Регулятор напряжения 220 в руками. Регулятор переменного напряжения. Схема тиристорного регулятора напряжения

Беспомеховый регулятор напряжения 220/0-220 вольт 60 ватт

Большинство регуляторов напряжения (мощности) выполнено на тиристорах по схеме с фазоимпульсным управлением. Как известно, подобные устройства создают заметный уровень радиопомех. Предлагаемый автором статьи регулятор свободен от этого недостатка.

Особенность предлагаемого регулятора (см. схему) - управление амплитудой переменного напряжения, при котором не искажается форма выходного сигнала, в отличие от фазоимпульсного управления. Регулирующий элемент - мощный транзистор VT1 в диагонали диодного моста VD1-VD4, включенного последовательно с нагрузкой. Основной недостаток устройства - его низкий КПД.

Когда транзистор закрыт, ток через выпрямитель и нагрузку не проходит. Если на базу транзистора подать напряжение управления, он открывается, через его участок коллектор-эмиттер, диодный мост и нагрузку начинает проходить ток. Напряжение на выходе регулятора (на нагрузке) увеличивается. Когда транзистор открыт и находится в режиме насыщения, к нагрузке приложено практически все сетевое (входное) напряжение.

Управляющий сигнал формирует маломощный блок питания, собранный на трансформаторе Т1, выпрямителе VD5 и сглаживающем конденсаторе С1. Переменным резистором R1 регулируют ток базы транзистора, а следовательно, и амплитуду выходного напряжения. При перемещении движка переменного резистора в верхнее по схеме положение напряжение на выходе уменьшается, в нижнее - увеличивается. Резистор R2 ограничивает максимальное значение тока управления.

Диод VD6 защищает узел управления при пробое коллекторного перехода транзистора.

Регулятор напряжения смонтирован на плате из фольгированного стеклотекстолита толщиной 2,5 мм. Транзистор VT1 следует установить на теплоотвод площадью не менее 200 см 2 . При необходимости диоды VD1-VD4 заменяют более мощными, например Д245А, и также размещают на теплоотводе.

Если устройство собрано без ошибок, оно начинает работать сразу и практически не требует налаживания. Необходимо лишь подобрать резистор R2.

С регулирующим транзистором КТ840Б мощность нагрузки не должна превышать 60 Вт. Его можно заменить приборами: КТ812Б, КТ824А, КТ824Б, КТ828А, КТ828Б с допустимой рассеиваемой мощностью 50 Вт; КТ856А -75 Вт; КТ834А, КТ834Б - 100 Вт; КТ847А - 125Вт.

Мощность нагрузки допустимо увеличить, если регулирующие транзисторы одного типа включить параллельно: коллекторы и эмиттеры соединить между собой, а базы через отдельные диоды и резисторы подключить к движку переменного резистора.

В устройстве применим малогабаритный трансформатор с напряжением на вторичной обмотке 5...8 В. Выпрямительный блок КЦ405Е можно заменить любым другим или собрать из отдельных диодов с допустимым прямым током не менее необходимого тока базы регулирующего транзистора. Эти же требования относятся и к диоду VD6.

Конденсатор C1 - оксидный, например, К50-6, К50-16 и т. д., на номинальное напряжение не менее 15 В. Переменный резистор R1 - любой с номинальной мощностью рассеяния 2 Вт.

При монтаже и налаживании устройства следует соблюдать меры предосторожности: элементы регулятора находятся под напряжением сети.

Литература

  1. Радио №11, 1999 с.40

Публикация: www.cxem.net

Тиристор это один из мощнейших полупроводниковых приборов, именно поэтому он часто используется в мощных преобразователях энергии. Но он обладает своей спецификой управления: его можно открыть импульсом тока, а вот закроется он только когда ток опуститься почти до нуля (если быть точнее, то ниже тока удержания). Из этого тиристор в основном применяются для коммутирования переменного тока.

