Магнитная индукция в центре соленоида. Про магнитное поле, соленоиды и электромагниты

Рис. 6.23. Магнитные силовые линии поля: 1 - соленоида; 2 - полосового магнита

Магнитное поле соленоида напоминает поле полосового магнита (рис. 6.23-2).

Если витки намотаны вплотную, то соленоид - это система круговых токов, имеющих одну ось.

Если считать соленоид достаточно длинным, то магнитное поле внутри соленоида однородно и направлено параллельно оси. Вне соленоида вдали от краев магнитное поле также должно иметь направление параллельное оси и на большом расстоянии от соленоида должно быть очень слабым. Поле убывает по закону

Подсчитаем поле внутри соленоида. Возьмем элемент соленоида длиной dh , находящийся на расстоянии h от точки наблюдения. Если катушка имеет n витков на единицу длины, то в выделенном элементе содержится ndh витков. Согласно формуле (6.11), этот элемент создает магнитное поле

Интегрируя по всей длине соленоида, получаем

Таким образом, поле в бесконечно длинном соленоиде дается выражением

На практике соленоиды бесконечно длинными не бывают. Для иллюстрации рассмотрим некоторые примеры.

Пример 1. Найти магнитное поле в середине соленоида конечной длины l (рис. 6.24). Сравнить с полем бесконечно длинного соленоида. При каких условиях разница составляет менее 0,5 %?

Рис. 6.24. Магнитное поле катушки конечной длины
В центре соленоида магнитное поле практически однородно и значительно превышает по модулю поле вне катушки

Решение. Магнитное поле в средней точке оси соленоида конечной длины l дается тем же интегралом (6.19), но с другими пределами интегрирования

Если длина соленоида много больше его диаметра (l >> 2R ), мы возвращаемся к формуле для поля в бесконечно длинном соленоиде (6.20). Относительная разница этих двух значений равна

По условию эта разница мала: , то есть мало отношение диаметра соленоида к его длине: 2R /l << 1. Поэтому можно воспользоваться формулой разложения квадратного корня

Подставляя численное значение d , находим, что разница будет менее половины процента при выполнении соотношения

Иными словами, соленоид может рассматриваться как бесконечно длинный, если его длина в двадцать или более раз превышает радиус.

Пример 2. Найти магнитное поле В е в крайней торцевой точке оси соленоида конечной длины l . Сравнить с результатом предыдущего примера.

Решение. Магнитное поле в торцевой точке оси соленоида конечной длины l дается тем же интегралом (6.19), но теперь пределы интегрирования будут выглядеть иначе

Отношение полей в средней и крайней точках оси соленоида равно

Это отношение всегда меньше единицы (то есть поле на торце меньше поля в середине соленоида). При l >> R имеем

Этот результат легко понять. Представим себе бесконечный соленоид, который мысленно рассекаем пополам в точке наблюдения. Можно считать, что поле в этой точке создается двумя одинаковыми «полубесконечными» соленоидами, расположенными по разные стороны от нее. Ясно, что при удалении одного из них точка наблюдения становится торцом оставшегося «полубесконечного» соленоида, а магнитная индукция в ней уменьшиться именно в два раза.

Это - так называемый краевой эффект. Пример демонстрирует, что недостаточно выполнения соотношения l >> R , чтобы пользоваться формулами для бесконечно длинного соленоида; надо еще, чтобы точка наблюдения находилась далеко от его концов.

На рис. 6.25 представлен опыт по исследованию распределения силовых линий магнитного поля вокруг соленоида. Поле соленоида, ось которого лежит в плоскости пластинки, сосредоточено в основном внутри соленоида. Силовые линии внутри имеют вид параллельных прямых вдоль оси катушки, а поле снаружи практически отсутствует.

Рис. 6.25. Визуализация силовых линий магнитного поля

Соленоид представляет собой провод, навитый равномерно в виде спирали на общий цилиндрический каркас (см. рис. 12.14). Произведение (IN) числа витков однослойной намотки соленоида на силу тока, обтекающего витки, называется числом ампер-витков.

