Дифференциальная экспрессия генов, тотипотентность. Дифференциальная экспрессия генов Понятие о дифференциальной экспрессии генов

Процесс, в результате которого отдельные ткани в ходе дифференцировки приобретают характерный для них вид, называется гистогенезом. Дифференцировка клеток, гистогенез и органогенез совершаются в совокупности, причем в определенных участках зародыша и в определенное время. Это свидетельствует о координированности и интегрированности эмбрионального развития.

В настоящее время общепринятой считается точка зрения на дифференцировку клеток в процессе онтогенеза как на результат последовательных реципрокных (взаимных) влияний цитоплазмы и меняющихся продуктов активности ядерных генов. Таким образом, впервые прозвучала идея о дифференциальной экспрессии генов как основном механизме цитодифференцировки. Уровни регуляции дифференциальной экспрессии генов соответствуют этапам реализации информации в направлении ген → полипептид → признак и включают не только внутриклеточные процессы, но и тканевые и организменные.

Эмбриональная индукция – это взаимодействие частей развивающегося зародыша, при котором один участок зародыша влияет на судьбу другого участка. В настоящее время установлено, что первичным эмбриональным индуктором является хордомезодермальный зачаток в спинной губе бластопора. Но явления индукции многочисленны и разнообразны. Кроме первичной индукции, различают вторичные и третичные , которые могут происходить на более поздних, чем гаструляция, этапах развития. Все эти индукции представляют собой каскадные взаимодействия , потому что индукция многих структур зависит от предшествующих индукционных событий. Например, глазной бокал возникает только после развития передней части головного мозга, хрусталик – после формирования бокала, а роговица – после образования хрусталика.

Индукция носит не только каскадный, но и переплетающийся характер, т.е. в индукции той или иной структуры может участвовать не одна, а несколько тканей. Например, глазной бокал служит главным, но не единственным индуктором хрусталика.

Различают два вида индукции. Гетерономная индукция – когда один кусочек зародыша индуцирует иной орган (хордомезодерма индуцирует появление нервной трубки и всего зародыша в целом). Гомономная индукция – индуктор побуждает окружающий материал к развитию в том же направлении, что и он сам. Например, область нефротома, пересаженная другому зародышу, способствует развитию окружающего материала в сторону формирования головной почки, а прибавление в культуру фибробластов сердца маленького кусочка хряща влечет за собой процесс образования хряща.

Для того чтобы воспринять действие индуктора, компетентная ткань должна обладать хотя бы минимальной организацией. Одиночные клетки не воспринимают действие индуктора, а чем больше клеток в реагирующей ткани, тем активнее ее реакция. Для оказания индуцирующего действия иногда достаточно лишь одной клетки индуктора. Установлена химическая природа индукторов – это могут быть белки, нуклеопротеиды, стероиды и даже неорганические вещества. Но специфичность ответа прямо не связана с химическими свойствами индуктора.

Таким образом, генетический контроль онтогенеза очевиден, однако в процессе развития зародыш и его части обладают способностью к саморазвитию, регулируемому самой целостной развивающейся системой и не запрограммированному в генотипе зиготы.

2 . Ведущая роль ядра в регуляции формообразования

Реализация наследственной информации в онтогенезе многоступенчатый процесс. Он включает в себя различные уровни регуляции – клеточный, тканевый, организменный. На каждом этапе развития организма функционирует большое количество генов. Каждый из них контролирует ход той или иной биохимической реакции и через нее принимает участие в осуществлении формообразовательных процессов. Локализация генов в хромосомах ядер определяетведущую роль ядра в регуляции формообразования. Однако по этому поводу длительное время происходили дискуссии, в особенности между эмбриологами и генетиками. Первые отводили основную роль цитоплазме, вторые – ядру. Затем был найден компромиссный вариант, согласно которому ядро отвечает за видоспецифические признаки организмов, а цитоплазма – за более общие признаки.

Правота генетиков была продемонстрирована лишь в 30-е годы ХХ века в опытах физиолога растений Г.Хеммерлинга. Он обнаружил, что у одноклеточной водоросли АсеtаЬulаriа форма шляпки (зонтика) – органа размножения, развивающегося на верхушке стебля, зависит только от ядра. Так, если у водоросли одного вида – АсеtаЬulаriа mediterranea удалить содержащий ядро ризоид и срастить со стебельком ризоид с ядром другого вида – А. wettsteini или А. crenulata, то образуется шляпка, свойственная А. wettsteini или А.crenulata , и наоборот (рис. 15).

В 50-е годы ХХ в. Б.Л.Астауров использовал для доказательства ведущей роли ядра в развитии животных разную чувствительность ядра и цитоплазмы к действию радиации – ядро во много раз чувствительнее к облучению, чем цитоплазма. Исследования проводились на яйцах тутового шелкопряда. Яйца, лишенные женского ядерного аппарата (путем облучения высокой дозой рентгеновских лучей), при оплодотворении необлученной спермой образуют ядро дробления посредством слияния ядер двух спермиев. Соответствующие особи всегда самцы и их легко узнают при помощи генетической маркировки. Если, используя эту методику, соединить цитоплазму яиц одного вида с ядром яиц другого вида тутового шелкопряда, отличающимся по многим морфологическим, физиологическим признакам и поведению, то оказывается, что развивающийся организм целиком и полностью подобен отцовскому, т.е. соответствует информации, содержащейся в ядре.