Фазовое регулирование напряжения

Существует несколько способов регулирования переменного напряжения тиристорами: можно пропускать или запрещать на выход регулятора целые полупериоды (или периоды) переменного напряжения. А можно включать не в начале полупериода сетевого напряжения, а с некоторой задержкой — ‘a’. В течении этого времени напряжение на выходе регулятора будет равно нулю, а мощность не будет передаваться на выход. Вторую часть полупериода тиристор будет проводить ток и на выходе регулятора появиться входное напряжение.

Время задержки ещё часто называют углом открывания тиристора, так вот при нулевом угле практически всё напряжение со входа будет попадать на выход, только падение на открытом тиристоре будет теряться. При увеличении угла тиристорный регулятор напряжения будет снижать выходное напряжение.

Регулировочная характеристика тиристорного преобразователя при работе на активную нагрузку приведена на следующем рисунке. При угле равном 90 электрических градусов на выходе будет половина входного напряжения, а при угле 180 эл. градусов на выходе будет ноль.


На основе принципов фазового регулирования напряжения можно построить схемы регулирования, стабилизации, а также плавного пуска. Для плавного пуска напряжение нужно повышать постепенно от нуля до максимального значения. Таким образом угол открывания тиристора должен изменяться от максимального значения до нуля.

Схема тиристорного регулятора напряжения


Таблица номиналов элементов

  • C1 – 0,33мкФ напряжение не ниже 16В;
  • R1, R2 – 10 кОм 2Вт;
  • R3 – 100 Ом;
  • R4 – переменный резистор 33 кОм;
  • R5 – 3,3 кОм;
  • R6 – 4,3 кОм;
  • R7 – 4,7 кОм;
  • VD1 .. VD4 – Д246А;
  • VD5 – Д814Д;
  • VS1 – КУ202Н;
  • VT1 – КТ361B;
  • VT2 – КТ315B.

Схема построена на отечественной элементной базе, собрать её можно из тех деталей, которые провалялись у радиолюбителей 20-30 лет. Если тиристор VS1 и диоды VD1-VD4 установить на соответствующие охладители, то тиристорный регулятор напряжения будет способен отдавать в нагрузку 10А, то есть при напряжении 220 В получаем возможность регулировать напряжение на нагрузке в 2,2 кВт.

В устройстве всего два силовых компонента диодный мост и тиристор . Они рассчитаны на напряжение 400В и ток 10А. Диодный мост превращает переменное напряжение в однополярное пульсирующее, а фазовое регулирование полупериодов осуществляет тиристор.

Параметрический стабилизатор из резисторов R1, R2 и стабилитрона VD5 ограничивает напряжение, которое подается на систему управления на уровне 15 В. Последовательное включение резисторов нужно для увеличения пробивного напряжения и увеличения рассеиваемой мощности.

В самом начале полупериода переменного напряжения С1 разряжен и в точке соединения R6 и R7 тоже нулевое напряжение. Постепенно напряжения в этих двух точках начинают расти и чем меньше сопротивление резистора R4, тем быстрее напряжение на эмиттере VT1 перегонит напряжение на его базе и откроет транзистор.
Транзисторы VT1, VT2 составляют маломощный тиристор. При появлении напряжения на база-эмиттерном переходе VT1 больше порогового, транзистор открывается и открывает VT2. А VT2 отпирает тиристор.

Представленная схема достаточно проста, её можно перевести на современною элементную базу. Также можно при минимальных переделках снизить мощность или напряжение работы.

В статье рассказывается о том, как работает тиристорный регулятор мощности, схема которого будет представлена ниже

В повседневной жизни очень часто возникает необходимость регулирования мощности бытовых приборов, например электроплиты, паяльника, кипятильников и ТЭНов, на транспорте - оборотов двигателя и т.д. На помощь приходит простейшая радиолюбительская конструкция - регулятор мощности на тиристоре. Собрать такое устройство не составит труда, оно может стать тем самым первым самодельным прибором, который будет выполнять функцию регулировки температуры жала паяльника начинающего радиолюбителя. Стоит отметить, что готовые паяльные станции с контролем температуры и прочими приятными функциями стоят на порядок дороже простого паяльника. Минимальный набор деталей позволяет собрать простой тиристорный регулятор мощности навесным монтажом.