Соленоиды предназначены для создания в небольшом объеме пространства достаточно сильного магнитного поля. При плотной намотке витков поле соленоида эквивалентно полю системы круговых параллельных токов с общей осью. Если диаметр d витков соленоида во много раз меньше его длины (d  l), то соленоид считается бесконечно длинным (или тонким). Магнитное поле такого соленоида практически целиком сосредоточено внутри, причем вектор магнитной индукции внутри направлен вдоль оси соленоида и связан с направлением тока правилом правого винта.

Рис. 12.15

Рассмотрим воображаемый замкнутый контур внутри соленоида (рис. 12.15). Этот контур не охватывает токов, поэтому по теореме о циркуляции

Разобьем этот круговой интеграл на четыре интеграла (по сторонам контура) и учтем, что на отрезках (1-2) и (3-4) вектор перпендикулярен
, поэтому скалярное произведение (,
) здесь обращается в ноль. Индукция поля во всех точках отрезка (2-3) одинакова и равна 23 , а на отрезке (4-1)  41 , причем l 23 = l 41 = l.

Таким образом, обойдя контур по часовой стрелке, получим

Так как l 0, то В 23 = В 41 = В внутри.

Поскольку контур внутри соленоида был выбран произвольно, то полученный результат справедлив для любых внутренних точек соленоида, то есть поле внутри соленоида однородное:

внутри = const.

Чтобы найти величину индукции этого поля, рассмотрим контур L 2 (а –b –c –d –а ), охватывающий N витков с током (рис. 12.15). Согласно теореме о циркуляции (и на основании предыдущих рассуждений), получим соотношение

Поле снаружи бесконечно длинного соленоида очень слабое ( снаружи =0), им можно пренебречь, следовательно,

(12.35)

где n=N/l - число витков, приходящихся на единицу

длины соленоида.

Таким образом, индукция магнитного поля внутри бесконечно длинного соленоида одинакова по величине и направлению и пропорциональна числу ампер-витков, приходящихся на единицу длины соленоида.

Симметрично расположенные витки вносят одинаковый вклад в магнитную индукцию на оси соленоида, поэтому у конца полубесконечного соленоида на его оси магнитная индукция равна половине того значения, которое дает формула (12.35), т.е.

(12.36)

Практически, если (l  d ), то формула (12.35) справедлива для точек в средней части соленоида, а формула (12.36) – для точек на оси вблизи его концов.

Применяя закон Био-Савара-Лапласа, можно найти магнитную индукцию поля соленоида конечной длины (рис. 12.16) в произвольной точке А на его оси:

(12.37)

где
- углы между осью соленоида и радиус- вектором, проведенным из рассматриваемой точки к концам соленоида.

Поле такого соленоида неоднородное, величина индукции зависит от положения точки А и длины соленоида. Для бесконечно длинного соленоида
,
, и формула (12.37) переходит в формулу (12.35).

Соленоид - это проволочная катушка цилиндрической формы. Его можно представить себе как множество сложенных в стопку круговых витков с током. Силовые линии магнитного поля, создаваемого электри­ческим током в соленоиде, показаны на рис. 6.6. Как видно из этого рисунка, внутри соленоида силовые линии почти прямые. Чем длин­нее соленоид, т.е. чем больше его длина по сравнению с его радиусом, тем меньше кривизна силовых линий внутри соленоида. В таком случае вектор В магнитной индукции поля внутри соленоида будет направлен параллельно его оси. Причем так, что его направление будет связано с направлением тока в соленоиде правилом правого винта. Направим ось х вдоль оси соленоида. При этом проекция вектора магнитной индукции на ось х будет равна его модулю, а все другие его проекции будут равны нулю:

B x =B, B y =B z =0.

Подставим эти проекции вектора В в уравнение (6.12). Получим

Из этого равенства вытекает, что внутри соленоида вектор магнитной индукции не только сохраняет свое направление, но его модуль здесь всюду одинаков. Таким образом, приходим к выводу, что внутри длин­ного соленоида магнитное поле является однородным.

