Кпд установки утилизации дымовых газов. Методы утилизации тепла. Система глубокой утилизации с конденсационным теплообменником

Тепло дымовых газов, уходящих из печей, кроме подогрева воздуха и газообразного топлива, может быть использовано в котлах-утилизаторах для выработки водяного пара. В то время как подогретые газ и воздух используются в самом печном агрегате, пар направляется внешним потребителям (для производственных и энергетических нужд).

Во всех случаях следует стремиться к наибольшей регенерации тепла, т. е. к возвращению его в рабочее пространство печи в виде тепла нагретых компонентов горения (газообразного топлива и воздуха). В самом деле, увеличение регенерации тепла ведет к сокращению расхода топлива и к интенсификации и улучшению технологического процесса. Однако наличие рекуператоров или регенераторов не всегда исключает возможность установки котлов-утилизаторов. В первую же очередь котлы-утилизаторы нашли применение в крупных печах с относительно высокой температурой отходящих дымовых газов: в мартеновских сталеплавильных печах, в медеплавильных отражательных печах, во вращающихся печах для обжига цементного клинкера, при сухом способе производства цемента и т. д.

Рис. 5.

1 - пароперегреватель; 2 - трубная поверхность; 3 - дымосос.

Тепло дымовых газов, отходящих от регенераторов мартеновских печей с температурой 500 -- 650 °С, используется в газотрубных котлах-утилизаторах с естественной циркуляцией рабочего тела. Поверхность нагрева газотрубных котлов состоит из дымогарных труб, внутри которых проходят дымовые газы со скоростью примерно 20 м/сек. Тепло от газов к поверхности нагрева передается путем конвекции, а потому увеличение скорости повышает теплопередачу. Газотрубные котлы просты в эксплуатации, при монтаже не требуют обмуровки и каркасов и обладают высокой газоплотностью.

На рис. 5 показан газотрубный котел Таганрогского завода средней производительности D ср = 5,2 т/ч с расчетом на пропуск дымовых газов до 40000 м 3 /ч. Давление пара, вырабатываемого котлом, равно 0,8 Мн/м 2 ; температура 250 °С. Температура газов до котла 600 °С, за котлом 200 - 250 °С.

В котлах с принудительной циркуляцией поверхность нагрева составляется из змеевиков, расположение которых не ограничивается условиями естественной циркуляции, и поэтому такие котлы компактны. Змеевиковые поверхности изготовляются из труб малого диаметра, например d = 32Ч3 мм, что облегчает вес котла. При многократной циркуляции, когда кратность циркуляции составляет 5 - 18, скорость воды в трубках значительна, не менее 1 м/сек, вследствие чего в змеевиках уменьшается выпадение из воды растворенных солей, а кристаллическая накипь смывается. Тем не менее котлы должны питаться водой, химически очищенной при помощи катионитовых фильтров и других способов водоподготовки, соответствующей нормам питательной воды для обычных паровых котлов.

Рис. 6.

1 - экономайзерная поверхность; 2 - испарительная поверхность; 3 - пароперегреватель; 4 - барабан-коллектор; 5 - циркуляционный насос; 6 - шламоуловитель; 7 -- дымосос.

На рис. 6 дана схема размещения змеевиковых поверхностей нагрева в вертикальных дымоходах. Движение пароводяной смеси осуществляется циркуляционным насосом. Конструкции котлов подобного типа разработаны Центроэнергочерметом и Гипромезом и изготовляются на расходы дымовых газов до 50 - 125 тыс. м 3 /ч со средней паропроизводительностью от 5 до 18 т/ч.

Стоимость пара составляет 0,4 - 0,5 руб/т вместо 1,2 - 2 руб/т у пара, отобранного из паровых турбин ТЭЦ и 2 - 3 руб/т у пара от промышленных котельных. Стоимость пара составляется из затрат на энергию для привода дымососов, расходов на приготовление воды, амортизацию, ремонт и обслуживание. Скорость газов в котле составляет от 5 до 10 м/сек, что обеспечивает хорошую теплопередачу. Аэродинамическое сопротивление газового тракта составляет 0,5 - 1,5 кн/м 2 , поэтому агрегат должен иметь искусственную тягу от дымососа. Усиление тяги, которым сопровождается установка котлов-утилизаторов, как правило, улучшает работу мартеновских печей. Подобные котлы получили распространение на заводах, но для их хорошей работы требуется защита поверхностей нагрева от заноса пылью и частицами шлака и систематическая очистка поверхностей нагрева от уноса посредством обдувки перегретым паром, промывки водой (при остановках котла), вибрационным путем и др.

Рис. 7.

Для использования тепла дымовых газов, отходящих от медеплавильных отражательных печей, устанавливаются водотрубные котлы с естественной циркуляцией (рис. 7). Дымовые газы в этом случае имеют очень высокую температуру (1100 - 1250 °С) и загрязнены пылью в количестве до 100 - 200 г/м 3 , причем часть пыли имеет высокие абразивные (истирающие) свойства, другая часть находится в размягченном состоянии и может шлаковать поверхность нагрева котла. Именно большая запыленность газов и заставляет пока отказываться от регенерации тепла в этих печах и ограничиваться использованием дымовых газов в котлах-утилизаторах.

Передача тепла от газов к экранным испарительным поверхностям протекает очень интенсивно, благодаря чему обеспечивается интенсивное парообразование частицы шлака, охлаждаясь, гранулируются и выпадают в шлаковую воронку, чем исключается шлакование конвективной поверхности нагрева котла. Установка подобных котлов для использования газов с относительно невысокой температурой (500 -- 700 °С) нецелесообразна из-за слабой теплопередачи лучеиспусканием.

В случае оборудования высокотемпературных печей металлическими рекуператорами котлы-утилизаторы целесообразно устанавливать непосредственно за рабочими камерами печей. В этом случае в котле температура дымовых газов понижается до 1000 - 1100 °С. С такой температурой они уже могут быть направлены в жароупорную секцию рекуператора. Если газы несут много пыли, то котел-утилизатор устраивается в виде экранного котла-шлакогранулятора, что обеспечивает сепарацию уноса из газов и облегчает работу рекуператора.

Предлагаю к рассмотрению деятельность по утилизации дымовых газов. Дымовые газы в избытке имеются в любом поселке и городе. Основная часть производителей дыма, это паровые и водогрейные котлы и двигатели внутреннего сгорания. Дымовые газы двигателей рассматривать в этой идее я не буду (хотя они тоже по составу подходят), а вот на дымовых газах котельных остановлюсь подробнее.


Проще всего использовать дым газовых котельных (промышленных или частных домов), это самый чистый вид дымового газа, в котором находится минимальное количество вредных примесей. Можно использовать и дым котельных сжигающих уголь или жидкое топливо, но в этом случае придется выполнять очистку дымовых газов от примесей (это не так сложно, но все-таки дополнительные затраты).


Основные компоненты дымового газа — азот, углекислый газ и водяной пар. Водяной пар никакой ценности не представляет и может быть легко удален из дымового газа соприкосновением газа с прохладной поверхностью. Оставшиеся компоненты цену уже имеют.