К сведению, навесной монтаж — это способ сборки радиоэлектронных компонентов без применения печатной платы, а при хорошем навыке он позволяет быстро собрать электронные устройства средней сложности.

Вы также можете заказать тиристорного регулятора, а для тех, кто хочет разобраться во всём самостоятельно, ниже будет представлена схема и объяснён принцип работы.

Между прочим, это однофазный тиристорный регулятор мощности. Такой прибор может быть использован для управления мощностью или количеством оборотов. Однако для начала следует разобраться в ведь это позволит нам понять, на какую нагрузку лучше использовать такой регулятор.

Как работает тиристор?

Тиристор - это управляемый полупроводниковый прибор, способный проводить ток в одном направлении. Слово «управляемый» употреблено неспроста, поскольку с его помощью, в отличие от диода, который тоже проводит ток только к одному полюсу, можно выбирать момент, когда тиристор начнет проводить ток. Тиристор имеет три вывода:

  • Анод.
  • Катод.
  • Управляющий электрод.

Для того чтобы ток начал течь через тиристор, необходимо выполнить следующие условия: деталь должна стоять в цепи, находящейся под напряжением, на управляющий электрод должен быть подан кратковременный импульс. В отличие от транзистора, управление тиристором не требует удержания управляющего сигнала. На этом нюансы не заканчиваются: тиристор можно закрыть, лишь прервав ток в цепи, или сформировав обратное напряжение анод - катод. Это значит, что использование тиристора в цепях постоянного тока весьма специфично и часто неблагоразумно, а вот цепях переменного, например в таком приборе как тиристорный регулятор мощности, схема построена таким образом, что обеспечено условие для закрытия. Каждая из полуволн будет закрывать соответствующий тиристор.

Вам, скорее всего, не всё понятно? Не стоит отчаиваться - ниже будет подробно описан процесс работы готового устройства.

Область применения тиристорных регуляторов

В каких цепях эффективно использовать тиристорный регулятор мощности? Схема позволяет отлично регулировать мощность нагревательных приборов, то есть воздействовать на активную нагрузку. При работе с высокоиндуктивной нагрузкой тиристоры могут просто не закрыться, что может привести к выходу регулятора из строя.

Можно ли двигателя?

Я думаю, многие из читателей видели или пользовались дрелями, углошлифовальными машинами, которые в народе именуют "болгарками", и прочим электроинструментом. Вы могли заметить, что количество оборотов зависит от глубины нажатия на кнопку-курок прибора. Вот в этот элемент как раз и встроен такой тиристорный регулятор мощности (схема которого приведена ниже), с помощью которого осуществляется изменение количества оборотов.

Обратите внимание! Тиристорный регулятор не может изменять обороты асинхронных двигателей. Таким образом, напряжение регулируется на коллекторных двигателях, оборудованных щёточным узлом.

Схема одном и двух тиристорах

Типовая схема для того, чтобы собрать тиристорный регулятор мощности своими руками изображена на рисунке ниже.

Выходное напряжение у данной схемы от 15 до 215 вольт, в случае применения указанных тиристоров, установленных на теплоотводах, мощность составляет порядка 1 кВт. Кстати выключатель с регулятором яркости света сделан по подобной схеме.

Если у вас нет необходимости полной регулировки напряжения и достаточно получать на выходе от 110 до 220 вольт, воспользуйтесь этой схемой, которая показывает однополупериодный регулятор мощности на тиристоре.

Как это работает?