Рис. 6.6. Магнитное поле соленоида

Найдем модуль вектора магнитной индукции поля внутри соленоида при помощи теоремы (6.8) о циркуляции этого вектора. В качестве кон­тура С, по которому будем вычислять циркуляцию вектора магнитной индукции, выберем ломанную линию, изображенную пунктиром на рис. 6.6. Отрезок этой линии длиной l находится внутри соленоида и совпа­дает с одной из силовых линий магнитного поля. Две перпендикулярные этому отрезку прямые начинаются на его концах и уходят в бесконеч­ность. Во всех точках этих прямых вектор магнитной индукции или перпендикулярен им (внутри соленоида), или равен нулю (вне соленои­да). Поэтому скалярное произведение Вdl в этих точках равно нулю. Таким образом, циркуляция магнитной индукции по рассматриваемому контуру С будет равна интегралу по отрезку силовой линии длиной l. С учетом того, что модуль вектора магнитной индукции есть постоянная величина будем иметь

Пусть число витков соленоида, охватываемых контуром С, равно N. При этом сумма токов, охватываемых контуром, будет равна NI, где I - сила тока в одном витке соленоида. Теорема (6.8) приводит к равенству

Вl = μ o NI ,

из которого найдем магнитную индукцию поля в соленоиде:

В = μ o nI

n-число витков, приходящихся на единицу длины соленоида.

Магнитное поле прямого тока

Рассмотрим магнитное поле, создаваемое электрическим током, теку­щим по тонкому бесконечно длинному проводу. Такая система обладает цилиндрической симметрией. Вследствие этого магнитное поле должно обладать следующими свойствами:

1) на любой прямой, параллельной проводу с током, вектор магнитной индукции должен быть всюду оди­наков;

2) при повороте всего магнитного поля целиком вокруг провода оно не изменяется. В таком случае силовыми линиями магнитного поля должны быть окружности, центры которых лежат на оси провода с то­ком (рис, 6.7), а вектор В на любой из этих окружностей всюду имеет один и тот же модуль.

При помощи теоремы (6.8) о циркуляции вектора магнитной индук­ции найдем модуль этого вектора. С этой целью вычислим циркуляцию магнитной индукции по одной из силовых линий С, радиус которой ра­вен а. Так как вектор В является касательным к силовой линии, он коллинеарен векторному элементу dl этой линии. Поэтому

где В - модуль вектора магнитной индукции, который, как было сказано, всюду на окружности С один и тот же. Вынесем В за знак интеграла. После интегрирования будем иметь

= В 2p a

Рис. 6.7. Силовые линии магнитного поля прямого токи

Так как контур С охватывает всего один провод с током I, теорема (6.8) приводит к равенству

2p a В = μ o I

Отсюда найдем, что на расстоянии а от бесконечного прямого провода с током I индукция создаваемого им магнитного поля будет

В = μ o I/ (2p a) (6.15)

Как видно из рис. 6.7, направление вектора В и направление тока I связаны правилом правого винта. В том, что это действительно так, нетрудно убедиться при помощи закона Био - Савара - Лапласа.

Взаимодействие токов

Рассмотрим два тонких параллельных друг другу прямых провода с токами I 1 и I 2 (рис. 6.8.). Если расстояние R между проводами много меньше их длины, то магнитную индукцию поля, создаваемого первым проводом на этом расстоянии, можно найти по формуле (6.15):

В = μ o I 1 / (2p R)

Направление вектора В 1 связано с направлением тока I 1 правилом пра­вого винта. Этот вектор изображен на рис. 6.8.

Рис. 6.8. Взаимодействие токов

Магнитное поле, создаваемое первым током, будет действовать на вто­рой провод с силой Ампера F 21 , которая определяется формулой (5.8):

(6.17)

F 21 = I 2 [l 2 B 1 ]

где l 2 - вектор, длина которого равна длина l рассматриваемого участка второго провода. Этот вектор направлен вдоль провода по направлению тока. Модуль силы (6.17) будет

F 21 = I 2 l B 1 . (6.18)

Подставив выражение (6.16) в формулу (6.18), получим следующее выра­жение для силы, с которой первый провод действует на участок второго провода длины l:

F 21 = μ o I 1 I 2 l / (2p R)

Направление силы F 21 найдем по формуле (6.17). Когда токи I 1 , I 2 текут в одном направлении эта сила будет направлена в сторону первого провода. Сила F 12 , с которой второй провод действует на участок первого провода длины l, равна по модулю и противоположна по направлению силе F 21 .

Итак, установлено, что параллельные провода с токами, текущими в одном направлении, притягиваются. Нетрудно доказать, что провода с токами, текущими в противоположных направлениях, отталкиваются друг от друга.

