвига фаз, X - индуктивное сопротивление, C- ёмкостное сопротивление, R- активное сопротивление.

Угол сдвига фаз между напряжением и током в электрической цепи определяется аргументом ее комплексного сопротивления  . Поэтому при анализе цепи часто бывает достаточно определить характер изменения этого угла при вариации некоторого параметра.

Пусть R= const, а X =var. Тогда конец вектора Z будет скользить по прямой R= const (рис. 2). При X = 0 сопротивление Z вещественное, т.е. чисто резистивное и сдвиг фаз между током и напряжением  равен нулю.

Аналитический расчет токи в цепи по методу узловых напряжений

Метод узловы́х потенциалов - метод расчета электрических цепей путём записи системы линейных алгебраических уравнений , в которой неизвестными являются потенциалы в узлах цепи . В результате применения метода определяются потенциалы во всех узлах цепи, а также, при необходимости, токи во всех ветвях.

Данный метод вытекает из первого закона Кирхгофа. В качестве неизвестных принимаются потенциалы узлов, по найденным значениям которых с помощью закона Ома для участка цепи с источником ЭДС затем находят токи в ветвях. Поскольку потенциал – величина относительная, потенциал одного из узлов (любого) принимается равным нулю. Таким образом, число неизвестных потенциалов, а следовательно, и число уравнений равно

Перед началом расчёта выбирается один из узлов (базовый узел), потенциал которого считается равным 0. Затем узлы нумеруются, после чего составляется система уравнений .

Уравнения составляются для каждого узла, кроме базового. Слева от знака равенства записывается:

потенциал рассматриваемого узла, умноженный на сумму проводимостей ветвей, примыкающих к нему;

минус потенциалы узлов, примыкающих к данному, умноженные на проводимости ветвей, соединяющих их с данным узлом.

Справа от знака равенства записывается:

сумма всех источников токов , примыкающих к данному узлу;

сумма произведений всех ЭДС, примыкающих к данному узлу, на проводимость соответствующего звена.

Если источник направлен в сторону рассматриваемого узла, то он записывается со знаком «+», в противном случае - со знаком «−».

Проверка баланса мощностей

Баланс мощностей является следствием закона сохранения энергии - суммарная мощность вырабатываемая (генерируемая) источниками электрической энергии равна сумме мощностей потребляемой в цепи.



Баланс мощностей используют для проверки правильности расчета электрических цепей.

Здесь мы рассмотрим баланс для цепей постоянного тока.

Например. У нас есть электрическая цепь.

Для проверки правильности решения составляем баланс мощностей.

Источники E1 и E2 вырабатывают электрическую энергию, т.к. направление ЭДС и тока в ветвях с источниками совпадают (если ЭДС и ток в ветвях направлены в противоположную сторону, то источник ЭДС потребляет энергию и его записывают со знаком минус ). Баланс мощностей для заданной цепи запишется так:

Сдвиг фаз является величиной безразмерной и может измеряться в радианах (градусах) или долях периода. При неизменном, в частности нулевом сдвиге фаз говорят о синхронности двух процессов, или о выполненной синхронизации двух источников переменных величин.

Фазой (фазовым углом) называется угол \varphi = 2 \pi \frac {t} {T} , где T - период , t - доля периода смещения по фазе при наложении синусоид друг на друга. Так что если кривые (переменные величины - синусоиды: колебания , токи) сдвинуты по отношению друг к другу на четверть периода, то мы говорим, что они смещены по фазе на \frac {\pi} {2} ~ (90^\circ) , если на восьмую часть (долю) периода - то, значит, на \frac {\pi} {4} и т. д.
Когда идёт речь о нескольких синусоидах, сдвинутых по фазе, техники говорят о векторах тока или напряжения . Длина вектора соответствует амплитуде синусоиды, а угол между векторами - сдвигу фаз. Многие технические устройства дают нам не простой синусоидальный ток , а такой, кривая которого является суммой нескольких синусоид (соответственно, сдвинутых по фазе).

Наведённая во вторичных обмотках трансформатора ЭДС для любой формы тока совпадает по фазе и форме с ЭДС в первичной обмотке. При противофазном включении обмоток трансформатор изменяет полярность мгновенного напряжения на противоположную, в случае синусоидального напряжения сдвигает фазу на 180°. Применяется в генераторе Мейснера и др.

Напишите отзыв о статье "Сдвиг фаз"

Примечания

См. также

Отрывок, характеризующий Сдвиг фаз

Всё время обеда Анна Михайловна говорила о слухах войны, о Николушке; спросила два раза, когда получено было последнее письмо от него, хотя знала это и прежде, и заметила, что очень легко, может быть, и нынче получится письмо. Всякий раз как при этих намеках графиня начинала беспокоиться и тревожно взглядывать то на графа, то на Анну Михайловну, Анна Михайловна самым незаметным образом сводила разговор на незначительные предметы. Наташа, из всего семейства более всех одаренная способностью чувствовать оттенки интонаций, взглядов и выражений лиц, с начала обеда насторожила уши и знала, что что нибудь есть между ее отцом и Анной Михайловной и что нибудь касающееся брата, и что Анна Михайловна приготавливает. Несмотря на всю свою смелость (Наташа знала, как чувствительна была ее мать ко всему, что касалось известий о Николушке), она не решилась за обедом сделать вопроса и от беспокойства за обедом ничего не ела и вертелась на стуле, не слушая замечаний своей гувернантки. После обеда она стремглав бросилась догонять Анну Михайловну и в диванной с разбега бросилась ей на шею.
– Тетенька, голубушка, скажите, что такое?
– Ничего, мой друг.
– Нет, душенька, голубчик, милая, персик, я не отстaнy, я знаю, что вы знаете.
Анна Михайловна покачала головой.
– Voua etes une fine mouche, mon enfant, [Ты вострушка, дитя мое.] – сказала она.
– От Николеньки письмо? Наверно! – вскрикнула Наташа, прочтя утвердительный ответ в лице Анны Михайловны.
– Но ради Бога, будь осторожнее: ты знаешь, как это может поразить твою maman.
– Буду, буду, но расскажите. Не расскажете? Ну, так я сейчас пойду скажу.
Анна Михайловна в коротких словах рассказала Наташе содержание письма с условием не говорить никому.
Честное, благородное слово, – крестясь, говорила Наташа, – никому не скажу, – и тотчас же побежала к Соне.
– Николенька…ранен…письмо… – проговорила она торжественно и радостно.
– Nicolas! – только выговорила Соня, мгновенно бледнея.
Наташа, увидав впечатление, произведенное на Соню известием о ране брата, в первый раз почувствовала всю горестную сторону этого известия.
Она бросилась к Соне, обняла ее и заплакала. – Немножко ранен, но произведен в офицеры; он теперь здоров, он сам пишет, – говорила она сквозь слезы.
– Вот видно, что все вы, женщины, – плаксы, – сказал Петя, решительными большими шагами прохаживаясь по комнате. – Я так очень рад и, право, очень рад, что брат так отличился. Все вы нюни! ничего не понимаете. – Наташа улыбнулась сквозь слезы.