Описанная ниже информация справедлива для большинства схем. Буквенные обозначения будут браться в соответствии первой схемы тиристорного регулятора

Тиристорный регулятор мощности, принцип работы которого основан на фазовом управлении величиной напряжения, изменяет и мощность. Данный принцип заключается в том, что в нормальных условиях на нагрузку действует переменное напряжение бытовой сети, изменяющееся по синусоидальному закону. Выше, при описании принципа работы тиристора, было сказано, что каждый тиристор работает в одном направлении, то есть управляет своей полуволной от синусоиды. Что это значит?

Если с помощью тиристора периодически подключать нагрузку в строго определенный момент, величина действующего напряжения будет ниже, поскольку часть напряжения (действующая величина, которая «попадёт» на нагрузку) будет меньше, чем сетевое. Данное явление проиллюстрировано на графике.

Заштрихованная область - это и есть область напряжения, которое оказалось под нагрузкой. Буквой «а» на горизонтальной оси обозначен момент открытия тиристора. Когда положительная полуволна закончится и начнется период с отрицательной полуволной, один из тиристоров закрывается, и в тот же момент открывается второй тиристор.

Разберемся, как работает конкретно наш тиристорный регулятор мощности

Схема первая

Оговорим заранее, что вместо слов "положительная" и "отрицательная" будут использованы «первая» и «вторая» (полуволна).

Итак, когда на нашу схему начинает действовать первая полуволна, начинают заряжаться ёмкости C1 и C2. Скорость их заряда ограничена потенциометром R5. данный элемент является переменным, и с его помощью задаётся выходное напряжение. Когда на конденсаторе C1 появляется необходимое для открытия динистора VS3 напряжение, динистор открывается, через него поступает ток, с помощью которого будет открыт тиристор VS1. Момент пробоя динистора и есть точка «а» на графике, представленном в предыдущем разделе статьи. Когда значение напряжения переходит через ноль и схема оказывается под второй полуволной, тиристор VS1 закрывается, и процесс повторяется заново, только для второго динистора, тиристора и конденсатора. Резисторы R3 и R3 служат для управления, а R1 и R2 - для термостабилизации схемы.

Принцип работы второй схемы аналогичен, но в ней идёт управление только одной из полуволн переменного напряжения. Теперь, зная принцип работы и схему, вы можете собрать или починить тиристорный регулятор мощности своими руками.

Применение регулятора в быту и техника безопасности

Нельзя не сказать о том, что данная схема не обеспечивает гальванической развязки от сети, поэтому существует опасность поражения электрическим током. Это значит, что не стоит касаться руками элементов регулятора. Необходимо использовать изолированный корпус. Следует проектировать конструкцию вашего прибора так, чтобы по возможности вы могли спрятать её в регулируемом устройстве, найти свободное место в корпусе. Если регулируемый прибор располагается стационарно, то вообще имеет смысл подключить его через выключатель с регулятором яркости света. Такое решение частично обезопасит от поражения током, избавит от необходимости поиска подходящего корпуса, имеет привлекательный внешний вид и изготовлено промышленным методом.

НЕСКОЛЬКО ПРИНЦИПИАЛЬНЫХ СХЕМ РЕГУЛЯТОРОВ МОЩНОСТИ

РЕГУЛЯТОР МОЩНОСТИ НА СИМИСТОРЕ

Особенностями предлагаемого устройства являются использование D - триггера для построения генератора, синхронизированного с сетевым напряжением, и способ управления симистором с помощью одиночного импульса, длительность которого регулируется а втоматически. В отличие от других способов импульсного управления симистором, указанный способ некритичен к наличию в нагрузке индуктивной сос тавляющей. Импульсы генератора следуют с периодом приблизительно 1,3 с.
Питание микросхемы DD 1 производится током, протекающим через защитный диод, находящийся внутри микросхемы между ее выводами 3 и 14. Он течет, когда напряжение на этом выводе, соединенном с сетью через резистор R 4 и диод VD 5, превышает на пряжение стабилизации стабилитрона VD 4.