Газообразный азот применяется в пожаротушении, для перевозки и хранения легковоспламеняющихся и взрывчатых сред, как защитный газ для предохранения от окисления легкоокисляемых веществ и материалов, для предотвращения коррозии цистерн, продувки трубопроводов и емкостей, для создания инертных сред в силосных зернохранилищах. Азотная защита предотвращает рост бактерий, применяется для очистки сред от насекомых и микробов. В пищевой промышленности к атмосфере азота часто прибегают как к средству повышающему срок хранения скоропортящихся продуктов. Широкое применение находит газообразный азот для получения из него жидкого азота.


Для получения азота достаточно отделить от дымового газа водяной пар и углекислый газ. Что касается следующего компонента дыма — углекислого газа (СО2, углекислота, диоксид углерода) то ассортимент его применения еще больше и цена на него значительно выше.


Предлагаю информацию о нем получить более полную. Обычно углекислый газ хранится в 40-литровых баллонах окрашенных в черный цвет с желтой надписью «углекислота». Более правильное название СО2, «двуокись углерода», но к названию «углекислота» все уже привыкли, оно за СО2 закрепилось и поэтому надпись «углекислота» на баллонах пока сохраняется. Находится углекислота в баллонах в жидком виде. Углекислота не имеет запаха, нетоксична, негорюча и невзрывоопасна. Является веществом, естественным образом, образующимся в организме человека. В выдыхаемом человеком воздухе ее содержится обычно 4,5%. Основное применение углекислота находит при газировании и реализации в розлив напитков, применяется в качестве защитного газа при проведении сварочных работ с использованием сварочных полуавтоматов, используется для повышения урожайности (в 2 раза) с/х культур в теплицах за счет увеличенияконцентрации СО2 в воздухе и увеличения (в 4-6 раз при насыщении углекислотой воды) производства микроводорослей при их искусственном выращивании, для сохранения и улучшения качества кормов и продуктов, для производства сухого льда и использования его в установках криобластинга (очистка поверхностей от загрязнений) и для получения низких температур при хранении и транспортировке пищевых продуктов и т.д.


Углекислота является всюду востребованным товаром и потребность в ней постоянно увеличивается. В домашнем и малом бизнесе получать углекислоту можно извлечением ее из дымового газа на углекислотных установках малой производительности. Лицам имеющим отношение к технике несложно изготовить такую установку самостоятельно. При соблюдении норм технологического процесса, качество получаемой углекислоты соответствует всем требованиям ГОСТ 8050-85.
Углекислоту можно получать как из дымовых газов котельных (или отопительных котлов частных домовладений) так и способом специального сжигания топлива в самой установке.


Теперь экономическая сторона дела. Установка может работать на любом виде топлива. При сжигании топлива (специально для получения углекислоты), выделяется следующее количество СО2:
природный газ (метан) – 1,9 кг СО2 от сжигания 1 куб. м газа;
каменный уголь, разных месторождений – 2,1- 2,7 кг СО2 от сжигания 1 кг топлива;
пропан, бутан, дизтопливо, мазут — 3,0 кг СО2 от сжигания 1 кг топлива.


Полностью всю выделяемую углекислоту извлечь не удастся, а до 90% (можно достичь и 95% извлечения) вполне возможно. Стандартное наполнение 40-литрового баллона 24-25 кг, поэтому можно самостоятельно посчитать удельный расход топлива для получения одного баллона углекислоты.


Он не такой уж большой, например, в случае получения углекислоты от сжигания природного газа достаточно сжигать 15 м3 газа.


По самому высокому тарифу (г.Москва) это 60 руб. на 40-литр. баллон углекислоты. В случае извлечения СО2 из дымовых газов котельных себестоимость получения углекислоты снижается, так как снижаются затраты на топливо и прибыль с установки увеличивается. Установка может работать круглосуточно, в автоматическом режиме с минимальным привлечением человека к процессу получения углекислоты. Производительность установки зависит от количества содержащегося СО2 в дымовом газе, конструкции установки и может достигать 25 баллонов углекислоты в сутки и более.


Цена 1 баллона углекислоты в большинстве регионов России превышает 500 рублей (декабрь 2008 г.) Месячная выручка от реализации углекислоты в этом случае достигает: 500 руб./бал. х 25 бал./сут. х 30 сут. = 375 000 руб. Выделяемое при сжигании тепло можно использовать одновременно для отопления помещений, и нерационального использования топлива в этом случае не будет. При этом следует иметь ввиду, что экологическая обстановка по месту извлечения углекислоты из дымовых газов только улучшается, так как выбросы СО2 в атмосферу снижаются.


Неплохо себя рекомендует и способ извлечения углекислоты из дымовых газов получаемых от сжигания древесных отходов (отходы лесозаготовки и деревопереработки, столярных цехов и проч.). В этом случае та же самая углекислотная установка дополняется древесным газогенератором (заводского или самостоятельного изготовления) для получения древесногенераторного газа. Древесные отходы (чурки, щепа, стружки, опилки и т.п.) 1-2 раза в сутки засыпаются в бункер газогенератора, в остальном работа установки происходит в том же режиме, как и в вышеприведенном.
Выход углекислоты из 1 тонны древесных отходов составляет 66 баллонов. Выручка с одной тонны отходов составляет (при цене баллона углекислоты 500 руб.): 500 руб./бал. х 66 бал. = 33 000 руб.


При средней величине древесных отходов с одного деревоперерабатывающего цеха в 0,5 тонны отходов в сутки, выручка от реализации углекислоты может достигать 500 тыс. руб. в месяц, а в случае привоза отходов и с других деревоперерабатывающих и столярных цехов выручка становится еще больше.


Возможен вариант получения углекислоты и от сжигания автомобильных покрышек, что также только на пользу нашей экологии.


В случае производства углекислоты в количестве большем, чем может ее потребить местный рынок сбыта, произведенную углекислоту можно самостоятельно использовать для других видов деятельности, а также перерабатывать ее в другие химвещества и реактивы (например, по несложной технологии в экологически чистые углеродсодержащие удобрения, разрыхлители теста и проч.) вплоть до получения из углекислоты автомобильного бензина.


Владельцы патента RU 2606296:

Изобретение относится к теплоэнергетике и может найти применение на любом предприятии, эксплуатирующем котлы на углеводородном топливе.

Известны серийно выпускаемые Костромским калориферным заводом калориферы типа КСк (Кудинов А.А. Энергосбережение в теплогенерирующих установках. - Ульяновск: УлГТУ, 2000. - 139, стр. 33), состоящие из газоводяного поверхностного теплоутилизатора, поверхность теплообмена которого выполнена из оребренных биметаллических трубок, сетчатого фильтра, распределительного клапана, каплеуловителя и гидропневматического обдувочного устройства.

Калориферы типа КСк работают следующим образом. Дымовые газы попадают на распределительный клапан, который делит их на два потока, основной поток газа направляется через сетчатый фильтр в теплоутилизатор, второй - по обводной линии газохода. В теплоутилизаторе водяные пары, содержащиеся в дымовых газах, конденсируются на оребренных трубках, нагревая текущую в них воду. Образующийся конденсат собирается в поддоне и подается насосами в схему подпитки теплосети. Нагретая в теплоутилизаторе вода подается потребителю. На выходе из теплоутилизатора осушенные дымовые газы смешиваются с исходными дымовыми газами из обводной линии газохода и направляются через дымосос в дымовую трубу.

