Nahco3 t разложение. Гидрокарбонат натрия: формула, состав, применение. Взаимодействие питьевой соды с кислотами

Карбонат натрия Na 2 CO 3 . кальцинированная сода. Белый, при нагревании плавится и разлагается. Чувствителен к влаге и углекислому газу в воздухе. Образует декагидрат (кристаллическая сода). Хорошо растворим в воде, гидролизуется по аниону, создает в растворе сильнощелочную среду. Разлагается сильными кислотами. Восстанавливается коксом. Вступает в реакции ионного обмена.

Качественная реакция на ион СО 3 2‑ – образование белого осадка карбоната бария, разлагаемого сильными кислотами (НCl, HNO 3) с выделением углекислого газа.

Применяется для синтеза соединений натрия, устранения «постоянной» жесткости пресной воды, в производстве стекла, мыла и других моющих средств, целлюлозы, минеральных красок, эмалей. В природе содержится в грунтовых рассолах, рапе соляных озер.

Уравнения важнейших реакций:

Получение в промышленности (способ Сольве, 1861–1863):

а) через насыщенный раствор NaCl пропускают смесь NH 3 и СO 2:

NaCl + NH 3 + Н 2 O + СO 2 = NH 4 Cl + NaHCO 3 ↓

(в этих условиях питьевая сода малорастворима);

б) осадок NaHCO 3 подвергают обезвоживанию (кальцинированию):

2NaHCO 3 = Na 2 CO 3 + Н 2 O + СO 2

Карбонат калия К 2 СO 3 . Оксосоль. Техническое название поташ. Белый, гигроскопичный. Плавится без разложения, при дальнейшем нагревании разлагается. Чувствителен к влаге и углекислому газу в воздухе. Очень хорошо растворим в воде, гидролизуется по аниону, создает в растворе сильнощелочную среду. Разлагается сильными кислотами. Вступает в реакции ионного обмена.

Применяется в производстве оптического стекла, жидкого мыла, минеральных красок, многих соединений калия, как дегидратирующий агент.

Уравнения важнейших реакций:

Получение в промышленности :

а) нагревание сульфата калия [природное сырье – минералы каинит KMg(SO 4)Cl ЗН 2 O и шёнит K 2 Mg(SO 4) 2 6Н 2 O] с гашёной известью Са(ОН) 2 в атмосфере СО (давление = 15 атм):

K 2 SO 4 + Са(ОН) 2 + 2СО = 2K(HCOO) + CaSO 4

б) прокаливание формиата калия К(НСОО) на воздухе:

2K(HCOO) + O 2 = К 2 СO 3 + Н 2 O + СO 2

Гидрокарбонат натрия NaHCO 3 . Кислая оксосоль. Техническое название питьевая сода. Белый рыхлый порошок. При слабом нагревании разлагается без плавления, во влажном состоянии начинает разлагаться при комнатной температуре. Умеренно растворим в воде, гидролизуется по аниону в небольшой степени. Разлагается кислотами, нейтрализуется щелочами. Вступает в реакции ионного обмена.

Качественная реакция на ион НСОд – образование белого осадка карбоната бария при действии баритовой воды и разложение осадка сильными кислотами (НCl, HNO 3) с выделением углекислого газа. Применяется в пищевой промышленности, как лекарственное средство.

Уравнения важнейших реакций:

Получение : насыщение раствора Na 2 CO 3 (см.) углекислым газом.

Карбонат кальция СаСO 3 . Оксосоль. Распространенное природное вещество, главная составная часть осадочной горной породы – известняка (его разновидности – мел, мрамор, известковый туф, мергель), чистый СаСO 3 в природе – это минерал кальцит. Белый, при прокаливании разлагается, плавится под избыточным давлением СO 2 . Нерастворим в воде (= 0,0007 г/100 г Н 2 O).

Реагирует с кислотами, солями аммония в горячем растворе, коксом. Переводится в раствор действием избытка углекислого газа с образованием гидрокарбоната Са(НСO 3) 2 (существует только в растворе), который определяет «временную» жесткость пресной воды (вместе с солями магния и железа). Устранение жесткости (умягчение воды) проводится кипячением или нейтрализацией гашёной известью.