Аналогичные исследования проводились и с позвоночными животными. Первым этот вопрос исследовал французский эмбриолог К.Гальен-младший. Он использовал метод трансплантации ядер в яйцеклетки амфибий, который, как считают, разработан американскими эмбриологами Бриггсом и Кингом в 50-е годы прошлого столетия и позднее усовершенствован английским ученым Джоном Гердоном. В действительности этот метод был разработан еще в 40-е годы ХХ в. русским ученым, основоположником отечественной экспериментальной эмбриологии Георгием Викторовичем Лопашовым. Суть метода заключается в том, что собственное ядро яйцеклетки удаляется и чужеродное ядро–донор впрыскивается в яйцеклетку.

Именно путем межвидовых пересадок ядер Гальен получил ядерно-цитоплазматические гибриды с разной конституцией. Начиная со стадии ранней гаструлы, у них обнаруживались тяжелые нарушения развития. Однако небольшое число таких гибридов (около 2%) достигает взрослого состояния. Все особи по своим признакам подобны представителям того вида, от которого взято трансплантированное ядро.

Таким образом, можно утверждать, чтоспецифические особенности индивидуального развития контролируются клеточным ядром .

Ядро, несущее наследственный материал, в котором записана программа индивидуального развития, характеризуется следующими особенностями:

– играет ведущую роль в регуляции формообразовательных процессов.

– осуществляет эту роль посредством ядерно-цитоплазматических взаимоотношений, т.е. разная цитоплазма индуцирует разные функциональные состояния находящегося в клетке ядра.

– в ходе регуляции индивидуального развития проявляет периодичность морфогенетической активности.



Рис. 15. Эксперименты Хеммерлинга, доказывающие выработку ядром ацетобулярии вещества, необходимого для регенерации шляпки (Л.И.Корочкин,1999)

3 . Особенности взаимодействия генов в

развитии организма

Многочисленные исследования в области генетики развития, эмбриологии и генетики свидетельствуют о том, что механизмы онтогенеза на различных уровнях являютсяуниверсальными и консервативными .

Можно сказать, что строительные «кирпичики», а порою и целые блоки, из которых складывается будущий организм, похожи друг на друга. Сходны и системы управления «строительством». А специфика развития разных организмов формируется за счет временных и пространственных различий в последовательности соединения этих «кирпичиков» в некое целостное «образование».

В результате были сформулированы общие закономерности генетической регуляции онтогенеза, которые проявляются в ходе такого «строительства». Эти закономерности касаются, во-первых,взаимодействия генов в развитии , во-вторых,организации генных систем , контролирующих развитие, в-третьих,особенностей функционирования этих систем.

Особенности взаимодействия генов в развитии организма следующие.

1. Основу индивидуального развития составляет взаимодействие генов , ихсистемное , а не автономное функционирование.

2. Система генов, регулирующих развитие того или иного признака (или морфогенетического процесса) организована поиерархическому принципу , так что в каждом регуляторном генетическом «каскаде» существуют « гены–господа » и « гены–рабы ». Первые – гены-господа – в случае их активации «разрешают» реализацию определенного морфогенетического процесса и включают «каскад» генов, которые этот процесс осуществляют – гены-рабы (рис. 16).

3. Генетические и молекулярно-генетические системы, управляющие развитием, удивительно консервативны и присущи как примитивным, так и высоко развитым организмам. Например, определенный мышиный ген способен заменить другой ген дрозофилы и «запустить» процесс развития глаза в ходе метаморфоза развивающейся мухи. Специфичность развивающегося органа (возникает-то глаз дрозофилы, а не мыши), очевидно, обусловлена особенностями функционирования регуляторных и структурных генов конкретного «каскада», которые химически обеспечивают морфогенез данного органа. От них может зависеть синтез продуктов, которые обеспечивают специфические межклеточные взаимодействия, определяющие становление вполне конкретной формы .

4. Весь процесс индивидуального развития осуществляется на основе двух типов воздействия генов друг на друга:активирующие воздействия итормозящие воздействия. Таким образом, развитие эмбриона, спецификация его клеток, их взаимовлияния в ходе морфогенеза основаны на «игре» этих факторов и установлении некоего «баланса» между ними. Итогом этого баланса является неравномерное распределение генопродуктов вдоль эмбриональных осей, так что создается своеобразная молекулярная мозаика, химически преформированный «план строения» организма, воплощаемый в жизнь в ходе онтогенеза.



Рис. 16. Схема генетического контроля индивидуального развития

на разных его этапах (Л.И.Корочкин, 1999)

Специфическое соотношение разных генопродуктов в различных регионах зародыша по сути дела и есть молекулярно-генетическая основа так называемойпозиционной информации , т.е. зависимости судьбы той или иной клетки от того положения (позиции) в системе развивающегося организма, которое она занимает. А «сигналом», передающим позиционную информацию, как раз и являются особенности молекулярной «микросреды», в пределах которой происходит становление данной клетки (или клеток).