Для работы теплоутилизатора в режиме конденсации всей его конвективной части требуется, чтобы температура нагрева воды в конвективном пакете не превышала 50°С. Для использования такой воды в системах отопления ее нужно дополнительно догревать.

Для предотвращения конденсации остаточных водяных паров дымовых газов в газоходах и дымовой трубе, часть исходных газов через обводной канал подмешиваются к осушенным дымовым газам, повышая их температуру. При таком подмесе увеличивается и содержание водяных паров в уходящих дымовых газах, снижая эффективность утилизации тепла.

Известен теплоутилизатор (RU 2323384 С1, МПК F22B 1/18 (2006.01), опубл. 27.04.2008), содержащий контактный теплообменник, каплеуловитель, газо-газовый теплообменник, включенный по схеме прямотока, газоходы, трубопроводы, насос, датчики температуры, клапаны-регуляторы. По ходу оборотной воды контактного теплообменника последовательно расположены водо-водяной теплообменник и водовоздушный теплообменник с обводным каналом по ходу воздуха.

Известен способ работы этого теплоутилизатора. Уходящие газы по газоходу поступают на вход газо-газового теплообменника, последовательно проходя три его секции, затем на вход контактного теплообменника, где, проходя через насадку, омываемую оборотной водой, охлаждаются ниже точки росы, отдавая явное и скрытое тепло оборотной воде. Далее охлажденные и влажные газы освобождаются от большей части унесенной потоком жидкой воды в каплеуловителе, нагреваются и подсушиваются, по меньшей мере, в одной секции газо-газового теплообменника, дымососом направляются в трубу и выбрасываются в атмосферу. Одновременно нагретая оборотная вода из поддона контактного теплообменника насосом подается в водо-водяной теплообменник, где нагревает холодную воду из трубопровода. Нагретая в теплообменнике вода поступает на нужды технологического и бытового горячего водоснабжения или в низкотемпературный отопительный контур.

Далее оборотная вода поступает в водовоздушный теплообменник, нагревает, по меньшей мере, часть дутьевого воздуха, поступающего из-за пределов помещения по воздуховоду, охлаждаясь до минимально возможной температуры, и поступает в контактный теплообменник через водораспределитель, где отбирает тепло от газов, попутно промывая их от взвешенных частиц, и поглощает часть оксидов азота и серы. Нагретый воздух из теплообменника дутьевым вентилятором подается в штатный воздухоподогреватель или непосредственно в топку. Оборотная вода по необходимости фильтруется и обрабатывается известными способами.

Для осуществления такого способа необходима система регулирования вследствие использования утилизируемого тепла для целей горячего водоснабжения из-за непостоянства суточного графика потребления горячей воды.

Нагретая в теплообменнике вода, поступающая на нужды горячего водоснабжения или в низкотемпературный отопительный контур, требует ее доведения до необходимой температуры, так как не может быть нагрета в теплообменнике выше температуры воды оборотного контура, которая определяется температурой насыщения водяных паров в дымовых газах. Низкий нагрев воздуха в водовоздушном теплообменнике не позволяет использовать этот воздух для отопления помещений.

Наиболее близкими к заявляемому изобретению являются устройство и способ утилизации тепла дымовых газов (RU 2436011 С1, МПК F22B 1/18 (2006.01), опубл. 10.12.2011).

Устройство утилизации тепла дымовых газов содержит газо-газовый поверхностный пластинчатый теплообменник, выполненный по схеме противотока, поверхностный газовоздушный пластинчатый конденсатор, инерционный каплеуловитель, газоходы, дымосос, воздуховоды, вентиляторы и трубопровод.

Исходные дымовые газы охлаждаются в газо-газовом поверхностном пластинчатом теплообменнике, нагревая осушенные дымовые газы. Греющая и нагреваемая среда движутся противотоком. При этом происходит глубокое охлаждение влажных дымовых газов до температуры, близкой к точке росы водяных паров. Далее содержащиеся в дымовых газах водяные пары конденсируются в газовоздушном поверхностном пластинчатом теплообменнике - конденсаторе, нагревая воздух. Нагретый воздух используется для отопления помещений и покрытия потребности процесса горения. Конденсат после дополнительной обработки используют для восполнения потерь в теплосети или паротурбинном цикле. Для исключения конденсации остаточных водяных паров, уносимых потоком из конденсатора, перед дополнительным дымососом подмешивается часть подогретых осушенных дымовых газов. Осушенные дымовые газы подаются дымососом в описанный выше подогреватель, где нагреваются для предотвращения возможной конденсации водяных паров в газоходах и дымовой трубе и направляются в дымовую трубу.

Недостатками этого способа является то, что утилизируется преимущественно скрытая теплота конденсации водяных паров, содержащихся в дымовых газах. Если рекуперативный теплообменник охлаждает исходные дымовые газы до температуры, близкой к точке росы водяных паров, то нагрев уходящих осушенных дымовых газов будет избыточным, что снижает эффективность утилизации. Недостатком является и использование для нагрева только одной среды - воздуха.

Задачей изобретения является повышение эффективности утилизации тепла дымовых газов за счет использования скрытого тепла конденсации водяных паров и повышенной температуры самих дымовых газов.

В предложенном способе глубокой утилизации тепла дымовых газов, также как в прототипе, дымовые газы предварительно охлаждают в газо-газовом поверхностном пластинчатом теплообменнике, нагревая осушенные дымовые газы, конденсируют водяные пары, содержащиеся в дымовых газах в конденсаторе, нагревая воздух.

Согласно изобретению между теплообменником и конденсатором дымовые газы доохлаждают до температуры, близкой к точке росы водяных паров, нагревая воду.

Газовые котлы имеют высокую температуру уходящих дымовых газов (130°С для больших энергетических котлов, 150°С-170°С для малых котлов). Для охлаждения дымовых газов перед конденсацией используют два устройства: рекуперативный газо-газовый теплообменник и утилизационный водоподогреватель.

Исходные дымовые газы предварительно охлаждают в газо-газовом поверхностном пластинчатом теплообменнике, нагревая осушенные дымовые газы на 30-40°С выше, чем температура насыщения содержащихся в них водяных паров, для создания запаса по температуре при возможном охлаждении дымовых газов в трубе. Это позволяет уменьшить площадь теплообмена рекуперативного теплообменника по сравнению с прототипом и полезно использовать оставшееся тепло дымовых газов.

Существенным отличием является использование контактного газоводяного водоподогревателя для окончательного охлаждения влажных дымовых газов до температуры, близкой к точке росы водяных паров. На входе в водоподогреватель дымовые газы имеют достаточно высокую температуру (130°С-90°С), что позволяет нагревать воду до 50°С-65°С с частичным ее испарением. На выходе из контактного газоводяного водоподогревателя дымовые газы имеют температуру близкую к точке росы содержащихся в них водяных паров, что повышает эффективность использования поверхности теплообмена в конденсаторе, исключает образование сухих зон конденсатора и повышает коэффициент теплопередачи.

Способ утилизации тепла дымовых газов изображен на фиг.1.

В таблице 1 приведены результаты проверочного расчета варианта установки для котла на природном газе мощностью 11 МВт.