Применяется для производства СаО, СO 2 , цемента, стекла и минеральных удобрений [в том числе известковой селитры Ca(NO 3) 2 4Н 2 O], как наполнитель бумаги и резины, строительный камень (щебень) и компонент бетона и шифера, в виде осажденного порошка – для изготовления школьных мелков, зубных порошков и паст, смесей для побелки помещений.

Уравнения важнейших реакций:

Иногда совершенно обычное и с детства знакомое вещество оказывается чуть ли не панацеей от многих болезней и недугов. Просто не каждый это знает. Одним из таких соединений является обычная хранящаяся у каждого в шкафчике на кухне. Оказывается, она служит не только средством для улучшения качества выпечки, но и лекарством, обезжиривателем, отбеливателем и даже обеззараживателем. Ознакомимся с данным веществом подробнее.

Химическая основа соды

Правильное название данного соединения с точки зрения химии - гидрокарбонат натрия. Есть еще ряд названий, которые используются в быту и химии для обозначения этого вещества:

  • бикарбонат натрия;
  • пищевая сода;
  • питьевая сода;
  • двууглекислый натрий;
  • добавка Е 500.

Однако любое из них отражает единственно верную суть - это сода.

Эмпирическая формула

Формула пищевой соды - NaHCO 3 . То есть по своей природе данное вещество - это относящаяся к разряду кислых. Так как соединение образовано сильной щелочью и слабой кислотой, то при гидролизе (в водном растворе) будет щелочная реакция среды. Раствор в воде пищевой соды имеет рН 8,1. образуется легко при взаимодействии и угольной кислоты, процесс выражается следующим уравнением реакции:

NaOH + H 2 CO 3 = NaHCO 3 + H 2 O

Эмпирическая формула пищевой соды показывает количественный и качественный состав соединения, на основе которого можно сделать вывод о пространственном строении молекулы: положительно заряженный катион Na + во внешней сфере и отрицательно заряженный гидрокарбонат-ион НСО 3 - во внутренней.

Атом углерода координирует вокруг себя три атома кислорода, с одним из которых образует двойную связь. Также один из атомов кислорода соединяется с катионом водорода, образуя гидроксогруппу. Третий атом кислорода в виде иона ассоциируется возле катиона натрия. Таким образом, компенсируются валентности каждого элемента, входящего в состав данного соединения.

Физические свойства

Какое бы название мы этому веществу не дали - сода пищевая, питьевая, карбонат, гидрокарбонат натрия - формула его все равно едина и дает представление о Так, внешний вид соды - мелкодисперсный порошок. Окраска его белая. Хорошо растворим в воде и практически нерастворим в органических растворителях (спирте, например). На открытом воздухе не разлагается. Распадаться начинает при повышенной влажности окружающей среды. Продуктами полного распада при повышении температуры являются карбонат натрия (средняя соль), углекислый газ и вода:

NaHCO 3 = Na 2 CO 3 + CO 2 + H 2 O

Бикарбонат натрия не имеет запаха, на вкус слегка соленый, с привкусом щелочи. При растворении в воде дает щелочные растворы разной концентрации.

Краткие сведения об истории открытия и использовании соды

Первые сведения о бикарбонате натрия появились еще в древней цивилизации Египта. Именно в тех краях были распространены несколько озер, содержащих природные источники соды. При пересыхании эти озера отдавали соду в виде белого порошка, а люди ее собирали. Использовалась она египтянами в качестве одного из компонентов при изготовлении средств мумификации. Формула пищевой соды тогда еще известна не была.

Конкретно как химическое соединение вещество было изучено много позже, примерно в XVIII веке. Именно тогда ученых заинтересовал этот порошок, образованный естественным природным путем. Тщательный анализ состава позволил определить качественный и количественный компонент соединения. Так появилась современная формула пищевой соды.

Большой вклад в развитие представлений о веществе и проявляемых им свойствах был внесен итальянским врачом Туллио Симончини. Ему принадлежат эксперименты, по результатам которых сода - возможный вариант лечения раковых опухолей. Однако на сегодняшний день точных данных, это подтверждающих, нет.