4. Особенности функционирования генетических

систем, контролирующих развитие

Можно выделить следующие особенности функционирования генетических систем, контролирующих развитие организмов.

1. «Опережающее» функционирование генов в ходе онтогенеза. Известно, что многие продукты синтезируются в развивающемся зародыше «заранее», часто задолго до того, как они будут востребованы. Это, в частности, вещества, которые участвуют в «разметке» плана строения организма (продукты генов сегментации, гомеозисных генов), в осуществлении эмбриональной индукции (индуцирующие вещества и их ингибиторы). Некоторые молекулы, например, глобин, образуются еще в яйцеклетке, задолго до того, как они начнут выполнять свои функции в клетках эритроидного ряда.

2. Автономия частей при единстве целого. Это качество функциональной динамики генома отчетливо проявляется в раннем эмбриогенезе при созревании индуктора (хордомезодермы) и компетентной ткани (нейроэктодермы). Очевидно, что генетические системы, которые регулируют созревание индуцирующих свойств хордомезодермы и способность компетентной ткани реагировать на воздействие индуктора, функционируют вавтономном режиме независимо от того, находится ли данная развивающаяся эмбриональная закладка в составе целого зародыша или вне его.Целостность же развивающейся системы обеспечивается за счет того, что в норме сроки созревания двух взаимодействующих тканей строго «подогнаны» один к другому, как бы «синхронизированы», в результате чего достигается нормальное течение онтогенетического процесса.

Мутации, которые вызывают рассогласование времени созревания взаимодействующих систем в развитии, нарушают целостность и гармонию морфогенетических событий и ведут к появлению различного рода дефектов развития.

3. Можно выделитьтри автономно функционирующие генетические системы , которые соответственно контролируют три автономных процесса – формообразовательные события , дифференцировка специфических морфологических типов клеток и химическая спецификация этих клеток .

Например, известны случаи, когда процесс нейруляции проходит нормально и нервная трубка замыкается, однако дифференцировки входящих в ее состав нейробластов не происходит. Напротив, в случаях нарушения замыкания нервной пластинки в нервную трубку наблюдалась дифференцировка нейробластов этой пластинки в нервные клетки, морфологически вполне развитые.

ЛЕКЦИЯ 11

ГОРМОНАЛЬНАЯ РЕГУЛЯЦИЯ ПРОЦЕССА ИНДИВИДУАЛЬНОГО РАЗВИТИЯ ОРГАНИЗМОВ

    Гормоны, регулирующие некоторые процессы индивидуального развития.

    Процесс роста и его регуляция.

1. Гормоны, регулирующие некоторые процессы индивидуального развития

Гормоны, влияющие на индивидуальное развитие, можно подразделить на две группы в зависимости от их источника.

1. Гормоны, синтезируемые в материнском организме , среди которых существенна группа гормонов, регулирующих репродуктивную функцию (процессы гаметогенеза, овуляции, и раннего эмбриогенеза). У млекопитающих ввиду внутриутробного характера развития эти гормоны, проникая через плаценту, могут оказывать воздействие не только на процессы гаметогенеза, но и на зародышевое развитие.

2. Гормоны, вырабатываемые эндокринной системой развивающегося организма и регулирующие рост, дифференцировку и специфическую физиолого-биохимическую деятельность клеток на конечных этапах их дифференцировки.

Гормональный контроль гаметогенеза . Процессы созревания половых клеток носят циклический или сезонный характер. Параметры циклов и сезонная активность гаметогенеза регулируются гормонами, продуцирующимися яичником и семенником. В свою очередь гормональная активность гонад находится под контролем гонадотропинов – гормонов гипофиза. Благодаря системной регуляции гормонами, гаметогенез и процессы созревания ооцитов скоординированы с деятельностью всех гистофизиологических элементов половой системы, включая подготовку и синхронизацию процессов, которые обеспечивают оплодотворение созревших половых продуктов, а у млекопитающих – подготовку условий, необходимых для эмбриогенеза. В оогенезе гормоны в наибольшей степени контролируют период большого роста ооцитов, их созревание и овуляцию.

Гормональный контроль некоторых органогенезов и гисто генезов . В период закладки зародышевых листков и зачатков основных органов собственные гормоны эмбрион еще не продуцирует, и регуляция процессов развития осуществляется в результате индукционных взаимодействий контактирующих клеток и клеточных слоев. Во время органогенезов и гистогенезов появляются гормоны, роль которых постепенно возрастает. Роль гормонов в органогенезах и гистогенезах хорошо изучена не во всех случаях, но исследователи полагают, что все органы и тканевые системы на том или ином этапе своего развития испытывают их регулирующее действие, необходимое для координированного роста, цитофизиологической дифференцировки и функционирования.