Способ глубокой утилизации тепла дымовых газов осуществляют следующим образом. Исходные дымовые газы 1 предварительно охлаждают в газо-газовом поверхностном пластинчатом теплообменнике 2, нагревая осушенные дымовые газы. Далее дымовые газы 3 окончательно охлаждают в контактном газоводяном водоподогревателе 4 до температуры, близкой к точке росы водяных паров, разбрызгивая воду, в качестве которой целесообразно использовать полученный в конденсаторе конденсат. При этом часть воды испаряется, повышая влагосодержание дымовых газов, а остальная нагревается до этой же температуры. Содержащиеся в дымовых газах 5 водяные пары конденсируют в газовоздушном поверхностном пластинчатом теплообменнике - конденсаторе 6 с каплеуловителем 7, нагревая воздух. Конденсат 8 подается для подогрева в контактный газоводяной водоподогреватель 4. Теплота конденсации используется для подогрева холодного воздуха, который подают вентиляторами 9 из окружающей среды по воздуховоду 10. Нагретый воздух 11 направляют в производственное помещение котельного цеха для его вентиляции и отопления. Из этого помещения воздух подают в котел для обеспечения процесса горения. Осушенные дымовые газы 12 дымососом 13 подают в газо-газовый поверхностный пластинчатый теплообменник 2 для подогрева и направляют в дымовую трубу 14.

Для исключения конденсации остаточных водяных паров, уносимых потоком из конденсатора, перед дымососом 13 подмешивают часть подогретых осушенных дымовых газов 15 (до 10%), величина которой первоначально настраивается заслонкой 16.

Регулирование температуры нагреваемого воздуха 11 осуществляют изменением расхода осушаемых дымовых газов 1 или изменением расхода воздуха, при помощи регулирования числа оборотов дымососа 13 или вентиляторов 9 в зависимости от температуры наружного воздуха.

Теплообменник 2 и конденсатор 6 представляют собой поверхностные пластинчатые теплообменники, выполненные из унифицированных модульных пакетов, которые скомпонованы таким образом, чтобы движение теплоносителей осуществлялось противотоком. В зависимости от объема осушаемых дымовых газов, подогреватель и конденсатор формируются из рассчитываемого количества пакетов. Водоподогреватель 4 представляет собой контактный газоводяной теплообменник, обеспечивающий дополнительное охлаждение дымовых газов и нагрев воды. Нагретая вода 17 после дополнительной обработки используется для восполнения потерь в теплосети или паротурбинном цикле. Блок 9 формируется из нескольких вентиляторов для изменения расхода подогреваемого воздуха.

В таблице 1 приведены результаты поверочного расчета варианта исполнения установки для котла на природном газе мощностью 11 МВт. Расчеты проводились для температуры наружного воздуха -20°С. Расчет показывает, что использование контактного газоводяного водоподогревателя 4 приводит к исчезновению сухой зоны в конденсаторе 6, интенсифицирует теплообмен и увеличивает мощность установки. Процент утилизированного тепла увеличивается с 14,52 до 15,4%, при этом температура точки росы водяных паров в осушенных дымовых газах снижается до 17°С. Примерно 2% тепловой мощности не утилизируется, а используется для рекуперации - нагрева осушенных дымовых газов до температуры 70°С.

Способ глубокой утилизации тепла дымовых газов, по которому дымовые газы предварительно охлаждают в газо-газовом поверхностном пластинчатом теплообменнике, нагревая осушенные дымовые газы, доохлаждают в водоподогревателе до температуры, близкой к точке росы водяных паров, нагревая воду, конденсируют водяные пары, содержащиеся в дымовых газах в конденсаторе, нагревая воздух, отличающийся тем, что между теплообменником и конденсатором установлен поверхностный трубчатый газоводяной водоподогреватель для охлаждения влажных дымовых газов и нагрева воды, при этом основная утилизация тепла происходит в конденсаторе при нагреве воздуха, а дополнительная - в водоподогревателе.

Похожие патенты:

Изобретение относится к нефтехимическому машиностроению и может быть использовано для крекинга мазута, а также для нагрева технологических сред (например, нефти, нефтяной эмульсии, газа, их смесей) и для других технологических процессов, требующих интенсивного подвода тепла.

Изобретение относится к области теплоэнергетики и может быть использовано в системах подогрева и кондиционирования воздуха. Изобретение заключается в том, что соединение теплообменных оребренных трубок в ряду и рядов между собой выполнено последовательно по одной трубке в ходу в одну ветвь, причем смежные теплообменные трубки в ряду соединены между собой последовательно межтрубными переходами в форме крутозагнутых отводов и снабжены легкосъемными ремонтно-защитными пробками, количество последовательно подключенных трубок в ряду и общее количество ходов во всех рядах выбрано в зависимости от фактических параметров существующей тепловой сети и определено гидравлической характеристикой водяного калорифера.

Электрический радиатор, использующий вычислительные процессоры в качестве источника тепла. Этот радиатор для бытовых и производственных помещений, использующий вычислительные процессоры в качестве источников тепла, содержит нагреваемый корпус, который осуществляет теплопередачу между источником тепла и окружающим воздухом, количество Q процессоров, распределенных на количестве Р печатных плат, образующих источник тепла радиатора и мощное средство, выполняющее вычисления посредством внешних информационных систем, интерфейс человек-машина, позволяющий контролировать вычислительную и тепловую мощность, выдаваемую радиатором, стабилизированный источник питания для различных электронных компонентов, сетевой интерфейс, позволяющий соединять радиатор с внешними сетями.

Изобретение предназначено для осуществления реакций парового риформинга и может быть использовано в химической промышленности. Теплообменный реактор содержит множество байонетных труб (4), подвешенных к верхнему своду (2), простирающихся до уровня нижнего дна (3) и заключенных в кожух (1), содержащий впускной (Е) и выпускной (S) патрубки для дымовых газов.

Изобретение предлагает систему и способ парогазовой конверсии. Способ парогазовой когенерации на основе газификации и метанирования биомассы включает: 1) газификацию биомассы путем смешивания кислорода и водяного пара, полученных из воздухоразделительной установки, с биомассой, транспортировку образующейся в результате смеси через сопло в газификатор, газификацию биомассы при температуре 1500-1800°С и давлении 1-3 МПа с получением неочищенного газифицированного газа и транспортировку перегретого пара, имеющего давление 5-6 МПа, полученного в результате целесообразной утилизации тепла, к паровой турбине; 2) конверсию и очистку: в соответствии с требованиями реакции метанирования корректировку отношения водород/углерод неочищенного газифицированного газа, образованного на стадии 1), до 3:1 с использованием реакции конверсии и извлечение при низкой температуре неочищенного газифицированного газа с использованием метанола для десульфуризации и декарбонизации, в результате чего получают очищенный сингаз; 3) проведение метанирования: введение очищенного сингаза стадии 2) в секцию метанирования, состоящую из секции первичного метанирования и секции вторичного метанирования, причем секция первичного метанирования содержит первый реактор первичного метанирования и второй реактор первичного метанирования, соединенные последовательно; предоставление возможности части технологического газа из второго реактора первичного метанирования вернуться к входу первого реактора первичного метанирования для смешивания со свежим подаваемым газом и далее возможности войти в первый реактор первичного метанирования, так что концентрация реагентов на входе первого реактора первичного метанирования уменьшается и температура слоя катализатора регулируется технологическим газом; введение сингаза после первичного метанирования в секцию вторичного метанирования, содержащую первый реактор вторичного метанирования и второй реактор вторичного метанирования, соединенные последовательно, где небольшое количество непрореагировавшего СО и большое количество CO2 превращается в CH4, и транспортировку перегретого пара промежуточного давления, образованного в секции метанирования, к паровой турбине; и 4) концентрирование метана: концентрирование метана синтетического природного газа, содержащего следовые количества азота и водяного пара, полученного на стадии 3), с помощью адсорбции при переменном давлении, так что молярная концентрация метана достигает 96% и теплотворная способность синтетического природного газа достигает 8256 ккал/Nм3.