Области применения

Благодаря своим способностям хорошо растворяться в воде, а также вступать во взаимодействие с кислотами, образуя в результате реакции углекислый газ, сода находит применение в нескольких областях промышленности и быта. А именно, таких как:

  • фармацевтика и медицина;
  • химическая отрасль;
  • легкая промышленность;
  • пищевая промышленность.

Рассмотрим более подробно каждое из направлений.

Применение в медицине

Главное, на чем основано применение вещества в медицине, - это его способность восстанавливать водно-щелочной баланс в ЖКТ. Соединение NaHCO 3 относится к антацидным средствам лечения. Формула пищевой соды свидетельствует о наличии гидроксид-ионов, выполняющих функцию нейтрализации повышенной кислотности в организме. Поэтому чаще всего раствор в воде двууглекислого натрия используют для устранения симптомов изжоги. Однако это не единственная область заболеваний, где вещество может применяться.

  1. При лечении простудных заболеваний пищевая сода избавляет от кашля, так как способствует разжижению и выведению мокроты из легких и бронхов. Также с ней можно делать ингаляции при ОРВИ.
  2. Как бактерицидное и противовоспалительное средство также используется сода пищевая. Формула ее отражает наличие катионов водорода Н + , которые и обеспечивают данный эффект.
  3. Для лечения сердечно-сосудистых заболеваний (аритмии и гипертонии) применяется слабый раствор в воде двууглекислого натрия.
  4. При диареях и рвоте использование соды совместно с солью позволяет восполнить водный запас организма и восстановить необходимый баланс.
  5. Вещество способно уничтожать грибковые заболевания, поэтому его применяют для устранения грибка стопы, делают спринцевание раствором при молочнице, промывают глаза при воспалениях коньюнктивы.
  6. Благодаря отбеливающим свойствам соду используют для чистки зубов.
  7. Слабый раствор позволяет избавиться от зуда при кожных высыпаниях (или укусах насекомых).
  8. Лечение ожогов начальной степени.
  9. Освобождение организма от солей тяжелых металлов.
  10. Происходит и усталости, а также избавление от лишнего веса при использовании теплой ванны с NaHCO 3 и эфирными маслами.

О пользе и вреде пищевой соды при использовании в медицинских целях, в том числе в косметологии, можно сказать много. Главное правило применения данного средства, как и любого другого лекарства, - не пренебрегать рекомендациями по дозировке. Неправильное использование может нанести вред здоровью.

Сода пищевая: формула и использование в химической промышленности

Основная область, в которой применяется натрий двууглекислый, - это бытовая химия. Сода может выступать в роли мягкого абразивного средства для чистки поверхностей и их обезжиривания. Также она применяется как сырье при производстве красителей, пенопластов и фтористых соединений. Кроме того, на основе NaHCO 3 изготавливают средства пожаротушения.

Нельзя представить, как бы развивалась без гидрокарбоната натрия бытовая химия. Пищевая сода - важный и нужный компонент для многих химических синтезов.

Легкая промышленность

Для обработки поверхностей при изготовлении резины, резиновых подошв и изделий используется сода пищевая. Формула, применение, вред и польза гидрокарбоната натрия в легкой промышленности - отдельная тема для изучения. Если говорить кратко, то роль NaHCO 3 сводится к использованию при производстве текстильных изделий и искусственной кожи. При этом вред проявляется в появлении ожогов, если контакт с веществом происходил слишком долго и руки не были защищены. Польза в том, что сода - прекрасная добавка и обезжириватель при дублении кожи и ее производстве, а также хороший отбеливатель ткани в текстильном деле.

Пищевая промышленность

Формула пищевой соды в химии отражает суть процессов в реакциях с кислотами. Например, с уксусной кислотой взаимодействие будет описываться следующим уравнением:

NaHCO 3 + CH 3 COOH = CH 3 COONa + H 2 CO 3

При этом образующаяся угольная кислота, являясь очень нестабильной, сразу распадается на СО 2 и Н 2 О. Именно на этой особенности протекания реакций и основано использование бикарбоната натрия в пищевой промышленности. Ведь для изготовления выпечки необходимо загасить соду уксусом, добавить полученную смесь в тесто для его пористости и лучшей структурности. Реакция гашения соды относится к типу и сопровождается зрелищным эффектом вспенивания и шипения.