Роль гормонов хорошо исследована в развитии репродуктивных органов млекопитающих, в синтезе компонентов яйца в яйцеводе птиц, при развитии молочной железы. Хорошо изучена гормональная регуляция метаморфоза у амфибий и насекомых.

Роль гормонов в развитии репродуктивных органов . Развитие мужских и женских репродуктивных органов, гонад, системы выводящих протоков и наружных половых органов представляет собой хороший пример гормонального контроля органо- и гистогенезов. Рассмотрим, как осуществляется этот контроль у млекопитающих.

У млекопитающих гормоны определяют развитие только системы протоков репродуктивных органов самца; при отсутствии гормонов во всех случаях (в том числе и у генетически детерминированных самцов) развивается женская система протоков, т.е. из мюллерова протока формируется яйцевод, а мезонефрос и вольфов проток дегенерируют. В развитии мужских выводящих протоков играют роль два гормональных фактора, вырабатываемых клетками эмбрионального семенника: тестостерон , продуцируемый интерстициальными клетками (клетки Лейдига), и фактор, продуцируемый клетками Сертоли. Тестостерон – ответствен за развитие семявыносящего протока из вольфова канальца и наружных половых органов, а фактор, вырабатываемый клетками Сертоли, – за дегенерацию мюллерова протока (при его отсутствии мюллеров проток у самца сохраняется).

В развитии женских половых протоков гормоны не участвуют. Предполагается, что такой принцип (зависимое от гормонов развитие мужских и независимое от гормонов развитие женских протоков) служит приспособлением, связанным с внутриутробным характером развития млекопитающих, у которых женские гормоны легко проникают через плаценту и даже вырабатываются в самой плаценте. Если бы гормоны–эстрогены влияли на половую дифференциацию, они бы препятствовали развитию репродуктивных органов самцов в утробе матери.

Таким образом, развитие характерных для самца репродуктивных органов связано с совокупным последовательным действием двух факторов:

1) генетического , т.е. продукта активности гена У-хромосомы (Н – У-антиген), который стимулирует клетки мозговой части недифференцированной половой железы к образованию канальцев семенника;

2) гормонального – тестостерона и фактора, вырабатываемого клетками Сертоли, которые побуждают вольфов проток и верхний отдел мезонефроса к формированию системы семявыносящих протоков; одновременно эти гормоны вызывают дегенерацию мюллерова протока. В дальнейшем под влиянием тестостерона развивается и система наружных половых органов самца.

Развитие молочной железы . Развитие молочной железы и индукция в ее альвеолах синтеза и секреции молока также представляет собой яркий пример сложной гормональной регуляции процесса развития органа и его гисто-физиологического и функционального созревания.

У новорожденных животных (или человека) млечные железы представлены еще недоразвитой системой протоков – эктодермальными углублениями в подлежащую мезенхиму. С наступлением половой зрелости в крови повышается уровень эстрогена , который индуцирует дальнейшее разветвление и увеличение массы протоков железы. Но окончательная гисто-цитологическая дифференцировка и формирование секретирующих альвеол в конечных отделах протоков происходят в период беременности под влиянием большой группы гормонов – прогестерона , пролактина и лактогена , а в дальнейшем – в период кормления – высокий уровень пролактина поддерживает процесс лактации.

Гормональная регуляция системы синтеза компонентов яйца в яйцеводе птиц . Железистые клетки яйцевода птиц – хорошо изученная модель гормонального контроля за гисто-физиологической дифференцировкой синтеза специфических белков. Детальная морфологическая дифференцировка клеток, вырабатывающих, например, овальбумин (яичный белок), начинается лишь в период половозрелости под влиянием гормонов.

В яйцеводе птиц последовательно расположены отделы, в которых клетки специализированы на секрецию разных составных частей сложной оболочки яйца, – белка, подскорлуповых оболочек, скорлупы. В яйцеводе неполовозрелых животных эти отделы не функционируют. Однако если животным ввести эстроген, клетки эпителия яйцевода начинают пролиферировать и дифференцироваться, образуя трубчатые железы. В свою очередь клетки желез синтезируют и секретируют компоненты яичного белка.

Эстроген вызывает также дифференцировку специализированных клеток следующего отдела (гоблетовские клетки), синтезирующих овидин, но для индукции его синтеза необходимо присутствие прогестерона. В настоящее время хорошо изучены молекулярно-биологические аспекты индукции и синтеза овальбумина, детально исследована структура и экспрессия гена этого белка.

Дифференциальная экспрессия генов Две клетки дифференцированы поразному, если, обладая одинаковым геномом, они синтезируют разные белки. Φ. ЖАКОБ и Ж. МОНО (1963)

Лекции Р. П. Костюченко Дифференциальная экспрессия генов 1960 -е 1. Каждое ядро соматической клетки содержит полный геном, возникающий при оплодотворении яйцеклетки. Это означает, что ДНК во всех дифференцированных клетках идентична. 2. Неиспользуемые гены в дифференцированных клетках не подвергаются разрушению или мутациям, они сохраняют способность к экспрессии. 3. Только небольшой процент генома экспрессируется в каждой клетке, часть РНК, синтезируемой в клетке, специфична для данного типа клеток. Экспрессия гена - реализация генетической информации, закодированной в гене

Механизмы дифференциальной экспрессии генов. Эпигенетический ландшафт Уоддингтона. Шарик на вершине изображает клетку, а долины под ним - различные пути развития, по которым она может пойти.