К. ГАВРИЛОВ, Радио, 2011, №2, с. 41

ДВУХКАНАЛЬНЫЙ РЕГУЛЯТОР МОЩНОСТИ НАГРЕВАТЕЛЬНЫХ ПРИБОРОВ

Регулятор содержит два независимых канала и позволяет поддерживать требуемую температуру для различных нагру зок: температуры жала паяльника, электроутюга, электрообогревателя, электроплиты и др. Глубина регулирования составляет 5...95% мощности питающей сети. Схема регулятора питается выпрямленным напряжением 9...11 В с трансформаторной развязкой от сети 220 В с малым током потребления.


В.Г. Никитенко, О.В. Никитенко, Радiоаматор, 2011, №4, с. 35

СИМИСТОРНЫЙ РЕГУЛЯТОР МОЩНОСТИ

Особенностью этого симисторного регулятора является то, что число подаваемых на нагрузку полупериодов сетевого на пряжения при любом положении органа управления оказывается четным. В результате, не образуется постоянная составляющая потребляемого тока и, следовательно, отсутствует подмагничивание магнитопроводов подклю ченных к регулятору трансформа торов и электродвигателей. Мощность р егулируется изменением числа периодов переменного на пряжения, приложенного к нагруз ке за определенный интервал времени. Регулятор предназначен для ре гулирования мощности приборов, обладающих значительной инерци ей (нагревателей и т. п.).
Для регу лирован ия яркости освещения он не пригоден, т. к. лампы будут сильно мигать.

В. КАЛАШНИК, Н. ЧЕРЕМИСИНОВА, В. ЧЕРНИКОВ, Радиомир, 2011, № 5 , с. 17 - 18

БЕСПОМЕХОВЫЙ РЕГУЛЯТОР НАПРЯЖЕНИЯ

Большинство регуляторов напряжения (мощности) выполнено на тиристорах по схеме с фазоимпульсным управлением. Как известно, подобные устройства создают заметный уровень радиопомех. Предлагаемый регулятор свободен от этого недостатка. Особенность предлагаемого регулятора - управление амплитудой переменного напряжения, при котором не искажается форма выходного сигнала, в отличие от фазоимпульсного управления.
Регулирующий элемент - мощный транзистор VT1 в диагонали диодного моста VD1-VD4, включенного последовательно с нагрузкой. Основной недостаток устройства - его низкий КПД. Когда транзистор закрыт, ток через выпрямитель и нагрузку не проходит. Если на базу транзистора подать напряжение управления, он открывается, через его участок коллектор-эмиттер, диодный мост и нагрузку начинает проходить ток. Напряжение на выходе регулятора (на нагрузке) увеличивается. Когда транзистор открыт и находится в режиме насыщения, к нагрузке приложено практически все сетевое (входное) напряжение. Управляющий сигнал формирует маломощный блок питания, собранный на трансформаторе Т1, выпрямителе VD5 и сглаживающем конденсаторе С1.
Переменным резистором R1 регулируют ток базы транзистора, а следовательно, и амплитуду выходного напряжения. При перемещении движка переменного резистора в верхнее по схеме положение напряжение на выходе уменьшается, в нижнее - увеличивается. Резистор R2 ограничивает максимальное значение тока управления. Диод VD6 защищает узел управления при пробое коллекторного перехода транзистора. Регулятор напряжения смонтирован на плате из фольгиро- ванного стеклотекстолита толщиной 2,5 мм. Транзистор VT1 следует установить на теплоотвод площадью не менее 200 см2. При необходимости диоды VD1-VD4 заменяют более мощными, например Д245А, и также размещают на теплоотводе.