Использование соды делает выпечку очень мягкой, ароматной и красивой, поэтому пищевая промышленность - одна из основных отраслей, где многотоннажно применяется это вещество. Также бикарбонат натрия используется в хлебопечении, при изготовлении разных кондитерских изделий. Помимо этого, его же используют для образования пузырьков газа в шипучих напитках (газированная вода, шампанское и игристые вина, минеральная вода).

Пищевая сода: свойства и лечение. Вред и противопоказания к применению

На самом деле применение соды достаточно широко в самых различных отраслях промышленности и быта, в чем мы уже могли убедиться ранее. Ее необычные целебные, антибактериальные, отбеливающие, успокаивающие и заживляющие свойства используются при лечении разных недугов. Однако, как и у любого другого лекарства, у соды также есть и противоположная сторона. Она может вредной и очень опасной для здоровья. Ее показания к применению очевидны, но не менее важны и противопоказания, которые мы рассмотрим подробнее.

Вред и противопоказания к применению

Можно привести несколько основных причин, по которым сода может стать врагом, а не другом и помощником.


Поэтому очевидно, что не только положительную роль для человека играет сода пищевая. Польза и вред, лечение - это неоднозначные аспекты. Прежде чем повсеместно использовать гидрокарбонат натрия для избавления от разных недугов, следует проконсультироваться с врачом. Если же применяется сода в быту (чистка поверхностей, отбеливание тканей и так далее), то не стоит пренебрегать самыми простыми средствами защиты для бесконтактного использования вещества.

Из горки сахара и соды вырастает большая чёрная змея

Сложность:

Опасность:

Сделайте этот эксперимент дома

Реагенты

Безопасность

    Перед началом опыта наденьте защитные очки.

    Проводите эксперимент на подносе.

    При проведении опыта держите поблизости ёмкость с водой.

    Поместите горелку на пробковую подставку. Не прикасайтесь к горелке сразу после завершения опыта − подождите, пока она остынет.

Общие правила безопасности

  • Не допускайте попадания химических реагентов в глаза или рот.
  • Не допускайте к месту проведения экспериментов людей без защитных очков, а также маленьких детей и животных.
  • Храните экспериментальный набор в месте, недоступном для детей младше 12 лет.
  • Помойте или очистите всё оборудование и оснастку после использования.
  • Убедитесь, что все контейнеры с реагентами плотно закрыты и хранятся по правилам после использования.
  • Убедитесь, что все одноразовые контейнеры правильно утилизированы.
  • Используйте только оборудование и реактивы, поставляемые в наборе или рекомендуемые текущими инструкциями.
  • Если вы использовали контейнер для еды или посуду для проведения экспериментов, немедленно выбросьте их. Они больше не пригодны для хранения пищи.

Информация о первой помощи

  • В случае попадания реагентов в глаза тщательно промойте глаза водой, при необходимости держа глаз открытым. Немедленно обратитесь к врачу.
  • В случае проглатывания промойте рот водой, выпейте немного чистой воды. Не вызывайте рвоту. Немедленно обратитесь к врачу.
  • В случае вдыхания реагентов выведите пострадавшего на свежий воздух.
  • В случае контакта с кожей или ожогов промывайте поврежденную зону большим количеством воды в течение 10 минут или дольше.
  • В случае сомнений немедленно обратитесь к врачу. Возьмите с собой химический реагент и контейнер от него.
  • В случае травм всегда обращайтесь к врачу.
  • Неправильное использование химических реагентов может вызвать травму и нанести вред здоровью. Проводите только указанные в инструкции эксперименты.
  • Данный набор опытов предназначен только для детей 12 лет и старше.
  • Способности детей существенно различаются даже внутри возрастной группы. Поэтому родители, проводящие эксперименты вместе с детьми, должны по своему усмотрению решить, какие опыты подходят для их детей и будут безопасны для них.
  • Родители должны обсудить правила безопасности с ребенком или детьми перед началом проведения экспериментов. Особое внимание следует уделить безопасному обращению с кислотами, щелочами и горючими жидкостями.
  • Перед началом экспериментов очистите место проведения опытов от предметов, которые могут вам помешать. Следует избегать хранения пищевых продуктов рядом с местом проведения опытов. Место проведения опытов должно хорошо вентилироваться и находиться близко к водопроводному крану или другому источнику воды. Для проведения экспериментов потребуется устойчивый стол.
  • Вещества в одноразовой упаковке должны быть использованы полностью или утилизированы после проведения одного эксперимента, т.е. после открытия упаковки.