Регуляция экспрессии генов ядро цитоплазма Контроль деградации м. РНК ДНК Первичный транскрипт м. РНК Контроль транскрипции м. РНК Процессинг РНК м. РНК Контроль транспорта м. РНК Контроль деградации белка Деградация белка Контроль трансляции м. РНК Деградация м. РНК Неактив ный белок Контроль ферментативной активности белка Активный белок

Нуклеосома - базовая единица хроматиновой структуры гистоны (две молекулы каждого из гистонов H 2 A-H 2 B и гистонов H 3 -H 4), обернутых двумя витками ДНК. Динамичная структура, сворачивается/разворачивается около 4 раз в секунду. Модификации гистонов: «гистоновый код» ацетилирование гистонов - активирует транскрипцию («разрыхляя» хроматин) деацетилирование гистонов – Инактивирует метилирование гистонов – при метилировании по «хвостам» H 3, Н 4 – уплотнение хроматина, умолкание генов, гетерохроматинизация. хроматин - комплекс ДНК с белком

Считывание гистонового кода. Комплекс считывания кода связывается специфически свяжется только с областью хроматина, содержащей распознаваемые им метки, так что только определенная комбинация меток вызовет связывание комплекса с хроматином и привлечет дополнительные белковые комплексы, которые катализируют одну или несколько биологических функций.

Факторы транскрипции - белки, контролирующие процесс синтеза м. РНК на матрице ДНК путём связывания со специфичными участками ДНК. Транскрипционные факторы выполняют свою функцию либо самостоятельно, либо в комплексе с другими белками. Они обеспечивают снижение (репрессоры) или повышение (активаторы) константы связывания РНК-полимеразы с регуляторными последовательностями регулируемого гена. Определяющая черта факторов транскрипции - наличие в их составе одного или более ДНК-связывающих доменов, которые взаимодействуют с характерными участками ДНК, расположенными в регуляторных областях генов.

Конститутивные ТФ - присутствуют всегда во всех клетках - главные факторы транскрипции. Активируемые ТФ (активны в определенных условиях) – Участвующие в развитии организма (клеткоспецифичные) - экспрессия строго контролируется, но, начав экспрессироваться, не требуют дополнительной активации -, Myo. D, Myf 5, Hox. Сигнал-зависимые - требуют внешнего сигнала для активации - внеклеточные сигнал-зависимые - внутриклеточные сигнал-зависимые - мембраносвязанные рецептор-зависимые - фосфорилируются киназами сигнального каскада ДНК-связывающий домен типа «лейциновая молния» в комплексе с ДНК. резидентные ядерные факторы - находятся в ядре независимо от активации - CREB, AP-1, Mef 2 латентные цитоплазматические факторы - в неактивном состоянии локализованы в цитоплазме, после активации транспортируются в ядро - STAT, R-SMAD, NF-k. B, Notch,

Сборка комплекса инициации транскрипции у эукариот на последовательности ТАТА. Структура комплекса TATAсвязывающего белка/транскрипционного фактора TF(II)B из археи Pyrococcus woesei с ДНК

Регуляторные белки эукариот собираются в комплексы на ДНК. Природа и функция такого комплекса зависит от специфической последовательности ДНК, которая служит затравкой для их сборки. Белки, которые не связываются самостоятельно с ДНК, но собираются на других связывающихся с ДНК регуляторных белках, часто называются коактиваторами или корепрессорами (кофакторами) транскрипции. Под этим термином могут пониматься комплексы перестройки хроматина (напр. гистонацетилазы), белки, усиливающие сродство полимеразного комплекса к ДНК, или же просто белки-”строительные леса”, служащие основой для прикрепления обладающих специфической активностью белков.

Объединение множества входящих сигналов на промоторе. Чтобы воздействовать на инициацию транскрипции на промоторе, многочисленные белковые комплексы работают сообща. Конечная транскрипционная активность гена является результатом конкуренции между активаторами и репрессорами.

Энхансеры ДНК-последовательности, которая селективно повышают активность промотора, контролируя частоту осуществляющейся с него инициации транскрипции. Связывают транскрипционные (ко)факторы, которые способны увеличивать уровень транскрипции.