При помощи формулы (6.19) определена единица силы тока в СИ. Как известно, эта единица называется ампер. По определению два длинных тонких провода с токами силой в один ампер, расположенные парал­лельно на расстоянии 1 м один от другого, взаимодействуют с силой 2 10 -7 Н на 1 м длины. Подставив эти значения в формулу (6.19), найдем, что магнитная постоянная

m 0 = 4p 10 -7 Н/м.

Единица заряда в СИ - кулон - выражается через единицу силы тока: Кл = А*с. Измерения силы взаимодействия двух точечных зарядов в 1 Кл привели к значению F = 9 10 9 Н при расстоянии между зарядами R = 1 м. Используя эти значения, найдем электрическую постоянную e 0 из закона Кулона

F =| Q 1 Q 2 | /(4pe 0 R 2 )

Интересно отметить, что величина

1/Öe 0 m 0 =3 10 8 м/с

численно равна скорости света в пустоте.

Особый интерес представляет магнитное поле внутри соленоида, длина которого значительно превосходит его диаметр. Внутри такого соленоида магнитная индукция имеет повсюду одно и то же направление, параллельное оси соленоида, и значит, линии поля параллельны между собой.

Измеряя каким-нибудь способом магнитную индукцию в разных точках внутри соленоида, мы можем убедиться в том, что если витки соленоида расположены равномерно, то индукция магнитного поля внутри соленоида имеет во всех точках не только одинаковое направление, но и одинаковое числовое значение. Итак, поле внутри длинного равномерно навитого соленоида однородно. В дальнейшем, говоря о поле внутри соленоида, мы всегда будем иметь в виду подобные «длинные» равномерные соленоиды и не будем обращать внимания на отступления от однородности поля в областях, близких к концам соленоида.

Подобные измерения, выполненные с разными соленоидами при различной силе тока в них, показали, что магнитная индукция поля внутри длинного соленоида пропорциональна силе тока и числу витков, приходящихся на единицу длины соленоида, т. е. величине , где – полное число витков соленоида, – его длина. Таким образом,

где – коэффициент пропорциональности, называемый магнитной постоянной (ср. с электрической постоянной , § 11). Числовое значение магнитной постоянной

Впоследствии (§ 157) выяснится, что единица, в которой выражена величина , может быть названа «генри на метр», где генри (Гн) – единица индуктивности. Следовательно, можно написать, что

Гн/м. (126.2)

В силу своей простоты поле соленоида используется в качестве эталонного поля.

Для характеристики магнитного поля, кроме магнитной индукции , используют также векторную величину , называемую напряженностью магнитного поля. В случае поля в вакууме величины и просто пропорциональны друг другу:

так что введение величины не вносит ничего нового. Однако в случае поля в веществе связь с имеет вид

где – безразмерная характеристика вещества, называемая относительной магнитной проницаемостью или просто магнитной проницаемостью вещества. При рассмотрении магнитных полей в веществе, например в железе, величина оказывается полезной. Подробнее об этом идет речь в § 144.

Из формул (126.1) и (126.3) следует, что в случае, когда соленоид находится в вакууме, напряженность магнитного поля

т. е., как говорят, равна числу ампер-витков на метр.

С помощью измерений магнитной индукции поля, создаваемого током, текущим по очень длинному тонкому прямолинейному проводнику, было установлено, что

где – сила тока в проводнике, – расстояние от проводника.

Согласно формуле (126.3) напряженность поля, создаваемого прямолинейным проводником, находящимся в вакууме, равна

В соответствии с формулой (126.7) единица напряженности магнитного поля носит название ампер на метр (А/м). Один ампер на метр есть напряженность магнитного поля на расстоянии одного метра от тонкого прямолинейного бесконечно длинного проводника, по которому течет ток силой ампер.

126.1. Магнитная индукция поля внутри соленоида равна 0,03 Тл. Какой силы ток проходит в соленоиде, если длина его равна 30 см, а число витков равно 120?

126.2. Как изменится магнитная индукция поля внутри соленоида из предыдущей задачи, если соленоид растянуть до 40 см или сжать его до 10 см? Что произойдет, если сложить соленоид пополам так, чтобы витки одной его половины легли между витками второй половины?