Изобретение относится к теплоэнергетике. Способ глубокой утилизации тепла дымовых газов включает предварительное охлаждение дымовых газов в газо-газовом поверхностном пластинчатом теплообменнике, нагревая противотоком осушенные дымовые газы, для создания температурного запаса, предотвращающего конденсацию остаточных водяных паров в дымовой трубе. Дальнейшее охлаждение дымовых газов до температуры, близкой к точке росы водяных паров, осуществляется в контактном газоводяном водоподогревателе, который нагревает воду. Охлажденные влажные дымовые газы подают в газовоздушный поверхностный пластинчатый теплообменник - конденсатор, где конденсируются содержащиеся в дымовых газах водяные пары, нагревая воздух. Осушенные дымовые газы подают дополнительным дымососом в газо-газовый поверхностный пластинчатый теплообменник, где нагревают для предотвращения возможной конденсации водяных паров в газоходах и дымовой трубе и направляются в дымовую трубу. Технический результат: повышение эффективности утилизации тепла дымовых газов за счет использования скрытого тепла конденсации водяных паров и повышенной температуры самих дымовых газов. 1 ил., 1 табл.

В настоящее время температуру уходящих дымовых газов за котлом принимают не ниже 120-130°С по двум причинам: для исключения конденсации водяных паров на боровах, газоходах и дымовых трубах и для увеличения естественной тяги, снижающей напор дымососа. При этом теплоту уходящих газов и скрытую теплоту парообразования водяных паров можно полезно использовать. Использование теплоты уходящих дымовых газов и скрытой теплоты парообразования водяных паров называется методом глубокой утилизации теплоты дымовых газов. В настоящее время существуют различные технологии реализации данного метода, апробированные в Российской Федерации и нашедшие массовое применение за рубежом. Метод глубокой утилизации теплоты дымовых газов позволяет увеличить КПД топливопотребляющей установки на 2-3%, что соответствует снижению расхода топлива на 4-5 кг у.т. на 1 Гкал выработанного тепла. При внедрении данного метода, существуют технические сложности и ограничения связанные в основном со сложностью расчета процесса тепломассобмена при глубокой утилизации тепла уходящих дымовых газов и необходимостью автоматизации процесса, однако эти сложности решаемы при современном уровне технологий.

Для повсеместного внедрения данного метода необходима разработка методических указаний по расчету и установке систем глубокой утилизации тепла дымовых газов и принятие правовых актов запрещающих ввод в эксплуатацию топливоиспользующих установок на природном газе без применения глубокой утилизации тепла дымовых газов.

1. Формулировка проблемы по рассматриваемому методу (технологии) повышения энергоэффективности; прогноз перерасхода энергоресурсов, или описание других возможных последствий в масштабах страны при сохранении существующего положения

В настоящее время температуру уходящих дымовых газов за котлом принимают не ниже 120-130°С по двум причинам: для исключения конденсации водяных паров на боровах, газоходах и дымовых трубах и для увеличения естественной тяги, снижающей напор дымососа. При этом температура уходящих дымовых газов непосредственно влияет на значение q2 - потери тепла с уходящими газами, одной из основных составляющих теплового баланса котла. Например снижение температуры уходящих дымовых газов на 40°С при работе котла на природном газе и коэффициенте избытка воздуха 1,2 повышает КПД котла брутто на 1,9%. При этом не учитывается скрытая теплота парообразования продуктов сгорания. На сегодняшний день подавляющее большинство водогрейных и паровых котельных агрегатов в нашей стране, сжигающих природный газ, не оснащены установками, использующими скрытую теплоту парообразования водяных паров. Это тепло теряется вместе с уходящими газами.

2. Наличие методов, способов, технологий и т.п. для решения обозначенной проблемы

В настоящее время применяются методы глубокой утилизации тепла уходящих газов (ВЭР) путем использования рекуперативных, смесительных, комбинированных аппаратов, работающих при различных приемах использования теплоты, содержащейся в уходящих газах. При этом данные технологии используются на большинстве вводимых в эксплуатацию котлов за рубежом, сжигающих природный газ и биомассу.

3. Краткое описание предлагаемого метода, его новизна и информированность o нём, наличие программ развития; результат при массовом внедрении в масштабах страны

Наиболее часто используемый метод глубокой утилизации тепла дымовых газов заключается в том, что продукты сгорания природного газа после котла (либо после водяного экономайзера) с температурой 130-150°С разделяются на два потока. Приблизительно 70-80% газов направляются по главному газоходу и поступают в конденсационный теплоутилизатор поверхностного типа, остальная часть газов направляется в байпасный газоход. В теплоутилизаторе продукты сгорания охлаждаются до 40-50°С, при этом происходит конденсация части водяных паров, что позволяет полезно использовать как физическую теплоту дымовых газов, так и скрытую теплоту конденсации части содержащихся в них водяных паров. Охлажденные продукты сгорания после каплеотделителя смешиваются с проходящими по байпасному газоходу неохлажденными продуктами сгорания и при температуре 65-70°С отводятся дымососом через дымовую трубу в атмосферу. В качестве нагреваемой среды в теплоутилизторе может использоваться исходная вода для нужд химводоподготовки или воздух, поступающий затем на горение. Для интенсификации теплообмена в теплоутилизаторе возможна подача выпара атмосферного деаэратора в основной газоход. Необходимо также отметить возможность использования сконденсировавшихся обессоленных водяных паров в качестве исходной воды. Результатом внедрения данного метода, является повышение КПД котла брутто на 2-3%, с учетом использования скрытой теплоты парообразования водяных паров.

4. Прогноз эффективности метода в перспективе c учётом:
- роста цен на энергоресурсы;
- роста благосостояния населения;
- введением новых экологических требований;
- других факторов.

Данный метод повышает эффективность сжигания природного газа и снижает выбросы оксидов азота в атмосферу за счет их растворения в конденсирующихся водяных парах.

5. Перечень групп абонентов и объектов, где возможно применение данной технологии c максимальной эффективностью; необходимость проведения дополнительных исследований для расширения перечня

Данный метод, возможно, использовать в паровых и водогрейных котельных использующих в качестве топлива природный и сжиженный газ, биотопливо. Для расширения перечня объектов, на которых возможно использование данного метода необходимо провести исследования процессов тепломассообмена продуктов сгорания мазута, легкого дизтоплива и различных марок углей.