Экпрессия Pax-6 Энхансеры могут контролировать временную и тканеспецифическую экспрессию любого дифференциально регулируемого гена, так что различные типы генов имеют как правило различные энхансеры

Лекции Р. П. Костюченко Сайленсеры Районы ДНК, которые отвечают за репрессию транскрипции какого-либо гена. (Посредством привлечения белков с соответствующей активностью) Нейроспецифический сайленсерный элемент (neural restrictive silencer element) - NRSE; найден в регуляторных районах нескольких мышиных генов, экспрессия которых ограничена нервной системой Нейроспецифический сайленсерный фактор (neural restrictive silencer factor) - NRSF , по- видимому, синтезируется в каждой клетке организма, не являющейся зрелым нейроном по Гилберт, 2010

Лекции Р. П. Костюченко Инсуляторы Чтобы предотвратить распространение влияние энхансера (сайленсера) на соседние гены существуют определенные участки ДНК, которые связывают белки, блокирующие действие регуляторного элемента на соседний промотор. по Гилберт, 2010

Возможные варианты регуляции инициации транскрипции у прокариот (а) Связывание активатора с лигандом стимулирует сборку комплекса и транскрипцию (б) Активатор стимулирует транскрипцию, при связывании с лигандом дезактивируется. (в)Репрессор запрещает транскрипцию. Взаимодействие с лигандом инактивирует репрессор и позволяет транскрипцию. (г) В отсутствие лиганда репрессор не способен взаимодействов ать с ДНК, репрессия происходит только в присутствие лиганда 21

Клеточные сигнальные пути Каскады межмолекулярных взаимодействий, обеспечивающие такую коммуникацию между клеточной мембраной и внутриклеточной точкой приложения, что способна привести к некоторым изменениям в клетке.

Точки приложения сигнальных каскадов Регуляция экспрессии генов (пролиферация, дифференцировка, выполнение функций) Изменение цитоскелета (изменение формы клетки, миграция, установление/разборка клеточных контактов) Влияние на метаболические пути (секреция метаболитов, регуляция активности ферментов) Не обязательно вовлекаются ДНК/РНК.

Способы передачи сигналов от клетки к клетке: Через воздействие паракринных факторов, взаимодействие клеток с внеклеточным матриксом, через межклеточные контакты Диффузия растворимых сигнальных факторов Внеклеточный матрикс, секретируемый одной клеткой, вызывает изменения в другой Контакт между индуцирующей и отвечающей клетками

Источник сигнала Клетка-источник сигнала секретирует определённый тип сигнальной молекулы. Эта молекула детектируется клеткой-мишенью с помощью белка -рецептора, распознающего её и специфически с ней взаимодействующего. Каждая клетка способна отзываться на ограниченный набор сигнальных молекул. Реакция клетки на сигнал зависит от её состояния и типа дифференцировки.

Интеграция сигнала Сигналы из разных источников могут сходиться на The signals from several different sources may be integrated though a single shared protein (A) or protein complex (B) общем белке или белковом комплексе.

Амплификация сигнала 1 рецептор активирует множество G-белков 1 ligand-receptor 500 G-protein 500 enzymes Each enzyme Y produces many second messangers, each messanger activates 1 enzyme Y 105 (2 nd messanger) 250 (ion channels) 105 -107 (ions)

Ле Суперсемейство ростовых факторов TGF-β (TGF-β -суперсемейство) С другой стороны, структура белковучастников зачастую высококонсерватина. Зачастую белки, экспрессируемые в неродственном организме, способны функционально замещать гомологичные им белки хозяина. по Гилберт, 2010

Молекулярные взаимодействия Белок-белковые взаимодействия: ◦ Присоединение/диссоциация (Создание или разрушение белковых комплексов) ◦ Ковалентные модификации: фосфорилирование (tyr, thr, ser) ◦ Конформационные изменения ◦ Перемещение в другую функциональную область клетки ◦ Убиквитинирование и деградация Взаимодействие белков с малыми молекулами ◦ Присоединение/диссоциация, ведущая к изменению конформации, энергетического состояния ◦ Распространение вторичных мессенджеров (Ca 2+, ц. АМФ)

Фосфорилирование белков Привнесение двух отрицательных фосфатных зарядов может вызвать значительное конформационное изменение в белке за счёт, например, притяжения группы положительно заряженных боковых цепей аминокислот. Это может, в свою очередь, повлиять на связывание лигандов и тем самым заметно изменить активность фосфорилированного белка по сравнению с исходным.

Принципиальная схема влияния полученного сигнала на дифференциальную экспрессию генов Внешняя среда ядро цитоплазма Активный белок (1) Коактиваторы транскрипции Р Р Факторы транскрипции Перенос Активный белок (2) Лиганд Белок (2) Белковый комплекс Корепрессоры транскрипции Белок(2) n раз Деградация белка Белокрецептор

Лекции Р. П. Костюченко ПАРАКРИННЫЕ ФАКТОРЫ: сигнальный путь Wnt Семейство Wingless (Wnt-семейство) семейство гликопротеинов, богатых цистеином индуцируют дорсальные клетки сомитов становиться мышечными. участвуют в спецификации клеток среднего мозга Белки Wnt важны для становления полярности конечностей насекомых и позвоночных; они также участвуют в развитии (на различных этапах) мочеполовой системы Б - мочеполовой зачаток новорожденной самки мыши дикого типа. В - Мочеполовой зачаток самки мыши, нокаутированной по гену Wnt 4, с дефектом развития почки. Кроме того, яичник начинает синтезировать тестостерон и окружается системой протоков мужского типа. Фото J. Perasaari, S. Vainio