Если устройство собрано без ошибок, оно начинает работать сразу и практически не требует налаживания. Необходимо лишь подобрать резистор R2.
С регулирующим транзистором КТ840Б мощность нагрузки не должна превышать 60 Вт . Его можно заменить приборами: КТ812Б, КТ824А, КТ824Б, КТ828А, КТ828Б с допустимой рассеиваемой мощностью 50 Вт.; КТ856А -75 Вт.; КТ834А, КТ834Б - 100 Вт.; КТ847А-125 Вт. Мощность нагрузки допустимо увеличить, если регулирующие транзисторы одного типа включить параллельно: коллекторы и эмиттеры соединить между собой, а базы через отдельные диоды и резисторы подключить к движку переменного резистора.
В устройстве применим малогабаритный трансформатор с напряжением на вторичной обмотке 5...8 В. Выпрямительный блок КЦ405Е можно заменить любым другим или собрать из отдельных диодов с допустимым прямым током не менее необходимого тока базы регулирующего транзистора. Эти же требования относятся и к диоду VD6. Конденсатор С1 - оксидный, например, К50-6, К50-16 и т. д., на номинальное напряжение не менее 15 В. Переменный резистор R1 - любой с номинальной мощностью рассеяния 2 Вт. При монтаже и налаживании устройства следует соблюдать меры предосторожности: элементы регулятора находятся под напряжением сети. Примечание: Для уменьшения искажения синусоидальной формы выходного напряжения попробуйте исключить конденсатор С1. А. Чекаров

Регулятор напряжения на MOSFET - транзисторах (IRF540, IRF840)

Олег Белоусов, Электрик, 201 2 , № 12 , с. 64 - 66

Так как физический принцип работы полевого транзистора с изолированным затвором отличается от работы тиристора и симмистора, то его в течение периода сетевого напряжения можно многократно включать и выключать. Частота коммутации мощных транзисторов в данной схеме выбрана 1 к Гц. Достоинством этой схемы является простота и возможность изменять скважность импульсов, мало изменяя при этом частоту повторения импульсов.

В авторской конструкции получены следующие длительности импульсов: 0,08 мс, при периоде следования 1 мс и 0,8 мс при периоде следования 0,9 мс, в зависимости от положения движка резистора R2.
Отключить напряжение на нагрузке можно, замкнув выключатель S 1, при этом на затворах MOSFET - транзисторов устанавливается напряжение, близкое к напряжению на 7 выводе микросхем ы. При разомкнутом тумблере напряжение на нагрузке в авторском экземпляре устройства можно было изменять рези стором R 2 в пределах 18...214 В (измерено прибором типа TES 2712).
Принципиальная схема подобного регулятора показан на рисунке ниже. В регуляторе использется отечественная микросхема К561ЛН2 на двух элементах которой собран генератор с регулируемой суважностью, а четыре эелемента используюся как усилители тока.

Для исключения помех по сети 220 послеловательно нагрузке рекомендуется подключить дроссель намотанный на ферритовом кольце диаметром 20...30 мм до заполнения проводом 1 мм.

Генератор тока нагрузки на биполярных транзисторах (КТ817 , 2SC3987)

Бутов А. Л. , Радиоконструктор, 201 2 , № 7 , с. 11 - 12

Для проверки работоспособности и настройки источников питания удобно использовать имитатор нагрузки в виде регулируемого генератора тока. С помощью такого устройства можно не только быстро настроить блок питания, стабилизатор напряжения, но и, например, использовать его как генератор стабильного тока для зарядки, разрядки аккумуля торных батарей, устройств электролиза, для электрохимического травления печатных плат, как стабилизатор тока питания электроламп, для «мягкого» пуска коллекторных электродвигателей.
Устройство является двухполюсником, не требует дополнитель ного источника питания и может включаться в разрыв цепи питания различных устройств и исполнительных механизмов.
Диапазон регулировки тока от 0...0 , 16 до 3 А, максимальная потребляемая (рассеиваемая) мощность 40 Вт, диапазон питающих напряжений 3...30 В постоянного тока. Ток потребления регулируется переменным резистором R 6. Чем левее по схеме движок резистора R6, тем больший ток потребляет устрой ство. При разомкнутых контактах переключателя SA 1 резистором R6 можно установить ток потребления от 0,16 до 0,8 А. При замкнутых контактах этого переключателя ток регулируется в интервале 0,7... 3 А.