6. Обозначить причины, по которым предлагаемые энергоэффективные технологии не применяются в массовом масштабе; наметить план действий, для снятия существующих барьеров

Массовое применение данного метода в Российской Федерации не производится как правило по трем причинам:

  • Недостаточная информированность о методе;
  • Наличие технических ограничений и сложностей при внедрении метода;
  • Отсутствие финансирования.

7. Наличие технических и других ограничений применения метода на различных объектах; при отсутствии сведений по возможным ограничениям необходимо их определить проведением испытаний

К техническим ограничениям и сложностям при внедрении метода можно отнести:

  • Сложность расчета процесса утилизации влажных газов, так как процесс теплообмена сопровождается процессами массобмена;
  • Необходимость поддержания заданных значений температуры и влажности уходящих дымовых газов, во избежание конденсации паров в газоходах и дымовой трубе;
  • Необходимость избегать обмерзания поверхностей теплообмена при нагревании холодных газов;
  • При этом необходимо проведение испытаний газоходов и дымовых труб обработанных современными антикоррозионными покрытиями на предмет возможности снижения ограничений по температуре и влажности уходящих после теплоутилизационной установки дымовых газов.

8. Необходимость проведения НИОКР и дополнительных испытаний; темы и цели работ

Необходимость проведения НИОКР и дополнительных испытаний приведена в пунктах 5 и 7.

9. Существующие меры поощрения, принуждения, стимулирования для внедрения предлагаемого метода и необходимость их совершенствования

Существующие меры поощрения и принуждения внедрения данного метода отсутствуют. Стимулировать внедрение данного метода может заинтересованность в снижении потребления топлива и выбросов оксидов азота в атмосферу.

10. Необходимость разработки новых или изменения существующих законов и нормативно-правовых актов

Необходима разработка методических указаний по расчету и установке систем глубокой утилизации тепла дымовых газов. Возможно, необходимо принятие правовых актов запрещающих ввод в эксплуатацию топливоиспользующих установок на природном газе без применения глубокой утилизации тепла дымовых газов.

11. Наличие постановлений, правил, инструкций, нормативов, требований, запретительных мер и других документов, регламентирующих применение данного метода и обязательных для исполнения; необходимость внесения в них изменений или необходимость изменения самих принципов формирования этих документов; наличие ранее существовавших нормативных документов, регламентов и потребность в их восстановлении

Вопросы применения данного метода в существующей нормативно-правовой базе отсутствуют.

12. Наличие внедрённых пилотных проектов, анализ их реальной эффективности, выявленные недостатки и предложения по совершенствованию технологии с учётом накопленного опыта

Данные о масштабном внедрении в Российской Федерации данного метода отсутствуют, есть опыт внедрения на ТЭЦ РАО ЕЭС и как было указано выше, накоплен большой опыт по глубокой утилизации дымовых газов за рубежом. Всероссийским теплотехническим институтом выполнены конструкторские проработки установок глубокой утилизации тепла продуктов сгорания для водогрейных котлов ПТВМ(КВГМ). Недостатки данного метода и предложения по совершенствованию приведены в пункте 7.

13. Возможность влияния на другие процессы при массовом внедрении данной технологии (изменение экологической обстановки, возможное влияние на здоровье людей, повышение надёжности энергоснабжения, изменение суточных или сезонных графиков загрузки энергетического оборудования, изменение экономических показателей выработки и передачи энергии и т.п.)

Массовое внедрение данного метода позволит снизить расход топлива на 4-5 кг у.т. на одну Гкал выработанного тепла и повлияет на экологическую обстановку путем снижение выбросов оксидов азота.

14. Наличие и достаточность производственных мощностей в России и других странах для массового внедрения метода

Профильные производственные мощности в Российской Федерации в состоянии обеспечить внедрение данного метода, но не в моноблочном исполнении, при использовании зарубежных технологий возможно моноблочное исполнение.

15. Необходимость специальной подготовки квалифицированных кадров для эксплуатации внедряемой технологии и развития производства

Для внедрения данного метода необходима существующая профильная подготовка специалистов. Возможна организация специализированных семинаров по вопросам внедрения данного метода.

16. Предполагаемые способы внедрения:
1) коммерческое финансирование (при окупаемости затрат);
2) конкурс на осуществление инвестиционных проектов, разработанных в результате выполнения работ по энергетическому планированию развития региона, города, поселения;
3) бюджетное финансирование для эффективных энергосберегающих проектов с большими сроками окупаемости;
4) введение запретов и обязательных требований по применению, надзор за их соблюдением;
5) другие предложения
.

Предполагаемыми методами внедрения являются:

  • бюджетное финансирование;
  • привлечение инвестиций (срок окупаемости 5-7 лет);
  • введение требований к вводу в эксплуатацию новых топливопотребляющих установок.

Для того чтобы добавить описание энергосберегающей технологии в Каталог, заполните опросник и вышлите его на c пометкой «в Каталог» .

Evaluation of Efficiency of Deep recuperation of Power Plant Boilers’ Combustion Productions

E.G. Shadek, Candidate of Engineering, independent expert

Keywords: combustion products, heat recuperation, boiler plant equipment, energy efficiency

One of the methods to solve the problem of fuel economy and improvement of energy efficiency of boiler plants is development of technologies for deep heat recuperation of boiler exhaust gases. We offer a process scheme of a power plant with steam-turbine units (STU) that allows for deep recuperation of heat from boiler combustion products from STU condenser using cooler-condensate with minimum costs without the use of heat pump units.

Описание:

Одним из путей решения проблемы экономии топлива и повышения энергоэффективности котельных установок является разработка технологий глубокой утилизации теплоты уходящих газов из котлов.Предлагаем технологическую схему электростанции с паротурбинными установками (ПТУ), позволяющую с минимальными затратами, без применения теплонасосных установок, осуществить глубокую утилизацию тепла отходящих из котла продуктов сгорания благодаря наличию охладителя – конденсата из конденсатора ПТУ.

Е. Г. Шадек , канд. техн. наук, независимый эксперт

Одним из путей решения проблемы экономии топлива и повышения энергоэффективности котельных установок является разработка технологий глубокой утилизации теплоты уходящих газов из котлов. Предлагаем технологическую схему электростанции с паротурбинными установками (ПТУ), позволяющую с минимальными затратами, без применения теплонасосных установок, осуществить глубокую утилизацию тепла отходящих из котла продуктов сгорания благодаря наличию охладителя – конденсата из конденсатора ПТУ.

Глубокая утилизация тепла продуктов сгорания (ПС) обеспечивается при их охлаждении ниже температуры точки росы, равной для ПС природного газа 50–55 0 С. При этом происходят следующие явления:

  • конденсация водяных паров (до 19–20 % объема или 12–13 % веса продуктов сгорания),
  • утилизация физической теплоты ПС (40–45 % всего теплосодержания),
  • утилизация скрытой теплоты парообразования (соответственно 60–55 %) .

Ранее установлено, что экономия топлива при глубокой утилизации в сравнении с котлом с паспортным (максимальным) КПД 92 % составляет 10–13 %. Отношение количества утилизируемого тепла к тепловой мощности котла составляет порядка 0,10–0,12, а КПД котла в конденсационном режиме – 105 % по низшей теплотворной способности газа.