Лекции Р. П. Костюченко Юкстакринный (контактный) сигналинг: Сигнальный путь Notch. мембраносвязанные лиганды и рецепторы по Гилберт, 2010

Лекции Р. П. Костюченко Юкстакринный сигналинг первоначальные различия между клетками возникают случайно эти различия закрепляются по принципу обратной связи

Лекции Р. П. Костюченко Модель создания пространственной структуры нейробластов из исходно равноценных клеток нейрогенной эктодермы. Нейрогенные клетки производят сигнал в виде белка Delta (темная штриховка), а клетки, не становящиеся нейрогенными, продуцируют рецепторный белок Notch (белые)

Major themes in ST The “internal complexity” of each interaction The combinatorial nature of each component molecule (may receive and send multiple signals) The integration of pathways and networks

Большинство генов эукариот, в отличии от генов прокариот имеют прерывистую структуру. Относительно короткие кодирующие участки (экзоны) чередуются с некодирующими участками (интроны). Регуляторные элементы гена - промоторы, определяющие точность инициации, транскрипции, локализованы перед первым экзоном на 5"-конце нити ДНК и представлены несколькими элементами (ТАТА-, ССААТ-боксы, GC-мотив).

Экспрессия генов регулируется также усилителями (энхансеры), ослабителями (сайленсоры), а также инсуляторами (ограничители действия энхансеров) и элементами отклика, взаимодействующими с факторами транскрипции, ксенобиотиками, стероидными гормонами и др. Эти последовательности участвуют в определении частоты инициации транскрипции .

Первый этап реализации генетической информации - транскрипция. Гены эукариот транскрибируются в виде предшественника, который состоит из экзонов и интронов (незрелая иРНК). Затем интроны вырезаются специальными ферментами, а экзоны последовательно сшиваются друг с другом, формируя готовый для трансляции транскрипт (зрелая иРНК). Этот процесс получил название сплайсинга. Одна и та же последовательность ДНК может кодировать несколько различных белков, благодаря так называемому альтернативному сплайсингу (образование разных иРНК за счет изменения чередования соединения экзонов из одного первичного РНК-транскрипта).

После транскрипции или параллельно с ней незрелая иРНК подвергается дальнейшей модификации. К 5"-концу пре-иРНК с помощью фермента присоединяется метилированный остаток гуанина в 7-м положении пуринового кольца (процесс копирования). Считается, что кэп (шапочка) необходима для правильной ориентации и присоединения рибосом к иРНК перед началом трансляции. К З"-концу пре-иРНК также ферментативно присоединяется короткая нуклеотидная последовательность, состоящая из остатков аденина (полиаденилирование). Полагают, что поли-А-последовательность необходима для транспорта иРНК через ядерную мембрану в цитоплазму .

По выполняемой функции в клетке эукариотические гены делятся на несколько групп.

Первую группу составляют гены, экспрессирующиеся во всех типах клеток. Продукты их деятельности - белки, необходимые для обеспечения жизнедеятельности любой клетки организма (гены рибосомальных РНК, гистонов и др.).

Вторая группа - тканеспецифические гены, которые функционируют только в определенных типах клеток или тканях на определенных стадиях онтогенеза (гены глобулинов, альбумина, а-фетопротеина, иммуноглобулинов, мышечных белков, секреторных белков эндокринных и пищеварительных желез и многие другие).

Третью группу составляют гены, которые кодируют различные белки, участвующие в регуляции транскрипции (транскрипционные факторы). Белковые продукты этих генов взаимодействуют с регуляторными участками генов, вызывая усиление или подавление экспрессии.

К четвертой группе относят гены, экспрессия которых индуцируется внешними факторами, в том числе ксенобиотиками.

Одной из основных задач фармакогеномики является изучение экспрессии генов при различных заболеваниях и воздействии того или иного лекарства или биологически активного соединения. Это позволит определять возможность их направленной регуляции.

Успешное внедрение фармакогеномики в экспериментальную фармакологию стало возможным благодаря развитию соответствующих технологий в том числе и информационных (биоинформатика). Все они ассимилировали и интегрировали фармакогенетику в широкое научное направление.

В целом, все методы ДГЭ состоят из множества, часто повторяющихся одних и тех же операций. Выполнение их вручную малоинтересное занятие. Однако угрозой не является монотонная работа оператора, а значительно большей проблемой считается бесконечное повторение одних и тех же операций, что может привести к потере точности. Поэтому перед фармакогеномическими технологиями стоит одна задача - частичная или полная автоматизация аналитических операций.

Основой любой технологии является метод, имеющий в аналитической практике свои характеристики (параметры). Для ДГЭ они должны соответствовать следующим требованиям:

Разрешающая способность, связана с определенной точностью определения соседних генов;

Чувствительность - граница «-последовательностей разведения, дающих возможность статистически достоверно регистрировать изменения ДГЭ;

Охват - процент экспрессированных генов данного вида экспериментальных животных или определенной ткани, которые могут быть надежно определены и экспериментально повторяться;

Фальшпозитивная норма - количество генов, ошибочно отнесенных к экспрессированным;

Фальшнегативная норма - количество экспрессированных генов, однако отнесенных к неактивным.