Чертеж печатной платы генератора тока

Имитатор автомобильного аккумулятора (КТ827)

В. МЕЛЬНИЧУК, Радиомир, 201 2 , № 1 2 , с. 7 - 8

При переделке компьютерных импульсных блоков питания (ИБП) подзарядные устройства (ЗУ) для автомобильных аккумуляторов готовые изделия в процессе наладки необходимо чем - то нагружать. Поэтому я решил изготовить аналог мощного стабилитрона с регулируемым напряжением стабилизации, схем а которого показана на рис. 1 . Резистором R 6 можно регулировать напряжение стабилизации от 6 до 16 В. Всего было сделано два таких устройства. В первом варианте в качестве транзис торов VT 1 и VT 2 применены КТ 803.
Внутреннее сопротивление такого стабилитрона оказалось слишком велико. Так, при токе 2 А напряжение стабилизации составило 12 В, а при 8 А - 16 В. Во втором варианте использованы составные транзисторы КТ827. Здесь при токе 2 А напряжение стабилизации составило 12 В, а при 10 А - 12,4 В.

Однако при регулировке более мощных потребителей, например электрокотлов симисторные регуляторы мощности становятся не пригодными - уж слишком большую помеху по сети они будут создавать. Для решения этой проблемы лучше использовать регуляторы с бОльшим периодом режимов ВКЛ-ВЫКЛ, что однозначно исключает возникновение помех. Один из вариантов схемы приведен .

Всем привет! В прошлой статье я расказывал, как сделать . Сегодня мы сделаем регулятор напряжения для переменного тока 220в. Конструкция довольно-таки проста для повторения даже начинающими. Но при этом регулятор может брать на себя нагрузку даже в 1 киловатт! Для изготовления данного регулятора нам понадобится несколько компонентов:

1. Резистор 4.7кОм млт-0.5 (пойдет даже 0.25 ватт).
2. Перменный резистор 500кОм-1мОм, с 500ком будет регулировать довольно плавно, но только в диапазоне 220в-120в. С 1 мОм - будет регулировать более жестко, тоесть будет регулировать промежутком в 5-10вольт, но зато диапазон возрастет, возможно регулировать от 220 до 60 вольт! Резистор желательно ставить со встроеным выключателем (хотя можно обойтись и без него, просто поставив перемычку).
3. Динистор DB3. Взять такой можно из ЛСД экономичных ламп. (Можно заменить на отечественный KH102).
4. Диод FR104 или 1N4007, такие диоды встречаются практически в любой импортной радиотехнике.
5. Экономичные по току светодиоды.
6. Симистор BT136-600B или BT138-600.
7. Винтовые клемники. (обйтись можно и без них, просто припаяв провода к плате).
8. Небольшой радиатор (до 0,5кВт он не нужен).
9. Пленочный конденсатор на 400вольт, от 0.1 микрофарадп, до 0.47 микрофарад.

Схема регулятора переменного напряжения:

Приступим к сборке устройства. Для начало вытравим и пролудим плату. Печатная плата - её рисунок в LAY, находится в архиве. Более компактный вариант, представленный товарищем sergei - .



Затем паяем конденастор. На фото конднесатор со стороны лужения, т.к у моего экземпляра конденсатора были слишком коротки ножки.


Паяем динистор. У динистора полярности нет, так-что вставляем его как вам угодно. Припаиваем диод, резистор, светодиод, перемычку и винтовой клемник. Выглядит оно примерно так:


И в конце концов последний этап - это ставим на симистор радиатор.


А вот фото готового устройства уже в корпусе.