Часто задаваемые вопросы

Сухое горючее (уротропин) не высыпается из баночки. Что делать?

Уротропин при хранении может слипаться. Чтобы всё-таки высыпать его из баночки, возьмите из набора черную палочку и тщательно разбейте комки.

Не получается сформовать уротропин. Что делать?

Если уротропин не прессуется в формочке, пересыпьте его в пластиковый стаканчик и добавьте 4 капли воды. Хорошо перемешайте смоченный порошок и переложите обратно в формочку.

Еще можно добавить 3 капли мыльного раствора из набора «Олово», который вы получили в комплекте с набором «Химия монстров».

Эту змею можно есть или трогать?

При работе с химическими веществами нужно следовать незыблемому правилу: никогда ничего не пробовать на вкус из того, что у вас получилось в результате химических реакций. Даже если в теории это безопасный продукт. Жизнь чаще более богатая и непредсказуемая, чем любая теория. Может получиться не тот продукт, который вы ожидали, химическая посуда может содержать следы предыдущих реакций, химические реагенты могут быть недостаточно чистыми. Опыты с пробованием реагентов на вкус могут закончиться печально.

Именно поэтому в профессиональных лабораториях запрещено есть что-либо. Даже принесенную с собой еду. Безопасность превыше всего!

Можно ли потрогать «змею»? Аккуратно, она может быть горячей! Уголь, из которого в основном состоит «змея», может тлеть. Убедитесь, что змея уже остыла, и можете потрогать её. Змея пачкается − не забудьте после опыта вымыть руки!

Другие эксперименты

Пошаговая инструкция

    Возьмите из стартового набора горелку для сухого горючего и положите на неё фольгу. Внимание! Используйте пробковую подставку, чтобы не испортить рабочую поверхность.

    Расположите пластиковое кольцо в центре фольги.

    Высыпьте в кольцо всё сухое горючее (2,5 г).

    Вдавите пресс-форму в кольцо, чтобы в горке сухого горючего получилась лунка. Аккуратно уберите пресс-форму.

    Снимите пластиковое кольцо, слегка постукивая по нему.

    Засыпьте две мерные ложки сахара без горки (2 г) в баночку с 0,5 г соды (NaHCO3) и закройте её крышкой.

    Встряхивайте баночку в течение 10 секунд, чтобы перемешать сахар и соду.

    Высыпьте смесь соды и сахара в углубление в сухом горючем.

    Подожгите сухое горючее – совсем скоро из этой горки начнёт расти чёрная «змея»!

Ожидаемый результат

Сухое горючее начнёт гореть. Смесь сахара с содой в огне начнёт превращаться с большую чёрную «змею». Если вы всё сделаете правильно, то у вас вырастет змея длинной 15-35 см.

Утилизация

Утилизируйте твёрдые отходы эксперимента вместе с бытовым мусором.

Что произошло

Почему образуется такая «змея»?

При нагревании часть сахара (С 12 H 22 O 11) сгорает, превращаясь в водяной пар и углекислый газ. Для горения нужен приток кислорода. Так как приток кислорода во внутренние области горки сахара затруднён, там происходит другой процесс: от большой температуры сахар разлагается на уголь и водяной пар. Так и получается наша «змея».

Зачем в сахар добавляют соду (NaHCO 3)?