126.3. По соленоиду длины 20 см, состоящему из 60 витков диаметра 15 см, идет ток. Что произойдет с магнитным полем внутри соленоида, если уменьшить диаметр его витков до 5 см, сохранив прежнюю длину соленоида и использовав тот же самый кусок провода? Каким способом можно получить прежнюю магнитную индукцию поля, сохранив неизменными длину и диаметр витков соленоида?

126.4. Внутри соленоида длины 8 см, состоящего из 40 витков, расположен другой соленоид с числом витков на 1 см длины соленоида, равным 10. Через оба соленоида проходит одинаковый ток 2 А. Какова магнитная индукция поля внутри обоих соленоидов, если северные концы их обращены: а) в одну сторону; б) в противоположные стороны?

126.5. Имеются три соленоида длины 30 см, 5 см и 24 см с числом витков 1500, 1000 и 600 соответственно. По первому соленоиду идет ток 1 А. Какие токи должны идти по второму и третьему соленоидам, чтобы магнитная индукция внутри всех трех соленоидов была одной и той же?

126.6. Вычислите магнитную индукцию поля в каждом из соленоидов задачи 126.5.

126.7. В соленоиде длины 10 см нужно получить магнитное поле с напряженностью, равной 5000 А/м. При этом ток в соленоиде должен быть равен 5 А. Из скольких витков должен состоять соленоид?

126.8. Какова магнитная индукция поля внутри соленоида, длина которого равна 20 см, а полное число витков равно 500, при токе 0,1 А? Как изменится магнитная индукция, если соленоид будет растянут до 50 см, а ток уменьшен до 10 мА?

Рассчитаем, применяя теорему о циркуляции, индукцию магнитного поля внутри соленоида. Рассмотрим соленоид длиной l , имеющий N витков, по которому течет ток (рис. 175). Длину соленоида считаем во много раз больше, чем диаметр его витков, т. е. рассматриваемый соленоид бесконечно длинный. Экспериментальное изучение магнитного поля соленоида (см. рис. 162, б) показывает, что внутри соленоида поле является однородным, вне соленоида - неоднородным и очень слабым.

На рис. 175 представлены линии магнитной индукции внутри и вне соленоида. Чем соленоид длиннее,тем меньше магнитная индукция вне его. Поэтому приближенно можно считать, что поле бесконечно длинного соленоида сосредоточено целиком внутри него, а полем вне соленоида можно пренебречь.

Для нахождения магнитной индукции В выберем замкнутый прямоугольный кон­тур ABCDA , как показано на рис. 175. Циркуляция вектора В по замкнутому контуру ABCDA , охватывающему все N витков, согласно (118.1), равна

Интеграл по ABCDA можно представить в виде четырех интегралов: по АВ, ВС, CD и DA . На участках АВ и CD контур перпендикулярен линиям магнитной индукции и B l = 0. На участке вне соленоида B =0. На участке DA циркуляция вектора В равна Вl (контур совпадает с линией магнитной индукции); следовательно,

(119.1)

Из (119.1) приходим к выражению для магнитной индукции поля внутри соленоида (в вакууме):

Получили, что поле внутри соленоида однородно (краевыми эффектами в областях, прилегающих к торцам соленоида, при расчетах пренебрегают). Однако отметим, что вывод этой формулы не совсем корректен (линии магнитной индукции замкнуты, и интеграл по внешнему участку магнитного поля строго нулю не равен). Корректно рассчитать поле внутри соленоида можно, применяя закон Био - Савара - Лапласа; в результате получается та же формула (119.2).

Важное значение для практики имеет также магнитное поле тороида - кольцевой катушки, витки которой намотаны на сердечник, имеющий форму тора (рис. 176). Магнитное поле, как показывает опыт, сосредоточено внутри тороида, вне его поле отсутствует.

Линии магнитной индукции в данном случае, как следует из соображений симмет­рии, есть окружности, центры которых расположены по оси тороида. В качестве контура выберем одну такую окружность радиуса r . Тогда, по теореме о циркуляции (118.1), B × 2p r =m 0 NI , откуда следует, что магнитная индукция внутри тороида (в вакууме)

где N - число витков тороида.

Если контур проходит вне тороида, то токов он не охватывает и B × 2p r = 0. Это означает, что поле вне тороида отсутствует (что показывает и опыт).