Кроме того, при глубокой утилизации в присутствии в ПС водяных паров эмиссия вредных выбросов сокращается на 20–40 % и более, что делает процесс экологически чистым.

Еще один эффект глубокой утилизации – улучшение условий и продолжительности службы газового тракта, т. к. конденсация локализуется в камере, где установлен утилизационный теплообменник, независимо от температуры наружного воздуха .

Глубокая утилизация для отопительных систем

В передовых западных странах глубокая утилизация для отопительных систем осуществляется применением водогрейных котлов конденсационного типа, оборудованных конденсационным экономайзером .

Низкая, как правило, температура обратной воды (30–40 0 С) при типичном температурном графике, например 70/40 0 С, в системах отопления этих стран позволяет обеспечить глубокую утилизацию тепла в конденсационном экономайзере, оснащенном узлом сбора, отвода и обработки конденсата (с последующим его использованием для подпитки котла). Такая схема обеспечивает конденсационный режим работы котла без искусственного хладоносителя, т. е. без применения теплонасосной установки.

Эффективность и рентабельность глубокой утилизации для отопительных котлов в доказательствах не нуждаются. Конденсационные котлы получили на Западе широкое применение: до 90 % всех выпускаемых котлов – конденсационные. Эксплуатируются такие котлы и в нашей стране, хотя их производство у нас отсутствует.

В России, в отличие от стран с теплым климатом, температура в обратной магистрали тепловых сетей, как правило, выше значения точки росы, и глубокая утилизация возможна только в четырехтрубных системах (встречающихся крайне редко) или при использовании тепловых насосов. Главная причина отставания России в разработках и внедрении глубокой утилизации – низкая цена природного газа, высокие капзатраты из-за включения в схему тепловых насосов и длительные сроки окупаемости .

Глубокая утилизация для котлов электростанций

Эффективность глубокой утилизации для котлов электростанций (рис. 1) значительно выше, чем для отопительных, в силу стабильной нагрузки (КИМ = 0,8–0,9) и больших единичных мощностей (десятки мегаватт).

Оценим ресурс тепла продуктов сгорания станционных котлов, учитывая их высокий КПД (90–94 %). Данный ресурс определяется количеством сбросного тепла (Гкал/ч или кВт), однозначно зависимым от тепловой мощности котла Q K , и температурой за газовыми котлами Т 1УХ, которую в России принимают не ниже 110–130 0 С по двум причинам:

  • для увеличения естественной тяги и снижения напора (расхода энергии) дымососа;
  • для исключения конденсации водяных паров в боровах, газоходах и дымовых трубах.

Расширенный анализ большого массива 1 опытных данных балансовых, пусконаладочных испытаний, проведенных специализированными организациями, режимных карт, отчетной статистики станций и т. п. и результаты расчетов значений потери тепла с уходящими продуктами сгорания q 2 , количествa утилизируемого тепла 2 Q УТ и производных от них показателей в широком диапазоне нагрузок станционных котлов приведены в табл. 1 3 . Цель – определение q 2 и соотношений величин Q K , q 2 и Q УТ в типовых условиях работы котлов (табл. 2). В нашем случае не имеет значения, какой котел: паровой или водогрейный, промышленный или отопительный.

Показатели табл. 1, выделенные голубым цветом, рассчитывали по алгоритму (см. справку). Расчет процесса глубокой утилизации (определение Q УТ и др.) проводили по инженерной методике, приведенной в и описанной в . Коэффициент теплопередачи «продукты сгорания – конденсат» в конденсационном теплообменнике определяли по эмпирической методике завода – изготовителя теплообменника (ОАО «Калориферный завод», Кострома).

Результаты свидетельствуют о высокой экономической эффективности технологии глубокой утилизации для станционных котлов и рентабельности предлагаемого проекта. Срок окупаемости систем – от 2 лет для котла минимальной мощности (табл. 2, котел № 1) до 3–4 мес. Полученные соотношения β, φ, σ, а также статьи экономии (табл. 1, строки 8–10, 13–18) позволяют сразу оценить возможности и конкретные показатели заданного процесса, котла.

Утилизация тепла в газовом подогревателе

Обычная технологическая схема электростанции предусматривает нагрев конденсата в газовом подогревателе (часть хвостовых поверхностей котла, экономайзера) на отходящих из котла дымовых газах.

После конденсатора насосами (иногда через блочную обессоливающую установку – далее БОУ) конденсат направляется в газовый подогреватель, после которого поступает в деаэратор. При нормативном качестве конденсата БОУ байпасируют. Для исключения конденсации водяных паров из уходящих газов на последних трубах газового подогревателя температура конденсата перед ним поддерживается не ниже 60 0 С посредством рециркуляции на вход в него подогретого конденсата.

Для дополнительного снижения температуры уходящих газов в линию рециркуляции конденсата нередко включают водоводяной теплообменник, охлаждаемый подпиточной водой теплосети. Подогрев сетевой воды осуществляется конденсатом из газового подогревателя. При дополнительном охлаждении газов на 10 0 С в каждом котле можно получить около 3,5 Гкал/ч теплофикационной нагрузки.

Для предотвращения кипения конденсата в газовом подогревателе за ним устанавливают регулирующие питательные клапаны. Основное их назначение – распределение расхода конденсата между котлами в соответствии с тепловой нагрузкой ПТУ .

Система глубокой утилизации с конденсационным теплообменником

Как можно видеть из технологической схемы (рис. 1), конденсат пара из конденсатосборника насосом 14 подается в сборный бак 21, а оттуда в распределительный коллектор 22. Здесь конденсат при помощи системы автоматического регулирования станции (см. ниже) разделяется на два потока: один подается в узел глубокой утилизации 4 , в конденсационный теплообменник 7, а второй – на подогреватель низкого давления (ПНД) 18, а затем в деаэратор 15. Температура конденсата пара из конденсатора турбины (около 20–35 0 С) позволяет охладить продукты сгорания в конденсационном теплообменнике 7 до требуемых 40 0 С, т. е. обеспечить глубокую утилизацию.

Нагретый конденсат пара из конденсационного теплообменника 7 подается через ПНД 18 (либо минуя 18) в деаэратор 15. Полученный в конденсационном теплообменнике 7 конденсат продуктов сгорания сливается в поддон и резервуар 10. Оттуда он подается в бак загрязненного конденсата 23 и перекачивается дренажным насосом 24 в бак запаса конденсата 25, из которого конденсатным насосом 26 через регулятор расхода подается на участок очистки конденсата продуктов сгорания (на рис. 1 не показан), где производят его обработку по известной технологии. Очищенный конденсат продуктов сгорания подают в ПНД 18 и далее в деаэратор 15 (либо сразу в 15). Из деаэратора 15 поток чистого конденсата подают питательным насосом 16 в подогреватель высокого давления 17, а из него в котел 1.

Таким образом, утилизируемое в конденсационном теплообменнике тепло продуктов сгорания экономит топливо, расходуемое в технологической схеме электростанции на подогрев станционного конденсата перед деаэратором и в самом деаэраторе.