При нагревании сода разлагается с выделением углекислого газа (CO 2):

Соду добавляют в тесто, чтобы при выпекании оно становилось пышным. И именно поэтому мы добавляем соду к сахару в этом эксперименте − чтобы выделяющийся углекислый газ и водяной пар делал «змею» воздушной, лёгкой. Поэтому змея может расти вверх.

Из чего состоит эта «змея»?

В основном «змея» состоит из угля, получившегося при нагревании сахара и не сгоревшего в огне. Именно уголь даёт «змее» такой чёрный цвет. Так же в её составе присутствует Na 2 CO 3 , получившийся в результате разложения соды при нагревании.

Какие химические реакции происходят в процессе образования «змеи»?

  • Сгорание (соединение с кислородом) сахара:

С 12 H 22 O 11 + O 2 = CO 2 + H 2 O

  • Термическое разложение сахара на уголь и водяной пар:

С 12 H 22 O 11 → C + H 2 O

  • Термическое разложение пищевой соды на водяной пар и углекислый газ:

2NaHCO 3 → Na 2 CO 3 + H 2 O + CO 2

Что такое сахар и откуда он берётся?

Молекула сахара состоит из атомов углерода (С), кислорода (О) и водорода (Н). Вот так она выглядит:

Честно говоря, тут трудно что-то рассмотреть. Скачайте приложение MEL Chemistry на свой смартфон или планшет, и вы сможете посмотреть на молекулу сахара с разных сторон и лучше понять её строение. В приложении молекула сахара называется Sucrose.

Как вы можете заметить, эта молекула состоит из двух частей, связанных между собой атомом кислорода (О). Наверняка вы слышали название этих двух частей: глюкоза и фруктоза. Их также называют простыми сахарами. Обычный сахар называют составным, чтобы подчеркнуть, что молекула сахара состоит из нескольких (двух) простых сахаров.

Вот так выглядят эти простые сахара:

фруктоза

Сахара являются важными строительными кирпичиками растений. Во время фотосинтеза растения вырабатывают из воды и углекислого газа простые сахара. Последние, в свою очередь, могут соединяться как в короткие молекулы (например, сахар), так и в длинные цепочки. Крахмал, целлюлоза − это такие длинные цепочки (полисахара), которые составлены из простых сахаров. Растения используют их в качестве строительного материала и для запаса питательных веществ.

Чем длиннее молекула сахара, тем труднее нашей пищеварительной системе её переварить. Поэтому мы так любим сладкое, содержащее простые короткие сахара. Но наш организм не был предназначен, чтобы питаться в основном простыми сахарами, в природе они встречаются редко. Поэтому будьте осторожны с потреблением сладкого!

Почему сода (NaHCO 3) разлагается при нагреве, а поваренная соль (NaCl) − нет?

Это непростой вопрос. Для начала нужно разобраться, что такое энергия связи.

Представьте себе вагон поезда с очень неровным полом. В этом вагоне есть свои горы, свои ложбины, впадины. Этакая небольшая Швейцария в вагоне. По полу катается деревянный шарик. Если его отпустить, он покатится вниз по склону, пока не докатится до дна одной из впадин. Мы говорим, что шарик «хочет» занять положение с минимальной потенциальной энергией, которое находится как раз внизу впадины. Аналогично, атомы пытаются выстроиться в такую конфигурацию, в которой энергия связей минимальна.

Тут кроется несколько тонких моментов, на которые хотелось бы обратить ваше внимание. Во-первых, запомните, что такое объяснение, что говорится «на пальцах», не очень точное, но для понимания общей картины нам подойдёт.

Итак, куда скатится шарик? В самую нижнюю точку вагона? Как бы не так! Он скатится в ближайшую впадину. И, скорее всего, там и останется лежать. Может быть, по другую сторону горы есть другая впадина, поглубже. К сожалению, наш шарик этого «не знает». Но если вагон будет сильно трясти, то с большой вероятностью шарик выскочит из своей локальной впадины и «найдёт» более глубокую лунку. Там мы трясём ведро с гравием, чтобы его утрамбовать. Выбитый из положения локального минимума гравий, скорее всего, найдёт более оптимальную конфигурацию, и наш шарик скорее доберётся до более глубокой впадины.