Технологии ДГЭ включают две группы методов. Одна из них, так называемая закрытая, а вторая - открытая архитектурная система .

Закрытая архитектурная система требует информацию о каждом гене или клоне и использует в качестве анализатора микрочипы.

Теория создания микрочипов основана на гибридизации олигонуклеотидов известной последовательности, иммобилизованных на твердой поверхности в строго определенных местах, с меченой различными способами пробой. Способствовали созданию данной технологии последние достижения в информатике, химии полупроводников, микроэлектронной промышленности, а также обилие информации, которая накопилась за годы работы над программой «Геном человека».

ДНК-чип - миниатюрная пластина с микроячейками. Каждая микроячейка содержит искусственно синтезированные олигонуклеотиды, соответствующие фрагментам определенных генов, выступающих в качестве матрицы. В этих ячейках происходит комплементарное взаимодействие матрицы и пробы (кДНК исследуемых образцов). В настоящее время существует два направления в создании ДНК-чипов. Они различаются способом синтеза и нанесения матричных олигонуклеотидов .

Первое направление основано на предварительном синтезе олигонуклеотидов. Олигонуклеотиды синтезируют химически или с помощью ПЦР (длина от 500 до 5000 оснований) и затем наносят на обработанную специальным образом стеклянную поверхность с помощью роботов. Такие типы чипов получили название кДНК-микрочипов (cDNA-microarray). В ПЦР ампли- фицируются последовательности кДНК определенных генов. Поэтому данный тип чипов дорогостоящий, так как необходимо создавать собственную кДНК-библиотеку или приобретать ее у крупных исследовательских центров.

кДНК-Микрочипы оказались непригодными для проведения исследований полиморфизма (генетическая изменчивость отдельного локуса в определенной популяции), мутационного анализа, сравнительного изучения экспрессии большого количества генов, так как плотность размещения матричных олигонуклеотидов очень ограничена (число ячеек составляет = 1000 на чип). Кроме того, применение длинных фрагментов ДНК (кДНК) снижает специфичность гибридизации с исследуемой пробой и появляются ложноположительные сигналы, не соответствующие реальной экспрессии генов.

Несмотря на перечисленные недостатки, основное преимущество кДНК-микрочипов - возможность варьирования качественным и количественным составом фрагментов генов.

Более перспективное направление создания чипов - применение фотолитографических технологий , которые дают возможность одновременно интегрировать огромное количество олигонуклеотидов любой последовательности непосредственно на поверхности чипа. Плотность размещения синтезированных таким образом нуклеотидов может достигать 1 млн. на 1 см2. Такие чипы, получившие названия ДНК-чипов (DNA-chips), производятся фирмой Affymetrix Inc. Матрица ДНК-чипа - короткая (20-25-мерная) олигонуклеотидная последовательность, причем каждому гену соответствует 15-20 таких олигонуклеотидов, что значительно повышает точность и воспроизводимость результатов. ДНК-чипы позволяют одновременно оценивать экспрессию практически неограниченного количества генов, производить исследование полиморфизма, в том числе и однонуклеотидных замен (SNP). В этом случае синтезируются олигонуклеотиды, специфические для каждой последовательности конкретного гена, учитывая все возможные варианты взаимного расположения нуклеотидов.

При проведении исследований чип гибридизуется с меченой различными способами пробой. При сравнительных исследованиях пробой, как правило, служит кДНК, полученная из контрольного и сравниваемого образцов. В качестве метки используются как радиоактивно меченые молекулы, так и флуоресцентные красители, непосредственно присоединенные к исследуемым образцам. При проведении сравнительного анализа обычно применяют двухцветную детекцию, при которой контрольная и опытная кДНК метятся разными красителями. Результаты регистрируют по интенсивности гибридизационных сигналов тех ячеек чипа, где произошла гибридизация, с последующей компьютерной обработкой данных.

Производятся и упрощенные варианты чипов с небольшим набором генов (в пределах 1000-2000). На нейлоновой мембране фиксируются короткие последовательности известных генов. Они гибридизуются с радиоактивно меченой пробой. Гибридизация детектируется методом радиоавтографии.

Следует отметить, что работа с чипами требует специального дорогостоящего оборудования для проведения гибридизации. Ожидается, что в ближайшие годы цены на комплекты оборудования для производства чипов и работы с ними будут снижены в связи с насыщением рынка.

Разработка и внедрение в науку и практику новых технологий часто является движущим моментом в развитии медикобиологических отраслей знаний как, например, это было с разработкой в недавнем прошлом технологии ПЦР. Развитие молекулярной биологии в настоящее время многим обязано ПЦР, а теперь и микрочипам. Внедрение технологии микрочипов принципиально и для фармакологии. Разработка новых лекарственных средств уже сейчас начинает основываться на информации о функциональной роли определенных генов в развитии патологии. Поэтому сроки разработок могут сократиться с 10-15 до 5-8 лет }