Конденсационный теплообменник устанавливают в камере 35 на стыке котла 27 с газоходом (рис. 2в). Тепловую нагрузку конденсационного теплообменника регулируют байпасированием, т. е. отводом части горячих газов помимо конденсационного теплообменника через байпасный канал 37 дроссель-клапаном (шибером) 36.

Простейшей была бы традиционная схема: конденсационный экономайзер, точнее хвостовые секции экономайзера котла, типа газовый подогреватель, но работающие в конденсационном режиме, т. е. с охлаждением продуктов сгорания ниже температуры точки росы. Но при этом возникают трудности конструктивного и эксплуатационного плана (обслуживание и пр.), требующие специальных решений.

Применимы различные типы теплообменников: кожухотрубные, прямотрубные, с накатанными ребрами, пластинчатые или эффективная конструкция с новой формой теплообменной поверхности с малым радиусом гиба (регенератор РГ-10, НПЦ «Анод»). В данной схеме в качестве конденсационного теплообменника приняты теплообменные блоки-секции на базе биметаллического калорифера марки ВНВ123-412-50АТЗ (ОАО «Калориферный завод», Кострома).

Выбор компоновки секций и подключения по воде и газам позволяют варьировать и обеспечивать скорости воды и газов в рекомендуемых пределах (1–4 м/с) . Газоход, камера, газовый тракт выполняются из коррозионно-стойких материалов, покрытий, в частности нержавеющих сталей, пластиков – это общепринятая практика.

* Потери тепла с химической неполнотой сгорания отсутствуют.

Особенности глубокой утилизации с конденсационным теплообменником

Высокая эффективность технологии позволяет в широких пределах регулировать тепловую мощность системы, сохраняя ее рентабельность: степень байпасирования, температуру продуктов сгорания за конденсационным теплообменником и пр. Тепловую нагрузку конденсационного теплообменника QУТ и, соответственно, количество конденсата, подаваемое в него из коллектора 22 (рис. 1), определяют как оптимальную (а не обязательно максимальную) по технико-экономическим расчетам и конструктивным соображениям с учетом режимных параметров, возможностей и условий технологической схемы котла и станции в целом.

После контакта с продуктами сгорания природного газа конденсат сохраняет высокое качество и нуждается в простой и недорогой очистке – декарбонизации (и то не всегда) и дегазации. После обработки на участке химводоподготовки (не показан) конденсат насосом через регулятор расхода подается в конденсатную линию станции – на деаэратор, а после него в котел. Если конденсат не используется, его сливают в канализацию.

В узле сбора и обработки конденсата (рис. 1, поз. 8, 10, рис. 2, поз. 23–26) применяют известное штатное оборудование систем глубокой утилизации (см., например, ).

В установке вырабатывается большое количество избыточной воды (конденсата водяных паров от сгорания углеводородов и дутьевого воздуха), поэтому система не нуждается в подпитке.

Температура продуктов сгорания на выходе из конденсационного теплообменника Т 2УХ определяется условием конденсации водяных паров в уходящих продуктах сгорания (в диапазоне 40–45 0 С).

С целью исключения выпадения конденсата в газовом тракте и особенно в дымовой трубе предусматривается байпасирование, т. е. перепуск части продуктов сгорания по обводному каналу помимо узла глубокой утилизации так, чтобы температура смеси газов за ним была в пределах 70–90 0 С. Байпасирование ухудшает все показатели процесса. Оптимальный режим – работа с байпасированием в холодное время года, а летом, когда опасности конденсации и обледенения нет, – без него.

Температура уходящих газов котлов (обычно 110–130 0 С) позволяет нагревать конденсат в конденсационном теплообменнике перед деаэратором до требуемых 90–100 0 С. Таким образом, удовлетворяются требования технологии по температурам: и нагрева конденсата (порядка 90 0 С), и охлаждения продуктов сгорания (до 40 0 С) до конденсации.

Сравнение технологий утилизации тепла продуктов сгорания

Принимая решение по утилизации тепла продуктов сгорания котла, следует сравнивать эффективности предлагаемой системы глубокой утилизации и традиционной схемы с газовым подогревателем как ближайшего аналога и конкурента.

Для нашего примера (см. справку 1) мы получили при глубокой утилизации количество утилизируемого тепла Q УТ равным 976 кВт.

Принимаем температуру конденсата на входе в газовый подогреватель конденсата 60 0 С (см. выше), при этом температура продуктов сгорания на выходе из него как минимум 80 0 С. Тогда утилизируемое в газовом подогревателе тепло продуктов сгорания, т. е. экономия тепла, будет равна 289 кВт , что в 3,4 раза меньше, чем в системе глубокой утилизации. Таким образом, «цена вопроса» в нашем примере 687 кВт, или, в годовом исчислении, 594 490 м 3 газа (при КИМ = 0,85) стоимостью около 3 млн руб. Выигрыш будет расти с мощностью котла.

Достоинства технологии глубокой утилизации

В заключение можно сделать выводы, что, помимо энергосбережения, при глубокой утилизации продуктов сгорания котла электростанции достигаются следующие результаты:

  • снижение эмиссии токсичных окислов CO и NOx, обеспечение экологической чистоты процесса;
  • получение дополнительной, избыточной воды и исключение тем самым потребности в подпиточной воде котла;
  • конденсация водяных паров продуктов сгорания локализуется в одном месте – в конденсационном теплообменнике. Не считая незначительного брызгоуноса после каплеуловителя, исключается выпадение конденсата в последующем газовом тракте и связанные с этим разрушение газоходов от коррозионного воздействия влаги, образование наледи в тракте и особенно в дымовой трубе;
  • необязательным в ряде случаев становится применение водо-водяного теплообменника; отпадает необходимость в рециркуляции: подмешивании части горячих газов к охлажденным (или нагретого конденсата к холодному) в целях повышения температуры уходящих продуктов сгорания для предотвращения конденсации в газовом тракте и дымовой трубе (экономия энергии, средств).

Литература

  1. Шадек Е., Маршак Б., Анохин А., Горшков В. Глубокая утилизация тепла отходящих газов теплогенераторов // Промышленные и отопительные котельные и мини-ТЭЦ. 2014. № 2 (23).
  2. Шадек Е. Тригенерация как технология экономии энергоресурсов // Энергосбережение. 2015. № 2.
  3. Шадек Е., Маршак Б., Крыкин И., Горшков В. Конденсационный теплообменник-утилизатор – модернизация котельных установок // Промышленные и отопительные котельные и мини-ТЭЦ. 2014. № 3 (24).
  4. Кудинов А. Энергосбережение в теплогенерирующих установках. М. : Машиностроение, 2012.
  5. Равич М. Упрощенная методика теплотехнических расчётов. М. : Изд-во АН СССР, 1958.
  6. Березинец П., Ольховский Г. Перспективные технологии и энергоустановки для производства тепловой и электрической энергии. Раздел шестой. 6.2 газотурбинные и парогазовые установки. 6.2.2. Парогазовые установки. ОАО «ВТИ». «Современные природоохранные технологии в энергетике». Информационный сборник под ред. В. Я. Путилова. М. : Издательский дом МЭИ, 2007.

1 Первоисточник данных: обследования водогрейных котлов (11 шт. в трех котельных тепловых сетей), сбор и обработка материалов .

2 Методика расчета, в частности Q УТ, приведена в .