Как вы уже, возможно, догадались, в микромире аналогом тряски выступает температура. Когда мы нагреваем вещество, мы заставляем всю систему «трястись», как мы раскачивали вагон с шариком. Атомы отрываются и обратно присоединяются самыми разными способами, и с большой вероятностью они смогут найти более оптимальную конфигурацию, чем была вначале. Если она, конечно, существует.

Мы видим такой процесс в очень большом количестве химических реакций. Молекула устойчива, так как находится в локальной впадине. Если мы её немножко пошевелим, станет хуже, и она вернётся назад аналогично шарику, который, если немного подвинуть из локальной впадины вбок, то он скатится назад. Но стоит нагреть это вещество посильнее, чтобы наш «вагон» как следует потрясло, и молекула найдёт более удачную конфигурацию. Именно поэтому динамит не взорвётся, пока вы по нему не ударите. Именно поэтому бумага не загорится, пока вы её не нагреете. Им хорошо в своих локальных ямах и нужно заметное усилие, чтобы их заставить оттуда выйти, даже если недалеко есть яма поглубже.

Теперь мы можем вернуться к нашему изначальному вопросу: почему сода (NaHCO 3) разлагается при нагреве? Потому что она находится в состоянии локального минимума энергий связи. В этакой впадине. Рядом есть впадина поглубже. Это мы так говорим о состоянии, когда 2NaHCO 3 распались на 2Na 2 CO 3 + H 2 O + CO 2 . Но молекула об этом не «знает» и пока мы ее не нагреем, не сможет выбраться из своей локальной ямы, чтобы оглядеться вокруг и найти яму поглубже. А вот когда мы нагреем соду градусов до 100-200, этот процесс пойдёт быстро. Сода разлагается.

Почему же поваренная соль NaCl не распадается подобным образом? Потому что она уже находится в самой глубокой яме. Если её разорвать на Na и Cl или любую другую их комбинацию, энергия связей только вырастет.

Если вы дочитали досюда, вы молодцы! Это не самый простой текст и не самые простые мысли. Надеюсь, вам удалось что-то почерпнуть. Я хочу предостеречь вас в этом месте! Как я говорил вначале, это красивое объяснение, но не совсем верное. Бывают ситуации, когда шарик в вагоне будет стремиться занять не самую глубокую яму. Так и наше вещество не всегда будет стремиться в состояние с минимальной энергией связей. Но об этом как-нибудь в другой раз.

Какие вещества образуются при выпаривании раствора NaHCO3 ? и получил лучший ответ

Ответ от Marat[гуру]
В водном РАСТВОРЕ соли NaHCO3 имеют место три равновесных процесса: NaHCO3 <=> NaOH + CO2 и 2NaHCO3 <=> Na2CO3 + CO2 +H2O и Na2CO3 +H2O <=> NaOH + NaHCO3. При нагревании раствора все равновесия смещаются вправо. Таким образом, в процессе выпаривания раствора NaHCO3 будут образовываться (в различном соотношении) три вещества: NaCO3 (карбонат натрия) , NaOH (гидроксид натрия) и CO2 (углекислый газ) . Незначительным количеством угольной кислоты (H2CO3) в растворе можно пренебречь. Очевидно, что при продолжительном выпаривании получится просто концентрированный раствор щёлочи (углекислый газ испарится).

Ответ от 2 ответа [гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: Какие вещества образуются при выпаривании раствора NaHCO3 ?

Ответ от Михаил Б [гуру]
При температуре 60 °C гидрокарбонат натрия распадается на карбонат натрия, углекислый газ и воду (процесс разложения наиболее эффективен при 200 °C):2NaHCO3 → Na2CO3 + H2O + CO2 При дальнейшем нагревании до 1000 °C (например при т


Ответ от V.V. *** [гуру]
Первый ответ неверен, абсолютно точно.Не разлагаются карбонаты щёлочных металлов до оксидов! (шк. программа!) Гидрокарбонаты, всё верно, разлагаются до карбонатов, воды и угл. газа.


Ответ от 2 ответа [гуру]